Insect Body Defence Reactions against Bee Venom: Do Adipokinetic Hormones Play a Role?

. 2021 Dec 23 ; 14 (1) : . [epub] 20211223

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35050987

Bees originally developed their stinging apparatus and venom against members of their own species from other hives or against predatory insects. Nevertheless, the biological and biochemical response of arthropods to bee venom is not well studied. Thus, in this study, the physiological responses of a model insect species (American cockroach, Periplaneta americana) to honeybee venom were investigated. Bee venom toxins elicited severe stress (LD50 = 1.063 uL venom) resulting in a significant increase in adipokinetic hormones (AKHs) in the cockroach central nervous system and haemolymph. Venom treatment induced a large destruction of muscle cell ultrastructure, especially myofibrils and sarcomeres. Interestingly, co-application of venom with cockroach Peram-CAH-II AKH eliminated this effect. Envenomation modulated the levels of carbohydrates, lipids, and proteins in the haemolymph and the activity of digestive amylases, lipases, and proteases in the midgut. Bee venom significantly reduced vitellogenin levels in females. Dopamine and glutathione (GSH and GSSG) insignificantly increased after venom treatment. However, dopamine levels significantly increased after Peram-CAH-II application and after co-application with bee venom, while GSH and GSSG levels immediately increased after co-application. The results suggest a general reaction of the cockroach body to bee venom and at least a partial involvement of AKHs.

Zobrazit více v PubMed

Lubawy J., Urbanski A., Mrówczynska L., Matuszewska E., Swiatły-Błaszkiewicz A., Matysiak J., Rosinski R. The influence of bee venom melittin on the functioning of the immune system and the contractile activity of the insect heart—A preliminary study. Toxins. 2019;11:494. doi: 10.3390/toxins11090494. PubMed DOI PMC

Moreno M., Girald E. Three valuable peptides from bee and wasp venoms for therapeutic and biotechnological use: Melittin, apamin and mastoparan. Toxins. 2015;7:1126–1150. doi: 10.3390/toxins7041126. PubMed DOI PMC

Son D.J., Lee J.W., Lee Y.H., Song H.S., Lee C.K., Hong J.T. Therapeutic application of anti-arthritis, pain-releasing, and anti-cancer effects of bee venom and its constituent compounds. Pharmacol. Ther. 2007;115:246–270. doi: 10.1016/j.pharmthera.2007.04.004. PubMed DOI

Chen J., Lariviere W.R. The nociceptive and anti-nociceptive effects of bee venom injection and therapy: A double-edged sword. Prog. Neurobiol. 2010;92:151–183. doi: 10.1016/j.pneurobio.2010.06.006. PubMed DOI PMC

Florea A., Varga A.P., Matei H.V. Ultrastructural variability of mitochondrial cristae induced in vitro by bee (Apis mellifera) venom and its derivatives, melittin and phospholipase A2, in isolated rat adrenocortical mitochondria. Micron. 2018;112:42–54. doi: 10.1016/j.micron.2018.06.008. PubMed DOI

Horan K.L., Adamski S.W., Ayele W., Langone J.J., Grega G.J. Evidence that prolonged histamine suffusions produce transient increases in vascular permeability subsequent to the formation of venular macro-molecular leakage sites. Proof of the Majno-Palade hypothesis. Am. J. Pathol. 1986;123:570–576. PubMed PMC

Park H.G., Lee S.K., Kim B.Y., Yoon H.J., Choi Y.S., Lee K.Y., Wan H., Li J., Jin B.R. Honeybee (Apis cerana) vitellogenin acts as antimicrobial and antioxidant agent in the body and venom. Dev. Comp. Immunol. 2018;85:51–60. doi: 10.1016/j.dci.2018.04.001. PubMed DOI

Salmela H., Amdam G.V., Freitak D. Transfer of immunity from mother to offspring is mediated via egg-yolk protein vitellogenin. PLoS Pathog. 2015;11:e1005015. doi: 10.1371/journal.ppat.1005015. PubMed DOI PMC

Kodrík D., Ibrahim E., Gautam U.K., Čapková-Frydrychová R., Bednářová A., Krištůfek V., Jedlička P. Changes in vitellogenin expression caused by nematodal and fungal infections in insects. J. Exp. Biol. 2019;222:jeb202853. doi: 10.1242/jeb.202853. PubMed DOI

Storey K.B. Adventures in oxygen metabolism. Comp. Biochem. Physiol. C. 2004;139:359–369. doi: 10.1016/j.cbpc.2004.02.018. PubMed DOI

Gäde G., Hoffmann K.H., Spring J.H. Hormonal regulation in insects: Facts, gaps, and future directions. Physiol. Rev. 1997;77:963–1032. doi: 10.1152/physrev.1997.77.4.963. PubMed DOI

Kodrík D. Adipokinetic hormone functions that are not associated with insect flight. Physiol. Entomol. 2008;33:171–180. doi: 10.1111/j.1365-3032.2008.00625.x. DOI

Kodrík D., Bednářová A., Zemanová M., Krishnan N. Hormonal regulation of response to oxidative stress in insects—An update. Int. J. Mol. Sci. 2015;16:25788–25816. doi: 10.3390/ijms161025788. PubMed DOI PMC

Kodrík D., Vinokurov K., Tomčala A., Socha R. The effect of adipokinetic hormone on midgut characteristics in Pyrrhocoris apterus L. (Heteroptera) J. Insect Physiol. 2012;58:194–204. doi: 10.1016/j.jinsphys.2011.11.010. PubMed DOI

Bil M., Broeckx V., Landuyt B., Huybrechts R. Differential peptidomics highlights adipokinetic hormone as key player in regulating digestion in anautogenous flesh fly, Sarcophaga crassipalpis. Gen. Comp. Endocrinol. 2014;208:49–56. doi: 10.1016/j.ygcen.2014.08.016. PubMed DOI

Bodláková K., Jedlička P., Kodrík D. Adipokinetic hormones control amylase activity in the cockroach (Periplaneta americana) gut. Insect Sci. 2017;24:259–269. doi: 10.1111/1744-7917.12314. PubMed DOI

Van der Horst D.J., Van Marrewijk W.J.A., Diederen H.B. Adipokinetic hormones of insect: Release, signal transduction, and responses. Int. Rev. Cytol. 2001;211:179–240. PubMed

Socha R., Kodrík D., Zemek R. Stimulatory effects of bioamines norepinephrine and dopamine on locomotion of Pyrrhocoris apterus (L.): Is the adipokinetic hormone involved? Comp. Biochem. Physiol. B. 2008;151:305–310. doi: 10.1016/j.cbpb.2008.07.014. PubMed DOI

Scarborough R.M., Jamieson G.C., Kalish F., Kramer J.S., McEnroe G.A., Miller C.A., Schooley D. Isolation and primary structure of two peptides with cardioacceleratory and hyperglycemic activity from the corpora cardiaca of Periplaneta americana. Proc. Natl. Acad. Sci. USA. 1984;81:5575–5579. doi: 10.1073/pnas.81.17.5575. PubMed DOI PMC

Michitsch J., Steel J.E. Carbohydrate and lipid metabolism in cockroach (Periplaneta americana) fat body are both activated by low and similar concentrations of Peram-AKH II. Peptides. 2008;29:226–234. doi: 10.1016/j.peptides.2007.08.031. PubMed DOI

Culliney T.W. Geological history and evolution of the honey bee. Am. Bee J. 1983;123:580–585.

Engel M.S. Fossil honey bees and evolution in the genus Apis (Hymenoptera: Apidae) Apidologie. 1998;29:265–281. doi: 10.1051/apido:19980306. DOI

Oudejans R.C.H.M., Vroemen S.F., Jansen R.F.R., Van der Horst D.J. Locust adipokinetic hormones: Carrier-independent transport and differential inactivation at physiological concentrations during rest and flight. Proc. Natl. Acad. Sci. USA. 1996;93:8654–8659. doi: 10.1073/pnas.93.16.8654. PubMed DOI PMC

Van der Horst D.J., Van Marrewijk W.J.A., Vullings H.G.B., Diederen J.H.B. Metabolic neurohormones: Release, signal transduction and physiological responses of adipokinetic hormones in insects. Eur. J. Entomol. 1999;96:299–308.

Goldsworthy G.J., Kodrík D., Comley R., Lightfoot M. A quantitative study of the adipokinetic hormone of the firebug, Pyrrhocoris apterus. J. Insect Physiol. 2002;48:1103–1108. doi: 10.1016/S0022-1910(02)00203-2. PubMed DOI

Kodrík D., Socha R. The effect of insecticide on adipokinetic hormone titre in insect body. Pest Manag. Sci. 2005;61:1077–1082. doi: 10.1002/ps.1087. PubMed DOI

Velki M., Kodrík D., Večeřa J., Hackenberger B.K., Socha R. Oxidative stress elicited by insecticides: A role for the adipokinetic hormone. Gen. Comp. Endocrinol. 2011;172:77–84. doi: 10.1016/j.ygcen.2010.12.009. PubMed DOI

Kodrík D., Plavšin I., Velki M., Stašková T. Enhancement of insecticide efficacy by adipokinetic hormones. In: Montgomery J., editor. Insecticides: Occurrence, Global Threats and Ecological Impact. Nova Science Publishers, Inc.; New York, NY, USA: 2015. pp. 77–91.

Ibrahim E., Hejníková M., Shaik H.A., Doležel D., Kodrík D. Adipokinetic hormone activities in insect body infected by entomopathogenic nematode. J. Insect Physiol. 2017;98:347–355. doi: 10.1016/j.jinsphys.2017.02.009. PubMed DOI

Gautam U.K., Bohatá A., Shaik H.A., Zemek R., Kodrík D. Adipokinetic hormone promotes infection with entomopathogenic fungus Isaria fumosorosea in the cockroach Periplaneta americana. Comp. Biochem. Physiol. C. 2020;229:108677. doi: 10.1016/j.cbpc.2019.108677. PubMed DOI

Gautam U.K., Hlávková D., Shaik H.A., Karaca I., Karaca G., Sezen K., Kodrík D. Adipokinetic hormones enhance the efficacy of the entomopathogenic fungus Isaria fumosorosea in model and pest insects. Pathogens. 2020;9:801. doi: 10.3390/pathogens9100801. PubMed DOI PMC

Kodrík D., Bártů I., Socha R. Adipokinetic hormone (Pyrap-AKH) enhances the effect of a pyrethroid insecticide against the firebug Pyrrhocoris apterus. Pest Manag. Sci. 2010;66:425–431. doi: 10.1002/ps.1894. PubMed DOI

Betten D.P., Richardson W.H., Tong T.C., Clark R.F. Massive honey bee envenomation-induced rhabdomyolysis in an adolescent. Pediatrics. 2006;117:231–235. doi: 10.1542/peds.2005-1075. PubMed DOI

Florea A., Craciun C. Bee (Apis mellifera) venom produced toxic effects of higher amplitude in rat thoracic aorta than in skeletal muscle—An ultrastructural study. Microsc. Microanal. 2012;18:304–316. doi: 10.1017/S1431927611012876. PubMed DOI

Malencik D.A., Anderson S.R. Association of melittin with isolated myosin light-chain. Biochemistry. 1988;27:1941–1949. doi: 10.1021/bi00406a021. PubMed DOI

Ownby C.L., Powell J.R., Jiang M.S., Fletcher J.E. Melittin and phospholipase A(2) from bee (Apis mellifera) venom cause necrosis of murine skeletal muscle in vivo. Toxicon. 1997;35:67–80. doi: 10.1016/S0041-0101(96)00078-5. PubMed DOI

Fletcher J.E., Hubert M., Wieland S.J., Gong O.H., Jiang M.S. Similarities and differences in mechanisms of cardiotoxins, melittin and other myotoxins. Toxicon. 1996;34:1301–13011. doi: 10.1016/S0041-0101(96)00105-5. PubMed DOI

Goldsworthy G.J., Opoku-Ware K., Mullen L.M. Adipokinetic hormone enhances laminarin and bacterial lipopolysaccharide-induced activation of the prophenoloxidase cascade in the African migratory locust, Locusta migratoria. J. Insect Physiol. 2020;48:601–608. doi: 10.1016/S0022-1910(02)00085-9. PubMed DOI

Goldsworthy G.J., Opoku-Ware K., Mullen L.M. Adipokinetic hormone and the immune responses of locusts to infection. Ann. N. Y. Acad. Sci. 2005;1040:106–113. doi: 10.1196/annals.1327.013. PubMed DOI

Arrese E.L., Soulages J.L. Insect fat body: Energy, metabolism, and regulation. Ann. Rev. Entomol. 2010;55:207–225. doi: 10.1146/annurev-ento-112408-085356. PubMed DOI PMC

Bodláková K., Beňová M., Kodrík D. The effect of adipokinetic hormones on the activity of digestive enzymes. Physiol. Entomol. 2018;43:140–148. doi: 10.1111/phen.12238. DOI

Havukainen H., Münch D., Baumann A., Zhong S., Halskau Ø., Krogsgaard M., Amdam G.V. Vitellogenin recognizes cell damage through membrane binding and shields living cells from reactive oxygen species. J. Biol. Chem. 2013;288:28369–28381. doi: 10.1074/jbc.M113.465021. PubMed DOI PMC

Singh N.K., Pakkianathan B.C., Kumar M., Prasad T., Kannan M., Konig S., Krishnan M. Vitellogenin from the silkworm, Bombyx mori: An effective anti-bacterial agent. PLoS ONE. 2013;8:e73005. doi: 10.1371/journal.pone.0073005. PubMed DOI PMC

Salmela H., Sundstrom L. Vitellogenin in inflammation and immunity in social insects. Inflamm. Cell Signal. 2017;4:e1506.

Tufail M., Hatakeyama M., Takeda M. Molecular evidence for two vitellogenin genes and processing of vitellogenins in the American cockroach, Periplaneta americana. Arch. Insect Biochem. Physiol. 2001;48:72–80. doi: 10.1002/arch.1059. PubMed DOI

Carlisle J., Loughton B.G. The inhibition of protein synthesis in Locusta migratoria by adipokinetic hormone. J. Insect Physiol. 1986;32:573–578. doi: 10.1016/0022-1910(86)90074-0. DOI

Lorenz M.W. Adipokinetic hormone inhibits the formation of energy stores and egg production in the cricket Gryllus bimaculatus. Comp. Biochem. Physiol. B. 2003;136:197–206. doi: 10.1016/S1096-4959(03)00227-6. PubMed DOI

Pichon Y., Manaranche R. Biochemistry of the nervous system. In: Kerkut G.A., Gilbert L.I., editors. Comprehensive Insect Physiology, Biochemistry and Pharmacology. Volume 10. Pergamon Press; Oxford, UK: 1985. pp. 417–450.

Janner D.E., Gomes N.S., Poetini M.R., Poleto K.H., Musachio E.A.S., de Almeida F.P., Amador E.C.D., Reginaldo J.C., Ramborger B.P., Roehrs R., et al. Oxidative stress and decreased dopamine levels induced by imidacloprid exposure cause behavioral changes in a neurodevelopmental disorder model in Drosophila melanogaster. Neurotoxicology. 2021;85:79–89. doi: 10.1016/j.neuro.2021.05.006. PubMed DOI

Weisel-Eichler A., Haspel G., Libersat F. Venom of a parasitoid wasp induces prolonged grooming in the cockroach. J. Exp. Biol. 1999;202:957–964. doi: 10.1242/jeb.202.8.957. PubMed DOI

Večeřa J., Krishnan N., Alquicer G., Kodrík D., Socha R. Adipokinetic hormone-induced enhancement of antioxidant capacity of Pyrrhocoris apterus hemolymph in response to oxidative stress. Comp. Biochem. Physiol. C. 2007;146:336–342. doi: 10.1016/j.cbpc.2007.04.005. PubMed DOI

Kodrík D., Krishnan N., Habuštová O. Is the titer of adipokinetic peptides in Leptinotarsa decemlineata fed on genetically modified potatoes increased by oxidative stress? Peptides. 2007;28:974–980. doi: 10.1016/j.peptides.2007.01.017. PubMed DOI

Koubová J., Sábová M., Brejcha M., Kodrík D., Čapková Frydrychová R. Seasonal changes in telomerase activity in relation to cell size, DNA replication, and nutrient contents in the fat body of Apis mellifera. Sci. Rep. 2021;11:592. doi: 10.1038/s41598-020-79912-9. PubMed DOI PMC

Kodrík D., Krištůfek V., Svobodová Z. Bee year: Basic physiological strategies to cope with seasonality. Comp. Biochem. Physiol. A. 2022;264:111115. doi: 10.1016/j.cbpa.2021.111115. PubMed DOI

Smith J.J.B. Determining the hemolymph volume of the cockroach. In: Goldman C.A., editor. Tested Studies for Laboratory Teaching, Proceedings of the 15th Workshop/Conference of the Association for Biology Laboratory Education, Atlanta, GA, USA, 7–11 June 1994. Association for Biology Laboratory Education (ABLE); Toronto, ON, Canada: 1994. pp. 119–139.

Karbusová N., Gautam U.K., Kodrík D. Effect of natural toxins and adipokinetic hormones on the activity of digestive enzymes in the midgut of the cockroach Periplaneta americana. Arch. Insect Biochem. Physiol. 2019;101:e21586. doi: 10.1002/arch.21586. PubMed DOI

Stoscheck C.M. Quantitation of protein. In: Deutscher M.P., editor. Methods in Enzymology. Volume 182. Academic Press; San Diego, CA, USA: 1990. pp. 50–68. PubMed

Zöllner N., Kirsch K. Über die quantitative Bestimmung von Lipoide (Mikromethode) mittels der vielen natürlichen Lipoiden (allen bekannten Plasmalipoiden) gemeinsamen Sulfo-phospho-vanillin-Reaktion. Z. Ges. Exp. Medizin. 1962;135:545–561. doi: 10.1007/BF02045455. DOI

Kodrík D., Socha R., Šimek P., Zemek R., Goldsworthy G.J. A new member of the AKH/RPCH family that stimulates locomotory activity in the firebug, Pyrrhocoris apterus (Heteroptera) Insect Biochem. Mol. Biol. 2000;30:489–498. doi: 10.1016/S0965-1748(00)00025-4. PubMed DOI

Carroll N.V., Longley R.W., Roe J.H. The determination of glycogen in liver and muscle by use of anthrone reagent. J. Biol. Chem. 1956;220:583–593. doi: 10.1016/S0021-9258(18)65284-6. PubMed DOI

Socha R., Kodrík D., Šimek P., Patočková M. The kind of AKH-mobilized energy substrates in insects can be predicted without a knowledge of the hormone structure. Eur. J. Entomol. 2004;101:29–35. doi: 10.14411/eje.2004.007. DOI

Bernfeld P. Amylases, α and β. In: Colowick S.P., Kaplan N.O., editors. Methods in Enzymology. Volume 1. Academic Press; New York, NY, USA: 1955. pp. 149–158.

Roberts I.M. Hydrolysis of 4-methylumbelliferyl butyrate: A convenient and sensitive fluorescent assay for lipase activity. Lipids. 1985;20:243–247. doi: 10.1007/BF02534195. DOI

Elpidina E.N., Vinokurov K.S., Gromenko V.A., Rudenskaya Y.A., Dunaevsky Y.E., Zhuzhikov D.P. Compartmentalization of proteinases and amylases in Nauphoeta cinerea midgut. Arch. Insect Biochem. Physiol. 2001;48:206–216. doi: 10.1002/arch.10000. PubMed DOI

Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680–685. doi: 10.1038/227680a0. PubMed DOI

Socha R., Šula J., Kodrík D., Gelbič I. Hormonal control of vitellogenin synthesis in Pyrrhocoris apterus. J. Insect Physiol. 1991;37:805–816. doi: 10.1016/0022-1910(91)90077-D. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Unusual functions of insect vitellogenins: minireview

. 2023 Dec 29 ; 72 (S5) : S475-S487.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...