Seasonality in telomerase activity in relation to cell size, DNA replication, and nutrients in the fat body of Apis mellifera
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33436732
PubMed Central
PMC7803764
DOI
10.1038/s41598-020-79912-9
PII: 10.1038/s41598-020-79912-9
Knihovny.cz E-zdroje
- MeSH
- chování zvířat fyziologie MeSH
- dlouhověkost MeSH
- fyziologická adaptace MeSH
- fyziologie výživy zvířat fyziologie MeSH
- replikace DNA fyziologie MeSH
- roční období MeSH
- sociální interakce MeSH
- stárnutí fyziologie MeSH
- telomerasa metabolismus MeSH
- tukové těleso metabolismus MeSH
- včely cytologie genetika metabolismus fyziologie MeSH
- velikost buňky * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- telomerasa MeSH
In honeybees (Apis mellifera), the rate of aging is modulated through social interactions and according to caste differentiation and the seasonal (winter/summer) generation of workers. Winter generation workers, which hatch at the end of summer, have remarkably extended lifespans as an adaptation to the cold season when the resources required for the growth and reproduction of colonies are limited and the bees need to maintain the colony until the next spring. In contrast, the summer bees only live for several weeks. To better understand the lifespan differences between summer and winter bees, we studied the fat bodies of honeybee workers and identified several parameters that fluctuate in a season-dependent manner. In agreement with the assumption that winter workers possess greater fat body mass, our data showed gradual increases in fat body mass, the size of the fat body cells, and Vg production as the winter season proceeded, as well as contrasting gradual decreases in these parameters in the summer season. The differences in the fat bodies between winter and summer bees are accompanied by respective increases and decreases in telomerase activity and DNA replication in the fat bodies. These data show that although the fat bodies of winter bees differ significantly from those of summer bees, these differences are not a priori set when bees hatch at the end of summer or in early autumn but instead gradually evolve over the course of the season, depending on environmental factors.
Zobrazit více v PubMed
Nowak MA. Evolution of eusociality. Nature. 2010;466:1057–1062. doi: 10.1038/nature09205. PubMed DOI PMC
Remolina SC, Hughes KA. Evolution and mechanisms of long life and high fertility in queen honey bees. Age. 2008;30:177–185. doi: 10.1007/s11357-008-9061-4. PubMed DOI PMC
Keller L, Genoud M. Extraordinary lifespans in ants: a test of evolutionary theories of ageing. Lett. Nat. 1997;389:3–5. doi: 10.1038/40130. DOI
Keller L, Jemielity S. Social insects as a model to study the molecular basis of ageing. Exp. Gerontol. 2006;41:553–556. doi: 10.1016/j.exger.2006.04.002. PubMed DOI
Laurent K, Genoud M. Extraordinary lifespans in ants: a test of evolutionary theories of ageing. Nature. 1997;389:958–960. doi: 10.1038/40130. DOI
Winston ML. The Biology of the Honey Bee. Cambridge: Harward University Press; 1987.
Amdam GV, Omholt SW. The hive bee to forager transition in honeybee colonies : the double repressor hypothesis. J. Theor. Biol. 2003;223:451–464. doi: 10.1016/S0022-5193(03)00121-8. PubMed DOI
Amdam GV, Aase ALTO, Seehuus SC, Fondrk MK, Norberg K, Hartfelder K. Social reversal of immunosenescence in honey bee workers. Exp. Cell Res. 2005;40:939–947. PubMed PMC
Münch D, Amdam G. V The curious case of aging plasticity in honey bees. FEBS Lett. 2010;584:2496–2503. doi: 10.1016/j.febslet.2010.04.007. PubMed DOI
Amdam G. V Social context, stress, and plasticity of aging. Aging Cell. 2011;10:18–27. doi: 10.1111/j.1474-9726.2010.00647.x. PubMed DOI
Huang ZY, Robinson GE. Seasonal changes in juvenile hormone titers and rates of biosynthesis in honey bees. J. Comp. Physiol. B. 1995;165:18–28. doi: 10.1007/BF00264682. PubMed DOI
Chan SW, Blackburn EH. New ways not to make ends meet: telomerase, DNA damage proteins and heterochromatin. Oncogene. 2002;21:553–563. doi: 10.1038/sj.onc.1205082. PubMed DOI
Denchi EL. Give me a break: how telomeres suppress the DNA damage response. DNA Repair (Amst). 2009;8:1118–1126. doi: 10.1016/j.dnarep.2009.04.013. PubMed DOI
Harley CB, Futcher AB, Greider CW. Telomeres shorten during ageing of human fibroblasts. Nature. 1990;345:458–460. doi: 10.1038/345458a0. PubMed DOI
Aubert G, Lansdorp PM, Aubert G, Lansdorp PM. Telomeres and Aging. Physiol. Rev. 2008;88:557–579. doi: 10.1152/physrev.00026.2007. PubMed DOI
Mason, J.M., Reddy, H.M., & Capkova Frydrychova, R. Telomere maintenance in organisms without telomerase. In DNA Replication-Current Advances, H. Seligman, ed. (InTech), p. (2011).
Mason JM, Frydrychova RC, Biessmann H. Drosophila telomeres: an exception providing new insights. BioEssays. 2008;30:25–37. doi: 10.1002/bies.20688. PubMed DOI PMC
Mason JM, Randall TA, Frydrychova RC. Telomerase lost ? Chromosoma. 2016;125:65–73. doi: 10.1007/s00412-015-0528-7. PubMed DOI PMC
Wright WE, Piatyszek MA, Rainey WE, Byrd W, Shay JW. Telomerase activity in human germline and embryonic tissues and cells. Dev. Genet. 1996;18:173–179. doi: 10.1002/(SICI)1520-6408(1996)18:2<173::AID-DVG10>3.0.CO;2-3. PubMed DOI
Cong Y, Wright WE, Shay JW. Human telomerase and its regulation. Microbiol. Mol. Biol. Rev. 2002;66:407–425. doi: 10.1128/MMBR.66.3.407-425.2002. PubMed DOI PMC
Aubert G, Lansdorp PM. Telomeres and aging. Physiol. Rev. 2008;88:557–579. doi: 10.1152/physrev.00026.2007. PubMed DOI
Heidinger BJ, Blount JD, Boner W, Grif K, Metcalfe NB, Monaghan P. Telomere length in early life predicts lifespan. PNAS. 2011;109:1–6. PubMed PMC
Wilbourn RV, Moatt JP, Froy H, Walling CA, Nussey DH, Boonekamp JJ, Nussey DH. The relationship between telomere length and mortality risk in non-model vertebrate systems: a meta-analysis. Philos. Trans. R. Soc. B Biol. Sci. 2018;373:20160447. doi: 10.1098/rstb.2016.0447. PubMed DOI PMC
Milewski LAK. The Evolution of ageing. Biosci. Horizons. 2010;3:77–84. doi: 10.1093/biohorizons/hzq001. DOI
Rodier F, Campisi J, Bhaumik D. Two faces of p53: aging and tumor suppression. Nucleic Acids Res. 2007;35:7475–7484. doi: 10.1093/nar/gkm744. PubMed DOI PMC
Flores I, Blasco MA. The role of telomeres and telomerase in stem cell aging. FEBS Lett. 2010;584:3826–3830. doi: 10.1016/j.febslet.2010.07.042. PubMed DOI
Young AJ, Young AJ. The role of telomeres in the mechanisms and evolution of life-history trade-offs and ageing. Philos. Trans. R. Soc. B Biol. Sci. 2018;373:2160452. doi: 10.1098/rstb.2016.0452. PubMed DOI PMC
Korandová M, Krůček T, Vrbová K, Frydrychová RC. Distribution of TTAGG-specific telomerase activity in insects. Chromosome Res. 2014;22:495–503. doi: 10.1007/s10577-014-9436-6. PubMed DOI
Korandova M, Frydrychova RC. Activity of telomerase and telomeric length in Apis mellifera. Chromosoma. 2016;125:405–411. doi: 10.1007/s00412-015-0547-4. PubMed DOI
Smedal B, Brynem M, Kreibich CD, Amdam GV. Brood pheromone suppresses physiology of extreme longevity in honeybees (Apis mellifera) J. Exp. Biol. 2009;212:3795–3801. doi: 10.1242/jeb.035063. PubMed DOI
Arrese EL, Soulages LJ. Insect fat body: energy, metabolism, and regulation. Annu. Rev. Entomol. 2010;55:207–225. doi: 10.1146/annurev-ento-112408-085356. PubMed DOI PMC
Lee HO, Davidson JM, Duronio RJ. Endoreplication: polyploidy with purpose. Genes Dev. 2009;223:2461–2477. doi: 10.1101/gad.1829209. PubMed DOI PMC
Koubová J, Jehlík T, Kodrik D, Sábová M, Sima P, Sehadova H, Závodská R, Capkova Frydrychova R. Telomerase activity is upregulated in the fat bodies of pre-diapause bumblebee queens (Bombus terrestris). Insect Biochem. Mol. Biol. 2019;115:103241. PubMed
Sahin E, Colla S, Liesa M, Moslehi J, Müller FL, Cooper M, Kotton D, Fabian AJ, Walkey C, Richard S, et al. Telomere dysfunction induces metabolic and mitochondrial compromise. Nature. 2011;470:359–365. doi: 10.1038/nature09787. PubMed DOI PMC
Sahin E, DePinho RA. Axis of ageing: telomeres, p53 and mitochondria. Nat. Rev. Mol. Cell Biol. 2012;13:397–404. doi: 10.1038/nrm3352. PubMed DOI PMC
Maida Y, Yasukawa M, Furuuchi M, Lassmann T, Okamoto N, Kasim V, Hayashizaki Y, Hahn WC. An RNA dependent RNA polymerase formed by hTERT and the RNase MRP RNA. Nature. 2009;461:230–235. doi: 10.1038/nature08283. PubMed DOI PMC
Seehuus S, Norberg K, Gimsa U, Krekling T, Amdam G. V Reproductive protein protects functionally sterile honey bee workers from oxidative stress. PNAS. 2006;103:962–967. doi: 10.1073/pnas.0502681103. PubMed DOI PMC
Havukainen H, Munch D, Baumann A, Zhong S, Halskau O, Krogsgaard M, Amdam GV. Vitellogenin recognizes cell damage through membrane binding and shields living cells from reactive oxygen. J. Biol. Chem. 2013;288:28369–28381. doi: 10.1074/jbc.M113.465021. PubMed DOI PMC
Kodrík D, Ibrahim E, Gautam U, Čapková Frydrychová R, Bednářová A, Krištůfek V, Jedlicka P. Changes in vitellogenin expression caused by nematodal and fungal infections in insects. J. Exp. Biol. 2019;222(10):202853. doi: 10.1242/jeb.202853. PubMed DOI
Amdam GV, Simoes ZLP, Hagen A, Norberg K, Schrøder K, Mikkelsen Ø, Kirkwood TBL, Omholt SW. Hormonal control of the yolk precursor vitellogenin regulates immune function and longevity in honeybees. Exp. Cell Res. 2004;39:767–773. PubMed
Hartfelder K. Insect juvenile hormone: from “status quo” to high society. Brazilian J. Med. Biol. Res. 2000;33:157–177. doi: 10.1590/S0100-879X2000000200003. PubMed DOI
Guidugli KR, Nascimento AM, Amdam GV, Barchuk AR, Simo LP. Vitellogenin regulates hormonal dynamics in the worker caste of eusocial insect. FEBS Lett. 2005;579:4961–4965. doi: 10.1016/j.febslet.2005.07.085. PubMed DOI
Tatar M, Yin C. Slow aging during insect reproductive diapause: why butterflies, grasshoppers and flies are like worms. Exp. Gerontol. 2001;36:723–738. doi: 10.1016/S0531-5565(00)00238-2. PubMed DOI
Fahrbach SE, Robinson GE. Juvenile hormone, behavioral maturation, and brain structure in the honey bee. Dev. Neurosci. 1996;18:102–114. doi: 10.1159/000111474. PubMed DOI
Nurnberger F, Hartel S, Steffen-Dewenter I. The influence of temperature and photoperiod on the timing of brood onset in hibernating honey bee colonies. PeerJ. 2018;6:e4801. doi: 10.7717/peerj.4801. PubMed DOI PMC
Cherednikov AV. Photoperiodism in the honey bee. Ent. Rev. Wash. 1967;46:33–37.
Fluri P, Bogdanov S. Effects of Artificial Shortening of the Photoperiod on Honeybee (Apis mellifera) Polyethism. Journal Apic. Res. 1987;26:83–89. doi: 10.1080/00218839.1987.11100742. DOI
Jehlík T, Kodrík D, Krištůfek V, Koubová J, Sábová M, Danihlík J, Tomčala A, Čapková Frydrychová R. Effects of Chlorella sp. on biological characteristics of the honey bee Apis mellifera. Apidologie. 2019;4:564–577. doi: 10.1007/s13592-019-00670-3. DOI
Socha R, Kodrík D, Šimek P, Patočková M. The kind of AKH-mobilized energy substrates in insects can be predicted without a knowledge of the hormone structure. Eur. J. Entomol. 2004;101:1210–5759.