Elimination of certain honeybee venom activities by adipokinetic hormone

. 2025 May 28 ; 15 (1) : 18638. [epub] 20250528

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40436933

Grantová podpora
24-10662S Grantová Agentura České Republiky
24-10662S Grantová Agentura České Republiky
24-10662S Grantová Agentura České Republiky

Odkazy

PubMed 40436933
PubMed Central PMC12120068
DOI 10.1038/s41598-025-02285-4
PII: 10.1038/s41598-025-02285-4
Knihovny.cz E-zdroje

The primary aim of this study was to analyse the influence of honeybee venom on various aspects of Drosophila melanogaster physiology and to assess the efficacy of adipokinetic hormone (AKH) in mitigating venom toxicity. We examined the harmful effects of venom on the thoracic muscles and central nervous system of Drosophila, as well as the potential use of AKH to counteract these effects. The results demonstrated that envenomation altered AKH levels in the Drosophila CNS, promoted cell metabolism, as evidenced by an increase in citrate synthase activity in muscles, and improved relative cell viability in both organs incubated in vitro. Furthermore, venom treatment reduced the activity of two key antioxidative stress enzymes, superoxide dismutase and catalase, and modified the expression of six genes encoding immune system components (Keap1, Relish, Nox, Eiger, Gadd45, and Domeless) in both organs. The venom also disrupted muscle cell ultrastructure, specifically myofibrils, and increased the release of arginine kinase into the incubation medium. Notably, when administered alongside the venom, AKH influenced the majority of these changes. AKH was the most effective in minimising damage to the ultrastructure of muscle cells and preventing the release of arginine kinase from muscles to the medium; however, in other parameters, the effect was modest or minimal. Given that honeybee venom often affects humans, understanding its actions and potential ways to reduce or eliminate them is valuable and could lead to the development of pharmacologically important compounds that may have clinical relevance.

Zobrazit více v PubMed

Weyda, F. & Kodrík, D. New functionally ultrastructural details of honey bee stinger tip: serrated edge and pitted surface. J. Apicult Res.60, 875–878 (2021).

Černý, J., Weyda, F., Perlík, M. & Kodrík, D. Functional ultrastructure of hymenopteran stingers: devastating spear or delicate syringe. Microsc Microanal. 28, 1808–1818 (2022). PubMed

Snodgrass, R. E. Anatomy and Physiology of the Honeybee 1st edn (McGraw-Hill Book Company, 1925).

Bogdanov, S. Bee Venom: Production, Composition, Quality. 1. The Bee Venom Book (Muehlethurnen, 2016).

Moreno, M. & Girald, E. Three valuable peptides from bee and Wasp venoms for therapeutic and biotechnological use: Melittin, Apamin and mastoparan. Toxins7, 1126–1150 (2015). PubMed PMC

Lubawy, J. et al. The influence of bee venom Melittin on the functioning of the immune system and the contractile activity of the insect heart - a preliminary study. Toxins11, 494 (2019). PubMed PMC

Chen, J. & Lariviere, W. R. The nociceptive and anti-nociceptive effects of bee venom injection and therapy: A double-edged sword. Prog Neurobiol.92, 151–183 (2010). PubMed PMC

Lee, M. T., Sun, T. L., Hung, W. C. & Huang, H. W. Process of inducing pores in membranes by melittin. Proc. Natl. Acad. Sci. U.S.A. 110, 14243–14248 (2013). PubMed PMC

Vetter, R. S., Visscher, P. K. & Camazine, S. Mass envenomations by honey bees and wasps. West. J. Med.170, 223–227 (1999). PubMed PMC

Ziai, M. R., Russek, S., Wang, H. C., Beer, B. & Blume, A. J. Mast cell degranulating peptide: a multi-functional neurotoxin. J. Pharm. Pharmacol.42, 457–461 (1990). PubMed

França, F. O. et al. Severe and fatal mass attacks by killer bees (Africanized honey bees-Apis mellifera scutellata) in Brazil: clinicopathological studies with measurement of serum venom concentrations. Q. J. Med.87, 269–282 (1994). PubMed

Khalil, A., Elesawy, B. H., Ali, T. M. & Ahmed, O. M. Bee Venom: from venom to drug. Molecules26, 4941 (2021). PubMed PMC

Lamy, C. et al. Allosteric block of KCa2 channels by Apamin. J. Biol. Chem.285, 27067–27077 (2010). PubMed PMC

Teshima, K., Kim, S. H. & Allen, C. N. Characterization of an apamin-sensitive potassium current in Suprachiasmatic nucleus neurons. Neuroscience120, 65–73 (2003). PubMed

Betten, D. P., Richardson, W. H., Tong, T. C. & Clark, R. F. Massive honey bee envenomation-induced rhabdomyolysis in an adolescent. Pediatrics117, 231–235 (2006). PubMed

Moolenaar, W. H. Bioactive lysophospholipids and their G protein-coupled receptors. Exp. Cell. Res.253, 230–238 (1999). PubMed

Grisotto, L. S. D. et al. Mechanisms of bee venom-induced acute renal failure. Toxicon48, 44–54 (2006). PubMed

Honda, N. et al. Acute renal failure and rhabdomyolysis. Kidney Int.23, 888–898 (1983). PubMed

Culliney, T. W. Geological history and evolution of the honey bee. Am. Bee J.123, 580–585 (1983).

Engel, M. S. Fossil honey bees and evolution in the genus Apis (Hymenoptera: Apidae). Apidologie29, 265–281 (1998).

Bodláková, K. et al. Insect body defence reactions against bee venom: do adipokinetic hormones play a role? Toxins 14, 11 (2022). PubMed PMC

Ondřichová, A. et al. Physiological responses to honeybee venom poisoning in a model organism, the firebug Pyrrhocoris apterus. Comp. Biochem. Physiol. C. 270, 109657 (2023). PubMed

Gäde, G., Hoffmann, K. H. & Spring, J. H. Hormonal regulation in insects: facts, gaps, and future directions. Physiol. Rev.77, 963–1032 (1997). PubMed

Kodrík, D. Adipokinetic hormone functions that are not associated with insect flight. Physiol. Entomol.33, 171–180 (2008).

Kodrík, D., Bednářová, A., Zemanová, M. & Krishnan, N. Hormonal regulation of response to oxidative stress in insects - an update. Int. J. Mol. Sci.16, 25788–25816 (2015). PubMed PMC

Gáliková, M., Klepsatel, P., Xu, Y. J. & Kühnlein, R. P. The obesity-related adipokinetic hormone controls feeding and expression of neuropeptide regulators of Drosophila metabolism. Eur. J. Lipid Sci. Technol.119, 1600138 (2017).

Schaffer, M. H., Noyes, B. E., Slaughter, C. A., Thorne, G. C. & Gaskell, S. J. The fruitfly Drosophila melanogaster contains a novel charged adipokinetic hormone-family peptide. Biochem. J.269, 315–320 (1990). PubMed PMC

Mutlu, O. et al. Effects of adipokinetic hormone/red pigment-concentrating hormone family of peptides in olfactory bulbectomy model and posttraumatic stress disorder model of rats. Peptides134, 170408 (2020). PubMed

Mutlu, O. et al. Effects of the adipokinetic hormone/red pigment-concentrating hormone (AKH/RPCH) family of peptides on MK-801-induced schizophrenia models. Fundam Clin. Pharmacol.32, 589–602 (2018). PubMed

Gäde, G. & Auerswald, L. Mode of action of neuropeptides from the adipokinetic hormone family. Gen. Comp. Endocrinol.132, 10–20 (2003). PubMed

Stoscheck, C. M. Quantitation of protein. In Methods in enzymology, 182, 50–68. Academic (1990). PubMed

Ibrahim, E., Dobeš, P., Kunc, M., Hyršl, P. & Kodrík, D. Adipokinetic hormone and adenosine interfere with nematobacterial infection and locomotion in Drosophila melanogaster. J. Insect Physiol.107, 167–174 (2018). PubMed

Goldsworthy, G. J. A quantitative study of the adipokinetic hormone of the firebug, Pyrrhocoris apterus. J. Insect Physiol.48, 1103–1108 (2002). PubMed

Zemanová, M., Stašková, T. & Kodrík, D. Role of adipokinetic hormone and adenosin in the anti-stress response in Drosophila melanogaster. J. Insect Physiol.91, 39–47 (2016). PubMed

Černý, J., Krishnan, N., Hejníková, M., Štěrbová, H. & Kodrík, D. Modulation of response to braconid Wasp venom by adipokinetic hormone in Drosophila melanogaster. Comp. Biochem. Physiol. C. 285, 110005 (2024). PubMed

Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 – ∆∆CT method. Methods25, 402–408 (2001). PubMed

Hanna, M. E. et al. Perturbations in dopamine synthesis lead to discrete physiological effects and impact oxidative stress response in Drosophila. J. Insect Physiol.73, 11–19 (2015). PubMed PMC

Wiegand, G. & Remington, S. J. Citrate synthase: structure, control, and mechanism. Annu. Rev. Biophys. Biophys. Chem.15, 97–117 (1986). PubMed

Mendis, E., Rajapakse, N. & Kim, S. K. Antioxidant properties of a radical-scavenging peptide purified from enzymatically prepared fish skin gelatin hydrolysate. J. Agric. Food Chem.53, 581–587 (2005). PubMed

Burlakova, E. B. et al. Biomarkers of oxidative stress and smoking in cancer patients. J. Cancer Res. Ther.6, 47–53 (2010). PubMed

Suzuki, T., Yamamoto, Y. & Umekawa, M. Stichopus japonicus arginine kinase:: gene structure and unique substrate recognition system. Biochem. J.351, 579–585 PubMed PMC

Wakim, B. T. & Aswad, G. D. Ca(2+)-calmodulin-dependent phosphorylation of arginine in histone 3 by a nuclear kinase from mouse leukemia cells. J. Biol. Chem.269, 2722–2727 (1994). PubMed

Haberman, E. Chemical structure and biological action of components of bee venom. Angew Chem. Int. Ed.12, 83–84 (1973).

Isidorov, V., Zalewski, A., Zambrowski, G. & Swiecicka, I. Chemical composition and antimicrobial properties of honey bee venom. Molecules28, 4135 (2023). PubMed PMC

Gajski, G., Leonova, E. & Sjakste, N. Bee Venom: composition and anticancer properties. Toxins16, 117 (2024). PubMed PMC

Lowy, P. H., Sarmiento, L. & Mitchell, H. K. Polypeptides minimine and Melittin from bee venom - effects on Drosophila. Arch. Biochem. Biophys.145, 338–343 (1971). PubMed

Mitchell, H. K., Lowy, P. H., Sarmiento, L. & Dickson, L. Melittin - toxicity to Drosophila and Inhibition of acetylcholinesterase. Arch. Biochem. Biophys.145, 344–348 (1971). PubMed

Florea, A., Varga, A. P. & Matei, H. V. Ultrastructural variability of mitochondrial Cristae induced in vitro by bee (Apis mellifera) venom and its derivatives, Melittin and phospholipase A2, in isolated rat adrenocortical mitochondria. Micron112, 42–54 (2018). PubMed

Pucca, M. B. et al. Bee updated: current knowledge on bee venom and bee envenoming therapy. Front. Immunol.10, 2090 (2019). PubMed PMC

Malencik, D. A. & Anderson, S. R. Association of Melittin with isolated myosin light-chain. Biochemistry27, 1941–1949 (1988). PubMed

Florea, A. & Craciun, C. Bee (Apis mellifera) venom produced toxic effects of higher amplitude in rat thoracic aorta than in skeletal muscle—An ultrastructural study. Microsc Microanal. 18, 304–316 (2012). PubMed

Suwa, M., Egashira, T., Nakano, H., Sasaki, H. & Kumagai, S. Metformin increases the PGC-1alpha protein and oxidative enzyme activities possibly via AMPK phosphorylation in skeletal muscle in vivo. J. Appl. Physiol.101, 1685–1692 (1985). PubMed

Zak, M. A., Regish, A. M., McCormick, S. D. & Manzon, R. G. Exogenous thyroid hormones regulate the activity of citrate synthase and cytochrome C oxidase in warm- but not cold-acclimated lake Whitefish (Coregonus clupeaformis). Gen. Comp. Endocrinol.247, 215–222 (2017). PubMed

Ortenblad, N. et al. Reduced insulin-mediated citrate synthase activity in cultured skeletal muscle cells from patients with type 2 diabetes: evidence for an intrinsic oxidative enzyme defect. Biochim. Biophys. Acta. 1741, 206–214 (2005). PubMed

Williams, N. C. O’Neill, L.A.J. A role for the Krebs cycle intermediate citrate in metabolic reprogramming in innate immunity and inflammation. Front. Immunol.9, 141 (2018). PubMed PMC

Grunert, T. et al. A comparative proteome analysis links tyrosine kinase 2 (Tyk2) to the regulation of cellular glucose and lipid metabolism in response to poly(I:C). J. Proteom.74, 2866–2880 (2011). PubMed PMC

Liu, X. C. et al. Effects of Recombinant Toxoplasma gondii citrate synthase i on the cellular functions of murine macrophages in vitro. Front. Microbiol.8, 1376 (2017). PubMed PMC

Halliwell, B. & Gutteridge, J. M. C. Free Radicals in Biology and Medicine 3rd edn (Oxford University Press, 1999).

Farooqui, T. & Farooqui, A. A. (eds) Oxidative Stress in Vertebrates and Invertebrates: Molecular Aspects of Oxidative Stress on Cell Signalling (Wiley-Blackwell, 2011).

Plavšin, I. et al. Hormonal enhancement of insecticide efficacy in Tribolium castaneum: oxidative stress and metabolic aspects. Comp. Biochem. Physiol. C. 170, 19–27 (2015). PubMed

Večeřa, J., Krishnan, N., Mithöfer, A., Vogele, H. & Kodrík, D. Adipokinetic hormone-induced antioxidant response in Spodoptera littoralis. Comp. Biochem. Physiol. C. 155, 389–395 (2012). PubMed

Bednářová, A. et al. Adipokinetic hormone counteracts oxidative stress elicited in insects by hydrogen peroxide: in vivo and in vitro study. Physiol. Entomol.38, 54–62 (2013).

Velki, M., Kodrík, D., Večeřa, J., Hackenberger, B. K. & Socha, R. Oxidative stress elicited by insecticides: a role for the adipokinetic hormone. Gen. Comp. Endocrinol.172, 77–84 (2011). PubMed

Nguyen, C. D. & Lee, G. Neuroprotective activity of melittin—the main component of bee venom—against oxidative stress induced by Aβ25–35 in in vitro and in vivo models. Antioxidants11, 1654 (2021). PubMed PMC

Kim, B. Y., Lee, K. S. & Jin, B. R. Antioxidant activity and mechanism of action of Amwaprin: a protein in honeybee (Apis mellifera) venom. Antioxidants13, 469 (2024). PubMed PMC

Mao, Y. R. et al. Melittin alleviates oxidative stress injury in Schwann cells by targeting interleukin-1 receptor type 1 to downregulate nuclear factor kappa b-mediated inflammatory response in vitro. Cureus J. Med. Sci.16, e65721 (2024). PubMed PMC

Li, B. B. et al. Relationship between wooden breast severity in broiler chicken, antioxidant enzyme activity and markers of energy metabolism. Poult. Sci.103, 103877 (2024). PubMed PMC

Motohashi, H. & Yamamoto, M. Nrf2-Keap1 defines a physiologically important stress response mechanism. Trends Mol. Med.10, 549–557 (2004). PubMed

Hedengren, M. et al. Relish, a central factor in the control of humoral but not cellular immunity in Drosophila. Mol. Cell.4, 827–837 (1999). PubMed

Igaki, T. et al. Eiger, a TNF superfamily ligand that triggers the Drosophila JNK pathway. EMBO J.21, 3009–3018 (2002). PubMed PMC

Bgatova, N. et al. Gadd45 expression correlates with age-dependent neurodegeneration in Drosophila melanogaster. Biogerontology16, 53–61 (2015). PubMed

Camilleri-Robles, C., Serras, F. & Corominas, M. Role of D-GADD45 in JNK-dependent apoptosis and regeneration in Drosophila. Genes10, 378 (2019). PubMed PMC

Moore, R. et al. Integration of JAK/STAT receptor–ligand trafficking, signalling and gene expression in Drosophila melanogaster cells. J. Cell. Sci.133, jcs246199 (2020). PubMed

Long, M. J. C., Huang, K. T. & Aye, Y. Keap it in the family: how to fish out new paradigms in keap1-mediated cell signaling. Helv. Chim. Acta. 106, e202300154 (2023).

Yin, Y. et al. Bt Cry1Ab/2Ab toxins disrupt the structure of the gut bacterial community of Locusta migratoria through host immune responses. Ecotoxicol. Environ. Saf.238, 113602 (2022). PubMed

Sanda, N. B., Hou, B. F., Muhammad, A., Ali, H. & Hou, Y. M. Exploring the role of relish on antimicrobial peptide expressions (AMPs) upon nematode-bacteria complex challenge in the Nipa palm hispid beetle, Octodonta Nipae Maulik (Coleoptera: Chrysomelidae). Front. Microbiol.10, 2466 (2019). PubMed PMC

Zibaee, A. & Malagoli, D. The potential immune alterations in insect pests and pollinators after insecticide exposure in agroecosystem. Invertebrate Survival J.17, 99–107 (2020).

Lisi, F. et al. Pesticide immunotoxicity on insects—Are agroecosystems at risk? Sci. Total Environ. 175467 (2024). PubMed

James, R. R. & Xu, J. Mechanisms by which pesticides affect insect immunity. J. tInvertebr Pathol.109, 175–182 (2012). PubMed

Beckage, N. E. & Gelman, D. B. Wasp parasitoid disruption of host development: implications for new biologically based strategies for insect control. Annu. Rev. Entomol.49, 299–330 (2004). PubMed

Sláma, K. & Lukáš, J. Myogenic nature of insect heartbeat and intestinal peristalsis, revealed by neuromuscular paralysis caused by the Sting of a braconid Wasp. J. Insect Physiol.57, 251–259 (2011). PubMed

Pennacchio, F., Caccia, S. & Digilio, M. C. Host regulation and nutritional exploitation by parasitic wasps. Curr. Opin. Insect Sci.6, 74–79 (2014). PubMed

Fletcher, J. E., Hubert, M., Wieland, S. J., Gong, O. H. & Jiang, M. S. Similarities and differences in mechanisms of cardiotoxins, Melittin and other myotoxins. Toxicon34, 1301–13011 (1996). PubMed

Ownby, C. L., Powell, J. R., Jiang, M. S. & Fletcher, J. E. Melittin and phospholipase A2 from bee (Apis mellifera) venom cause necrosis of murine skeletal muscle in vivo. Toxicon35, 67–80 (1997). PubMed

Prado, M., Solano-Trejos, G. & Lomonte, B. Acute physiopathological effects of honeybee (Apis mellifera) envenoming by subcutaneous route in a mouse model. Toxicon56, 1007–1017 (2010). PubMed

Choo, Y. M. et al. Dual function of a bee venom Serine protease: prophenoloxidase-activating factor in arthropods and fibrin(ogen)olytic enzyme in mammals. Plos One. 5, e10393 (2010). PubMed PMC

Munneke, L. R. & Collier, G. E. Cytoplasmic and mitochondrial arginine kinases in Drosophila: evidence for a single gene. Biochem. Genet.26, 131–141 (1988). PubMed

Gupta, A., Thorson, P., Penmatsa, K. R. & Gupta, P. Rhabdomyolysis: revisited. Ulster Med. J.90, 61–69 (2021). PubMed PMC

Kume, H. et al. Cardiocerebral infarction presenting in a neurosurgical emergency: a case report and literature review. Cureus J. Med. Sci.16, e65124 (2024). PubMed PMC

Uda, K. et al. Evolution of the arginine kinase gene family. Comp. Biochem. Physiol. D. 1, 209–218 (2006). PubMed

Rahman, A. M. A., Kamath, S. D., Lopata, A. L., Robinson, J. J. & Helleur, R. J. Biomolecular characterization of allergenic proteins in snow crab (Chionoecetes opilio) and de Novo sequencing of the second allergen arginine kinase using tandem mass spectrometry. J. Proteom.74, 231–241 (2011). PubMed

Ruethers, T. et al. Seafood allergy: A comprehensive review of fish and shellfish allergens. Mol. Immunol.100, 28–57 (2018). PubMed

Ribeiro, J. C., Sousa-Pinto, B., Fonseca, J., Fonseca, S. C. & Cunha, L. M. Edible insects and food safety: allergy. J. Insects Food Feed. 7, 833–847 (2021).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...