Elimination of certain honeybee venom activities by adipokinetic hormone
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
24-10662S
Grantová Agentura České Republiky
24-10662S
Grantová Agentura České Republiky
24-10662S
Grantová Agentura České Republiky
PubMed
40436933
PubMed Central
PMC12120068
DOI
10.1038/s41598-025-02285-4
PII: 10.1038/s41598-025-02285-4
Knihovny.cz E-zdroje
- Klíčová slova
- Adipokinetic hormone, Arginine kinase, Bee venom, Drosophila model, Immune responsible genes, Muscle structure,
- MeSH
- centrální nervový systém účinky léků metabolismus MeSH
- Drosophila melanogaster účinky léků metabolismus MeSH
- hmyzí hormony * farmakologie metabolismus MeSH
- kyselina pyrrolidonkarboxylová * analogy a deriváty farmakologie metabolismus MeSH
- oligopeptidy * farmakologie metabolismus MeSH
- včelí jedy * toxicita antagonisté a inhibitory MeSH
- včely MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- adipokinetic hormone MeSH Prohlížeč
- hmyzí hormony * MeSH
- kyselina pyrrolidonkarboxylová * MeSH
- oligopeptidy * MeSH
- včelí jedy * MeSH
The primary aim of this study was to analyse the influence of honeybee venom on various aspects of Drosophila melanogaster physiology and to assess the efficacy of adipokinetic hormone (AKH) in mitigating venom toxicity. We examined the harmful effects of venom on the thoracic muscles and central nervous system of Drosophila, as well as the potential use of AKH to counteract these effects. The results demonstrated that envenomation altered AKH levels in the Drosophila CNS, promoted cell metabolism, as evidenced by an increase in citrate synthase activity in muscles, and improved relative cell viability in both organs incubated in vitro. Furthermore, venom treatment reduced the activity of two key antioxidative stress enzymes, superoxide dismutase and catalase, and modified the expression of six genes encoding immune system components (Keap1, Relish, Nox, Eiger, Gadd45, and Domeless) in both organs. The venom also disrupted muscle cell ultrastructure, specifically myofibrils, and increased the release of arginine kinase into the incubation medium. Notably, when administered alongside the venom, AKH influenced the majority of these changes. AKH was the most effective in minimising damage to the ultrastructure of muscle cells and preventing the release of arginine kinase from muscles to the medium; however, in other parameters, the effect was modest or minimal. Given that honeybee venom often affects humans, understanding its actions and potential ways to reduce or eliminate them is valuable and could lead to the development of pharmacologically important compounds that may have clinical relevance.
Faculty of Science University of South Bohemia Branišovská 31 České Budějovice 370 05 Czech Republic
Institute of Entomology Biology Centre CAS Branišovská 31 České Budějovice 370 05 Czech Republic
Zobrazit více v PubMed
Weyda, F. & Kodrík, D. New functionally ultrastructural details of honey bee stinger tip: serrated edge and pitted surface. J. Apicult Res.60, 875–878 (2021).
Černý, J., Weyda, F., Perlík, M. & Kodrík, D. Functional ultrastructure of hymenopteran stingers: devastating spear or delicate syringe. Microsc Microanal. 28, 1808–1818 (2022). PubMed
Snodgrass, R. E. Anatomy and Physiology of the Honeybee 1st edn (McGraw-Hill Book Company, 1925).
Bogdanov, S. Bee Venom: Production, Composition, Quality. 1. The Bee Venom Book (Muehlethurnen, 2016).
Moreno, M. & Girald, E. Three valuable peptides from bee and Wasp venoms for therapeutic and biotechnological use: Melittin, Apamin and mastoparan. Toxins7, 1126–1150 (2015). PubMed PMC
Lubawy, J. et al. The influence of bee venom Melittin on the functioning of the immune system and the contractile activity of the insect heart - a preliminary study. Toxins11, 494 (2019). PubMed PMC
Chen, J. & Lariviere, W. R. The nociceptive and anti-nociceptive effects of bee venom injection and therapy: A double-edged sword. Prog Neurobiol.92, 151–183 (2010). PubMed PMC
Lee, M. T., Sun, T. L., Hung, W. C. & Huang, H. W. Process of inducing pores in membranes by melittin. Proc. Natl. Acad. Sci. U.S.A. 110, 14243–14248 (2013). PubMed PMC
Vetter, R. S., Visscher, P. K. & Camazine, S. Mass envenomations by honey bees and wasps. West. J. Med.170, 223–227 (1999). PubMed PMC
Ziai, M. R., Russek, S., Wang, H. C., Beer, B. & Blume, A. J. Mast cell degranulating peptide: a multi-functional neurotoxin. J. Pharm. Pharmacol.42, 457–461 (1990). PubMed
França, F. O. et al. Severe and fatal mass attacks by killer bees (Africanized honey bees-Apis mellifera scutellata) in Brazil: clinicopathological studies with measurement of serum venom concentrations. Q. J. Med.87, 269–282 (1994). PubMed
Khalil, A., Elesawy, B. H., Ali, T. M. & Ahmed, O. M. Bee Venom: from venom to drug. Molecules26, 4941 (2021). PubMed PMC
Lamy, C. et al. Allosteric block of KCa2 channels by Apamin. J. Biol. Chem.285, 27067–27077 (2010). PubMed PMC
Teshima, K., Kim, S. H. & Allen, C. N. Characterization of an apamin-sensitive potassium current in Suprachiasmatic nucleus neurons. Neuroscience120, 65–73 (2003). PubMed
Betten, D. P., Richardson, W. H., Tong, T. C. & Clark, R. F. Massive honey bee envenomation-induced rhabdomyolysis in an adolescent. Pediatrics117, 231–235 (2006). PubMed
Moolenaar, W. H. Bioactive lysophospholipids and their G protein-coupled receptors. Exp. Cell. Res.253, 230–238 (1999). PubMed
Grisotto, L. S. D. et al. Mechanisms of bee venom-induced acute renal failure. Toxicon48, 44–54 (2006). PubMed
Honda, N. et al. Acute renal failure and rhabdomyolysis. Kidney Int.23, 888–898 (1983). PubMed
Culliney, T. W. Geological history and evolution of the honey bee. Am. Bee J.123, 580–585 (1983).
Engel, M. S. Fossil honey bees and evolution in the genus Apis (Hymenoptera: Apidae). Apidologie29, 265–281 (1998).
Bodláková, K. et al. Insect body defence reactions against bee venom: do adipokinetic hormones play a role? Toxins 14, 11 (2022). PubMed PMC
Ondřichová, A. et al. Physiological responses to honeybee venom poisoning in a model organism, the firebug Pyrrhocoris apterus. Comp. Biochem. Physiol. C. 270, 109657 (2023). PubMed
Gäde, G., Hoffmann, K. H. & Spring, J. H. Hormonal regulation in insects: facts, gaps, and future directions. Physiol. Rev.77, 963–1032 (1997). PubMed
Kodrík, D. Adipokinetic hormone functions that are not associated with insect flight. Physiol. Entomol.33, 171–180 (2008).
Kodrík, D., Bednářová, A., Zemanová, M. & Krishnan, N. Hormonal regulation of response to oxidative stress in insects - an update. Int. J. Mol. Sci.16, 25788–25816 (2015). PubMed PMC
Gáliková, M., Klepsatel, P., Xu, Y. J. & Kühnlein, R. P. The obesity-related adipokinetic hormone controls feeding and expression of neuropeptide regulators of Drosophila metabolism. Eur. J. Lipid Sci. Technol.119, 1600138 (2017).
Schaffer, M. H., Noyes, B. E., Slaughter, C. A., Thorne, G. C. & Gaskell, S. J. The fruitfly Drosophila melanogaster contains a novel charged adipokinetic hormone-family peptide. Biochem. J.269, 315–320 (1990). PubMed PMC
Mutlu, O. et al. Effects of adipokinetic hormone/red pigment-concentrating hormone family of peptides in olfactory bulbectomy model and posttraumatic stress disorder model of rats. Peptides134, 170408 (2020). PubMed
Mutlu, O. et al. Effects of the adipokinetic hormone/red pigment-concentrating hormone (AKH/RPCH) family of peptides on MK-801-induced schizophrenia models. Fundam Clin. Pharmacol.32, 589–602 (2018). PubMed
Gäde, G. & Auerswald, L. Mode of action of neuropeptides from the adipokinetic hormone family. Gen. Comp. Endocrinol.132, 10–20 (2003). PubMed
Stoscheck, C. M. Quantitation of protein. In Methods in enzymology, 182, 50–68. Academic (1990). PubMed
Ibrahim, E., Dobeš, P., Kunc, M., Hyršl, P. & Kodrík, D. Adipokinetic hormone and adenosine interfere with nematobacterial infection and locomotion in Drosophila melanogaster. J. Insect Physiol.107, 167–174 (2018). PubMed
Goldsworthy, G. J. A quantitative study of the adipokinetic hormone of the firebug, Pyrrhocoris apterus. J. Insect Physiol.48, 1103–1108 (2002). PubMed
Zemanová, M., Stašková, T. & Kodrík, D. Role of adipokinetic hormone and adenosin in the anti-stress response in Drosophila melanogaster. J. Insect Physiol.91, 39–47 (2016). PubMed
Černý, J., Krishnan, N., Hejníková, M., Štěrbová, H. & Kodrík, D. Modulation of response to braconid Wasp venom by adipokinetic hormone in Drosophila melanogaster. Comp. Biochem. Physiol. C. 285, 110005 (2024). PubMed
Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 – ∆∆CT method. Methods25, 402–408 (2001). PubMed
Hanna, M. E. et al. Perturbations in dopamine synthesis lead to discrete physiological effects and impact oxidative stress response in Drosophila. J. Insect Physiol.73, 11–19 (2015). PubMed PMC
Wiegand, G. & Remington, S. J. Citrate synthase: structure, control, and mechanism. Annu. Rev. Biophys. Biophys. Chem.15, 97–117 (1986). PubMed
Mendis, E., Rajapakse, N. & Kim, S. K. Antioxidant properties of a radical-scavenging peptide purified from enzymatically prepared fish skin gelatin hydrolysate. J. Agric. Food Chem.53, 581–587 (2005). PubMed
Burlakova, E. B. et al. Biomarkers of oxidative stress and smoking in cancer patients. J. Cancer Res. Ther.6, 47–53 (2010). PubMed
Suzuki, T., Yamamoto, Y. & Umekawa, M. Stichopus japonicus arginine kinase:: gene structure and unique substrate recognition system. Biochem. J.351, 579–585 PubMed PMC
Wakim, B. T. & Aswad, G. D. Ca(2+)-calmodulin-dependent phosphorylation of arginine in histone 3 by a nuclear kinase from mouse leukemia cells. J. Biol. Chem.269, 2722–2727 (1994). PubMed
Haberman, E. Chemical structure and biological action of components of bee venom. Angew Chem. Int. Ed.12, 83–84 (1973).
Isidorov, V., Zalewski, A., Zambrowski, G. & Swiecicka, I. Chemical composition and antimicrobial properties of honey bee venom. Molecules28, 4135 (2023). PubMed PMC
Gajski, G., Leonova, E. & Sjakste, N. Bee Venom: composition and anticancer properties. Toxins16, 117 (2024). PubMed PMC
Lowy, P. H., Sarmiento, L. & Mitchell, H. K. Polypeptides minimine and Melittin from bee venom - effects on Drosophila. Arch. Biochem. Biophys.145, 338–343 (1971). PubMed
Mitchell, H. K., Lowy, P. H., Sarmiento, L. & Dickson, L. Melittin - toxicity to Drosophila and Inhibition of acetylcholinesterase. Arch. Biochem. Biophys.145, 344–348 (1971). PubMed
Florea, A., Varga, A. P. & Matei, H. V. Ultrastructural variability of mitochondrial Cristae induced in vitro by bee (Apis mellifera) venom and its derivatives, Melittin and phospholipase A2, in isolated rat adrenocortical mitochondria. Micron112, 42–54 (2018). PubMed
Pucca, M. B. et al. Bee updated: current knowledge on bee venom and bee envenoming therapy. Front. Immunol.10, 2090 (2019). PubMed PMC
Malencik, D. A. & Anderson, S. R. Association of Melittin with isolated myosin light-chain. Biochemistry27, 1941–1949 (1988). PubMed
Florea, A. & Craciun, C. Bee (Apis mellifera) venom produced toxic effects of higher amplitude in rat thoracic aorta than in skeletal muscle—An ultrastructural study. Microsc Microanal. 18, 304–316 (2012). PubMed
Suwa, M., Egashira, T., Nakano, H., Sasaki, H. & Kumagai, S. Metformin increases the PGC-1alpha protein and oxidative enzyme activities possibly via AMPK phosphorylation in skeletal muscle in vivo. J. Appl. Physiol.101, 1685–1692 (1985). PubMed
Zak, M. A., Regish, A. M., McCormick, S. D. & Manzon, R. G. Exogenous thyroid hormones regulate the activity of citrate synthase and cytochrome C oxidase in warm- but not cold-acclimated lake Whitefish (Coregonus clupeaformis). Gen. Comp. Endocrinol.247, 215–222 (2017). PubMed
Ortenblad, N. et al. Reduced insulin-mediated citrate synthase activity in cultured skeletal muscle cells from patients with type 2 diabetes: evidence for an intrinsic oxidative enzyme defect. Biochim. Biophys. Acta. 1741, 206–214 (2005). PubMed
Williams, N. C. O’Neill, L.A.J. A role for the Krebs cycle intermediate citrate in metabolic reprogramming in innate immunity and inflammation. Front. Immunol.9, 141 (2018). PubMed PMC
Grunert, T. et al. A comparative proteome analysis links tyrosine kinase 2 (Tyk2) to the regulation of cellular glucose and lipid metabolism in response to poly(I:C). J. Proteom.74, 2866–2880 (2011). PubMed PMC
Liu, X. C. et al. Effects of Recombinant Toxoplasma gondii citrate synthase i on the cellular functions of murine macrophages in vitro. Front. Microbiol.8, 1376 (2017). PubMed PMC
Halliwell, B. & Gutteridge, J. M. C. Free Radicals in Biology and Medicine 3rd edn (Oxford University Press, 1999).
Farooqui, T. & Farooqui, A. A. (eds) Oxidative Stress in Vertebrates and Invertebrates: Molecular Aspects of Oxidative Stress on Cell Signalling (Wiley-Blackwell, 2011).
Plavšin, I. et al. Hormonal enhancement of insecticide efficacy in Tribolium castaneum: oxidative stress and metabolic aspects. Comp. Biochem. Physiol. C. 170, 19–27 (2015). PubMed
Večeřa, J., Krishnan, N., Mithöfer, A., Vogele, H. & Kodrík, D. Adipokinetic hormone-induced antioxidant response in Spodoptera littoralis. Comp. Biochem. Physiol. C. 155, 389–395 (2012). PubMed
Bednářová, A. et al. Adipokinetic hormone counteracts oxidative stress elicited in insects by hydrogen peroxide: in vivo and in vitro study. Physiol. Entomol.38, 54–62 (2013).
Velki, M., Kodrík, D., Večeřa, J., Hackenberger, B. K. & Socha, R. Oxidative stress elicited by insecticides: a role for the adipokinetic hormone. Gen. Comp. Endocrinol.172, 77–84 (2011). PubMed
Nguyen, C. D. & Lee, G. Neuroprotective activity of melittin—the main component of bee venom—against oxidative stress induced by Aβ25–35 in in vitro and in vivo models. Antioxidants11, 1654 (2021). PubMed PMC
Kim, B. Y., Lee, K. S. & Jin, B. R. Antioxidant activity and mechanism of action of Amwaprin: a protein in honeybee (Apis mellifera) venom. Antioxidants13, 469 (2024). PubMed PMC
Mao, Y. R. et al. Melittin alleviates oxidative stress injury in Schwann cells by targeting interleukin-1 receptor type 1 to downregulate nuclear factor kappa b-mediated inflammatory response in vitro. Cureus J. Med. Sci.16, e65721 (2024). PubMed PMC
Li, B. B. et al. Relationship between wooden breast severity in broiler chicken, antioxidant enzyme activity and markers of energy metabolism. Poult. Sci.103, 103877 (2024). PubMed PMC
Motohashi, H. & Yamamoto, M. Nrf2-Keap1 defines a physiologically important stress response mechanism. Trends Mol. Med.10, 549–557 (2004). PubMed
Hedengren, M. et al. Relish, a central factor in the control of humoral but not cellular immunity in Drosophila. Mol. Cell.4, 827–837 (1999). PubMed
Igaki, T. et al. Eiger, a TNF superfamily ligand that triggers the Drosophila JNK pathway. EMBO J.21, 3009–3018 (2002). PubMed PMC
Bgatova, N. et al. Gadd45 expression correlates with age-dependent neurodegeneration in Drosophila melanogaster. Biogerontology16, 53–61 (2015). PubMed
Camilleri-Robles, C., Serras, F. & Corominas, M. Role of D-GADD45 in JNK-dependent apoptosis and regeneration in Drosophila. Genes10, 378 (2019). PubMed PMC
Moore, R. et al. Integration of JAK/STAT receptor–ligand trafficking, signalling and gene expression in Drosophila melanogaster cells. J. Cell. Sci.133, jcs246199 (2020). PubMed
Long, M. J. C., Huang, K. T. & Aye, Y. Keap it in the family: how to fish out new paradigms in keap1-mediated cell signaling. Helv. Chim. Acta. 106, e202300154 (2023).
Yin, Y. et al. Bt Cry1Ab/2Ab toxins disrupt the structure of the gut bacterial community of Locusta migratoria through host immune responses. Ecotoxicol. Environ. Saf.238, 113602 (2022). PubMed
Sanda, N. B., Hou, B. F., Muhammad, A., Ali, H. & Hou, Y. M. Exploring the role of relish on antimicrobial peptide expressions (AMPs) upon nematode-bacteria complex challenge in the Nipa palm hispid beetle, Octodonta Nipae Maulik (Coleoptera: Chrysomelidae). Front. Microbiol.10, 2466 (2019). PubMed PMC
Zibaee, A. & Malagoli, D. The potential immune alterations in insect pests and pollinators after insecticide exposure in agroecosystem. Invertebrate Survival J.17, 99–107 (2020).
Lisi, F. et al. Pesticide immunotoxicity on insects—Are agroecosystems at risk? Sci. Total Environ. 175467 (2024). PubMed
James, R. R. & Xu, J. Mechanisms by which pesticides affect insect immunity. J. tInvertebr Pathol.109, 175–182 (2012). PubMed
Beckage, N. E. & Gelman, D. B. Wasp parasitoid disruption of host development: implications for new biologically based strategies for insect control. Annu. Rev. Entomol.49, 299–330 (2004). PubMed
Sláma, K. & Lukáš, J. Myogenic nature of insect heartbeat and intestinal peristalsis, revealed by neuromuscular paralysis caused by the Sting of a braconid Wasp. J. Insect Physiol.57, 251–259 (2011). PubMed
Pennacchio, F., Caccia, S. & Digilio, M. C. Host regulation and nutritional exploitation by parasitic wasps. Curr. Opin. Insect Sci.6, 74–79 (2014). PubMed
Fletcher, J. E., Hubert, M., Wieland, S. J., Gong, O. H. & Jiang, M. S. Similarities and differences in mechanisms of cardiotoxins, Melittin and other myotoxins. Toxicon34, 1301–13011 (1996). PubMed
Ownby, C. L., Powell, J. R., Jiang, M. S. & Fletcher, J. E. Melittin and phospholipase A2 from bee (Apis mellifera) venom cause necrosis of murine skeletal muscle in vivo. Toxicon35, 67–80 (1997). PubMed
Prado, M., Solano-Trejos, G. & Lomonte, B. Acute physiopathological effects of honeybee (Apis mellifera) envenoming by subcutaneous route in a mouse model. Toxicon56, 1007–1017 (2010). PubMed
Choo, Y. M. et al. Dual function of a bee venom Serine protease: prophenoloxidase-activating factor in arthropods and fibrin(ogen)olytic enzyme in mammals. Plos One. 5, e10393 (2010). PubMed PMC
Munneke, L. R. & Collier, G. E. Cytoplasmic and mitochondrial arginine kinases in Drosophila: evidence for a single gene. Biochem. Genet.26, 131–141 (1988). PubMed
Gupta, A., Thorson, P., Penmatsa, K. R. & Gupta, P. Rhabdomyolysis: revisited. Ulster Med. J.90, 61–69 (2021). PubMed PMC
Kume, H. et al. Cardiocerebral infarction presenting in a neurosurgical emergency: a case report and literature review. Cureus J. Med. Sci.16, e65124 (2024). PubMed PMC
Uda, K. et al. Evolution of the arginine kinase gene family. Comp. Biochem. Physiol. D. 1, 209–218 (2006). PubMed
Rahman, A. M. A., Kamath, S. D., Lopata, A. L., Robinson, J. J. & Helleur, R. J. Biomolecular characterization of allergenic proteins in snow crab (Chionoecetes opilio) and de Novo sequencing of the second allergen arginine kinase using tandem mass spectrometry. J. Proteom.74, 231–241 (2011). PubMed
Ruethers, T. et al. Seafood allergy: A comprehensive review of fish and shellfish allergens. Mol. Immunol.100, 28–57 (2018). PubMed
Ribeiro, J. C., Sousa-Pinto, B., Fonseca, J., Fonseca, S. C. & Cunha, L. M. Edible insects and food safety: allergy. J. Insects Food Feed. 7, 833–847 (2021).