Telomerase as a possible key to bypass reproductive cost
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36724167
DOI
10.1111/mec.16870
Knihovny.cz E-zdroje
- Klíčová slova
- ageing, cost of reproduction, reproduction strategy, telomerase, telomeres,
- MeSH
- lidé MeSH
- nádory * MeSH
- obratlovci MeSH
- stárnutí buněk MeSH
- stárnutí genetika MeSH
- telomerasa * genetika metabolismus MeSH
- telomery genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- telomerasa * MeSH
Three widely accepted assumptions are based on telomere research in human cells: (i) telomere length is a determinant of replicative ageing; (ii) telomerase activity in somatic cells supports the proliferative capacity of the cells and thus contributes to their regenerative potential and is a determinant of organismal lifespan; and (iii) the lack of telomerase activity acts as a tumour suppression mechanism. However, from a broader view, the link between telomere biology and cellular and organismal ageing, as well as tumour development, remains of debate, as I demonstrate with numerous examples of invertebrate and vertebrate species. Consequently, I propose a novel hypothesis that telomere biology, via somatic telomerase activity, reflects ageing rate from the perspective of species reproduction strategy.
Zobrazit více v PubMed
Adams, E. S., & Atkinson, L. (2008). Queen fecundity and reproductive skew in the termite Nasutitermes corniger. Insectes Sociaux, 55, 28-36. https://doi.org/10.1007/s00040-007-0970-5
Adams, H. A., Southey, B. R., Robinson, G. E., & Rodriguez-zas, S. L. (2008). Meta-analysis of genome-wide expression patterns associated with behavioral maturation in honey bees. BMC Genomics, 15, 1-15. https://doi.org/10.1186/1471-2164-9-503
Adeoye, O., Olawumi, J., Opeyemi, A., & Christiania, O. (2018). Review on the role of glutathione on oxidative stress and infertility. JBRA Assisted Reproduction, 22, 61-66. https://doi.org/10.5935/1518-0557.20180003
Allainé, D., Pontier, D., Gaillard, J. M., Lebreton, J. D., Trouvilliez, J., & Clobert, J. (1987). The relationship between fecundity and adult body weight in homeotherms. Oecologia, 73, 478-480. https://doi.org/10.1007/BF00385268
Alonso-Alvarez, C., Bertrand, S., Devevey, G., Prost, J., Faivre, B., & Sorci, G. (2004). Increased susceptibility to oxidative stress as a proximate cost of reproduction. Ecology Letters, 7, 363-368. https://doi.org/10.1111/j.1461-0248.2004.00594.x
Anchelin, M., Murcia, L., Alcaraz-Pérez, F., García-Navarro, E. M., & Cayuela, M. L. (2011). Behaviour of telomere and telomerase during aging and regeneration in zebrafish. PLoS One, 6, e16955. https://doi.org/10.1371/journal.pone.0016955
Athena Aktipis, C., Boddy, A. M., Jansen, G., Hibner, U., Hochberg, M. E., Maley, C. C., & Wilkinson, G. S. (2015). Cancer across the tree of life: Cooperation and cheating in multicellularity. Philosophical Transactions of the Royal Society B: Biological Sciences, 370, 20140219. https://doi.org/10.1098/rstb.2014.0219
Bauch, C., Becker, P. H., & Verhulst, S. (2013). Telomere length reflects phenotypic quality and costs of reproduction in a long-lived seabird. Proceedings of the Royal Society B: Biological Sciences, 280, 20122540. https://doi.org/10.1098/rspb.2012.2540
Beaulieu, M., Reichert, S., Le Maho, Y., Ancel, A., & Criscuolo, F. (2011). Oxidative status and telomere length in a long facing a costly reproductive event. Functional Ecology, 25, 577-585. https://doi.org/10.1111/j.l365-2435.2010.01825.x
Bize, P., Devevey, G., Monaghan, P., Doligez, B., & Christe, P. (2008). Fecundity and survival in relation to resistance to oxidative stress in a free-living bird. Ecology, 89, 2584-2593. https://doi.org/10.1890/07-1135.1
Blackburn, E. H. (1990). Minireview telomeres: Structure and synthesis. The Journal of Biological Chemistry, 265, 5919-5921.
Blackburn, E. H. (2005). Telomeres and telomerase: Their mechanisms of action and the effects of altering their functions. FEBS Letters, 579, 859-862. https://doi.org/10.1016/j.febslet.2004.11.036
Blasco, M. A. (2007). Telomere length, stem cells and aging. Nature Chemical Biology, 3, 640-649. https://doi.org/10.1038/nchembio.2007.38
Bodenheimer, F. S., & Nerya, A. B. (1937). One year studies on the biology of the honeybee in Palestine. Annals of Applied Biology, 24, 385-403.
Boswell, G. P., Britton, R. F., & Franks, N. F. (1998). Habitat fragmentation, percolation theory and the conservation of a keystone species. Proceedings of the Royal Society B: Biological Sciences, 265, 1921-1925.
Brueland, H. (1995). Florida book of insect records chapter 17 lowest lifetime fecundity. In T. J. Walker (Ed.), Book of insect records (pp. 41-43). University of Florida.
Caulin, A. F., & Maley, C. C. (2011). Peto's paradox: Evolution's prescription for cancer prevention. Trends in Ecology & Evolution, 26, 175-182. https://doi.org/10.1016/j.tree.2011.01.002
Choudhary, B., Karande, A. K., & Raghavan, S. C. (2012). Telomere and telomerase in stem cells: Relevance in ageing and disease. Frontiers in Bioscience, 1, 16-30.
Colominas-Ciuró, R., Santos, M., Coria, N., & Barbosa, A. (2017). Reproductive effort affects oxidative status and stress in an Antarctic penguin species: An experimental study. PLoS One, 12, 1-15. https://doi.org/10.1371/journal.pone.0177124
Cong, Y., Wright, W. E., & Shay, J. W. (2002). Human telomerase and its regulation. Microbiology and Molecular Biology Reviews, 66, 407-425. https://doi.org/10.1128/MMBR.66.3.407
Costantini, D. (2018). Meta-analysis reveals that reproductive strategies are associated with sexual differences in oxidative balance across vertebrates. Current Zoology, 64, 1-11. https://doi.org/10.1093/cz/zox002
Criscuolo, F., Pillay, N., Zahn, S., & Schradin, C. (2020). Seasonal variation in telomere dynamics in African striped mice. Oecologia, 194, 609-620. https://doi.org/10.1007/s00442-020-04801-x
Davidovic, M., Sevo, G., Svorcan, P., Milosevic, D. P., Despotovic, N., & Erceg, P. (2010). Old age as a privilege of the “selfish ones”. Aging and Disease, 1, 139-146.
Dixon, L., Kuster, R., & Rueppell, O. (2014). Reproduction, social behavior, and aging trajectories in honeybee workers. Age (Omaha), 36, 89-101. https://doi.org/10.1007/s11357-013-9546-7
Effron, M., Griner, L., & Benirschke, K. (1977). Nature and rate of neoplasia found in captive wild mammals, birds, and reptiles at necropsy. Journal of the National Cancer Institute, 59, 185-198.
Entringer, S., Epel, E. S., Kumsta, R., Lin, J., Hellhammer, D. H., Blackburn, E. H., Wüst, S., & Wadhwa, P. D. (2011). Stress exposure in intrauterine life is associated with shorter telomere length in young adulthood. Proceedings of the National Academy of Sciences of the United States of America, 108, E513-E518. https://doi.org/10.1073/pnas.1107759108
Fabian, D., & Flatt, T. (2014). Life history evolution. Nature Education Knowledge, 3, 1-13.
Fathi, E., Charoudeh, H. N., Sanaat, Z., & Farahzadi, R. (2019). Telomere shortening as a hallmark of stem cell senescence. Stem Cell Investigation, 6, 1-7. https://doi.org/10.21037/sci.2019.02.04
Flatt, T., & Partridge, L. (2018). Horizons in the evolution of aging. BMC Biology, 16, 1-13.
Forsyth, N. R., Elder, F. F. B., Shay, J. W., & Wright, W. E. (2005). Lagomorphs (rabbits, pikas and hares) do not use telomere-directed replicative aging in vitro. Mechanisms of Ageing and Development, 126, 685-691. https://doi.org/10.1016/j.mad.2005.01.003
Fradiani, P. A., Ascenzioni, F., Lavitrano, M., & Donini, P. (2004). Telomeres and telomerase activity in pig tissues. Biochimie, 86(1), 7-12. https://doi.org/10.1016/j.biochi.2003.11.009
Francis, N., Gregg, T., Owen, R., Ebert, T., & Bodnar, A. (2006). Lack of age-associated telomere shortening in long- and short-lived species of sea urchins. FEBS Letters, 580, 4713-4717. https://doi.org/10.1016/j.febslet.2006.07.049
Geserick, C., Tejera, A., González-Suárez, E., Klatt, P., & Blasco, M. A. (2006). Expression of mTert in primary murine cells links the growth-promoting effects of telomerase to transforming growth factor-β signaling. Oncogene, 25, 4310-4319. https://doi.org/10.1038/sj.onc.1209465
Gomes, N. M. V., Ryder, O. A., Houck, M. L., Charter, S. J., Walker, W., Forsyth, N. R., Austad, S. N., Venditti, C., Pagel, M., Shay, J. W., & Wright, W. E. (2011). Comparative biology of mammalian telomeres: Hypotheses on ancestral states and the roles of telomeres in longevity determination. Aging Cell, 10, 761-768. https://doi.org/10.1111/j.1474-9726.2011.00718.x
Gomes, N. M. V., Shay, J. W., & Wright, W. E. (2010). Telomere biology in metazoa. Federation of European Biochemical Societies, 584, 3741-3751. https://doi.org/10.1016/j.febslet.2010.07.031
Gotwald, W. (1995). Army ants: The biology of social predation. Cornell University Press.
Greenberg, R. A. (2005). Telomeres, crisis and cancer. Current Molecular Medicine, 5, 213-218. https://doi.org/10.2174/1566524053586590
Gruber, H., Schaible, R., Ridgway, I. D., Chow, T. T., Held, C., & Philipp, E. E. R. (2014). Telomere-independent ageing in the longest-lived non-colonial animal, Arctica islandica. Experimental Gerontology, 51, 38-45. https://doi.org/10.1016/j.exger.2013.12.014
Guidi, J., Lucente, M., Sonino, N., & Fava, G. A. (2021). Allostatic load and its impact on health: A systematic review. Psychotherapy and Psychosomatics, 90, 11-27. https://doi.org/10.1159/000510696
Guo, N., Parry, E. M., Li, L. S., Kembou, F., Lauder, N., Hussain, M. A., Berggren, P. O., & Armanios, M. (2011). Short telomeres compromise β-cell signaling and survival. PLoS One, 6, e17858. https://doi.org/10.1371/journal.pone.0017858
Haendeler, J., Dröse, S., Büchner, N., Jakob, S., Altschmied, J., Goy, C., Spyridopoulos, I., Zeiher, A. M., Brandt, U., & Dimmeler, S. (2009). Mitochondrial telomerase reverse transcriptase binds to and protects mitochondrial DNA and function from damage. Arteriosclerosis, Thrombosis, and Vascular Biology, 29, 929-935. https://doi.org/10.1161/ATVBAHA.109.185546
Hall, K. Y., Hart, R. W., Benirschke, A. K., & Walford, R. L. (1984). Correlation between ultraviolet-induced DNA repair in primate lymphocytes and fibroblasts and species maximum achievalbe life span. Mechanisms of Ageing and Development, 13, 163-173.
Hariharan, I. K., Wake, D. B., & Wake, M. H. (2016). Indeterminate growth: Could it represent the ancestral condition? Cold Spring Harbor Perspectives in Biology, 8, 1-17. https://doi.org/10.1101/cshperspect.a019174
Harshman, L. G., & Zera, A. J. (2006). The cost of reproduction: The devil in the details. Trends in Ecology & Evolution, 22, 80-86. https://doi.org/10.1016/j.tree.2006.10.008
Hart, R. W., & Setlow, R. B. (1974). Correlation between deoxyribonucleic acid excision repair and life span in a number of mammalian species. Proceedings of the National Academy of Sciences of the United States of America, 71, 2169-2173. https://doi.org/10.1073/pnas.71.6.2169
Hartmann, A., & Heinze, J. (2003). Lay eggs, live longer: Division of labor and life span in a clonal ant species. Evolution, 57, 2424-2429. https://doi.org/10.1111/j.0014-3820.2003.tb00254.x
Hartmann, N., Reichwald, K., Lechel, A., Graf, M., Kirschner, J., Dorn, A., Terzibasi, E., Wellner, J., Platzer, M., Rudolph, K. L., Cellerino, A., & Englert, C. (2009). Telomeres shorten while Tert expression increases during ageing of the short-lived fish Nothobranchius furzeri. Mechanisms of Ageing and Development, 130, 290-296. https://doi.org/10.1016/j.mad.2009.01.003
Hatakeyama, H., Yamazaki, H., Nakamura, K. I., Izumiyama-Shimomura, N., Aida, J., Suzuki, H., Tsuchida, S., Matsuura, M., Takubo, K., & Ishikawa, N. (2016). Telomere attrition and restoration in the normal teleost Oryzias latipes are linked to growth rate and telomerase activity at each life stage. Aging, 8, 62-76. https://doi.org/10.18632/aging.100873
Haussmann, M. F., Winkler, D. W., Huntington, C. E., Nisbet, I. C. T., & Vleck, C. M. (2007). Telomerase activity is maintained throughout the lifespan of long-lived birds. Experimental Gerontology, 42, 610-618. https://doi.org/10.1016/j.exger.2007.03.004
Heidinger, B. J., Blount, J. D., Boner, W., Griffiths, K., Metcalfe, N. B., & Monaghan, P. (2011). Telomere length in early life predicts lifespan. Proceedings of the National Academy of Sciences of the United States of America, 109, 1-6. https://doi.org/10.1073/pnas.1113306109
Heinze, J., & Schrempf, A. (2012). Terminal investment: Individual reproduction of ant queens increases with age. PLoS One, 7, 1-4. https://doi.org/10.1371/journal.pone.0035201
Hiyama, E., & Hiyama, K. (2007). Telomere and telomerase in stem cells. British Journal of Cancer, 96, 1020-1024. https://doi.org/10.1038/sj.bjc.6603671
Hoekstra, L. A., Schwartz, T. S., Sparkman, A. M., Miller, D. A. W., & Bronikowski, A. M. (2020). The untapped potential of reptile biodiversity for understanding how and why animals age. Functional Ecology, 34, 38-54. https://doi.org/10.1111/1365-2435.13450.The
Hoelzl, F., Smith, S., Cornils, J. S., Aydinonat, D., Bieber, C., & Ruf, T. (2016). Telomeres are elongated in older individuals in a hibernating rodent, the edible dormouse (Glis glis). Scientific Reports, 6, 1-9. https://doi.org/10.1038/srep36856
Holt, S. E., Aisner, D. L., Shay, J. W., & Wright, W. E. (1997). Lack of cell cycle regulation of telomerase activity in human cells. Proceedings of the National Academy of Sciences of the United States of America, 94, 10687-10692. https://doi.org/10.1073/pnas.94.20.10687
Inward, D., Beccaloni, G., & Eggleton, P. (2007). Death of an order: A comprehensive molecular phylogenetic study confirms that termites are eusocial cockroaches. Biology Letters, 3, 331-335. https://doi.org/10.1098/rsbl.2007.0102
Jemielity, S., Kimura, M., Parker, K. M., Parker, J. D., Cao, X., Aviv, A., & Keller, L. (2007). Short telomeres in short-lived males: What are the molecular and evolutionary causes? Aging Cell, 6, 225-233. https://doi.org/10.1111/j.1474-9726.2007.00279.x
Jiang, H., Ju, Z., & Rudolph, K. L. (2007). Telomere shortening and ageing. Zeitschrift für Gerontologie und Geriatrie, 40, 314-324. https://doi.org/10.1007/s00391-007-0480-0
Jin, K. (2010). Modern biological theories of aging. Aging and Disease, 1, 72-74. https://doi.org/10.1016/j.bbi.2008.05.010
Keller, L. (1998). Queen lifespan and colony characteristics in ants and termites. Insectes Sociaux, 45, 235-246.
Keller, L., & Genoud, M. (1997). Extraordinary lifespans in ants: A test of evolutionary theories of ageing. Nature, 389, 3-5.
Kesäniemi, J., Lavrinienko, A., Tukalenko, E., Boratyński, Z., Kivisaari, K., Mappes, T., Milinevsky, G., Møller, A. P., Mousseau, T. A., & Watts, P. C. (2019). Exposure to environmental radionuclides associates with tissue-specific impacts on telomerase expression and telomere length. Scientific Reports, 9, 1-9. https://doi.org/10.1038/s41598-018-37164-8
Khan, Z., Khan, M. S., Bawazeer, S., Bawazeer, N., Suleman, S., Irfan, M., Rauf, A., Su, X. H., & Xing, L. X. (2022). A comprehensive review on the documented characteristics of four Reticulitermes termites (Rhinotermitidae, Blattodea) of China. Brazilian Journal of Biology, 84, e256354. https://doi.org/10.1590/1519-6984.256354
Kitsoulis, C. V., Baxevanis, A. D., & Abatzopoulos, T. J. (2020). The occurrence of cancer in vertebrates: A mini review. Journal of Biological Research, 27, 1-12. https://doi.org/10.1186/s40709-020-00119-0
Klapper, W., Heidorn, K., Kühne, K., Parwaresch, R., & Krupp, G. (1998). Telomerase activity in “immortal” fish. FEBS Letters, 434, 409-412.
Klapper, W., Kühne, K., Singh, K. K., Heidorn, K., Parwaresch, R., & Krupp, G. (1998). Longevity of lobsters is linked to ubiquitous telomerase expression. FEBS Letters, 439, 143-146.
Kohlmeier, P., Negroni, M. A., Kever, M., Emmling, S., Stypa, H., Feldmeyer, B., & Foitzik, S. (2017). Intrinsic worker mortality depends on behavioral caste and the queens' presence in a social insect. The Science of Nature, 104, 34. https://doi.org/10.1007/s00114-017-1452-x
Kong, C. M., Lee, X. W., & Wang, X. (2013). Telomere shortening in human diseases. The FEBS Journal, 280, 3180-3193. https://doi.org/10.1111/febs.12326
Korandová, M., & Frydrychová, R. Č. (2016). Activity of telomerase and telomeric length in Apis mellifera. Chromosoma, 125, 405-411. https://doi.org/10.1007/s00412-015-0547-4
Korandová, M., Krůček, T., Szakosová, K., Kodrík, D., Kühnlein, R. P., Tomášková, J., & Čapková Frydrychová, R. (2018). Chronic low-dose pro-oxidant treatment stimulates transcriptional activity of telomeric retroelements and increases telomere length in Drosophila. Journal of Insect Physiology, 104, 1-8. https://doi.org/10.1016/j.jinsphys.2017.11.002
Korandová, M., Krůček, T., Vrbová, K., & Frydrychová, R. C. (2014). Distribution of TTAGG-specific telomerase activity in insects. Chromosome Research, 22, 495-503.
Kotrschal, A., Ilmonen, P., & Penn, D. J. (2007). Stress impacts telomere dynamics. Biology Letters, 3, 128-130. https://doi.org/10.1098/rsbl.2006.0594
Koubová, J., & Čapková Frydrychová, R. (2021). Telomerase-positive somatic tissues of honeybee queens (Apis mellifera) display no DNA replication. Cytogenetic and Genome Research, 14, 1-6.
Koubová, J., Jehlík, T., Kodrik, D., Sábová, M., Šima, P., Sehadová, H., Závodská, R., & Frydrychová, R. Č. (2019). Telomerase activity is upregulated in the fat bodies of pre-diapause bumblebee queens (Bombus terrestris). Insect Biochemistry and Molecular Biology, 115, 103241.
Koubová, J., Pangrácová, M., Jankásek, M., Lukšan, O., Jehlík, T., Brabcová, J., Jedlička, P., Křivánek, J., Čapková Frydrychová, R., & Hanus, R. (2021). Long-lived termite kings and queens activate telomerase in somatic organs. Proceedings of the Royal Society B: Biological Sciences, 288, 20210511.
Koubová, J., Sábová, M., Brejcha, M., Kodrík, D., & Čapková Frydrychová, R. (2021). Seasonality in telomerase activity in relation to cell size, DNA replication, and nutrients in the fat body of Apis mellifera. Scientific Reports, 11, 1-11.
Kramer, B. H., van Doorn, G. S., Arani, B. M. S., & Pen, I. (2022). Eusociality and the evolution of aging in superorganisms. The American Naturalist, 200, 63-80. https://doi.org/10.1086/719666
Krůček, T., Korandová, M., Šerý, M., Frydrychová, R. Č., Krůček, T., Korandová, M., & Szakosová, K. (2015). Effect of low doses of herbicide paraquat on antioxidant defense in Drosophila. Archives of Insect Biochemistry and Physiology, 88, 235-248. https://doi.org/10.1002/arch.21222
Kuszewska, K., Miler, K., Rojek, W., & Woyciechowski, M. (2017). Honeybee workers with higher reproductive potential live longer lives. Experimental Gerontology, 98, 8-12. https://doi.org/10.1016/j.exger.2017.08.022
Lai, A. G., Pouchkina-Stantcheva, N., Di Donfrancesco, A., Kildisiute, G., Sahu, S., & Aboobaker, A. A. (2017). The protein subunit of telomerase displays patterns of dynamic evolution and conservation across different metazoan taxa. BMC Evolutionary Biology, 17, 1-21. https://doi.org/10.1186/s12862-017-0949-4
Law, E., Girgis, A., Sylvie, L., Levesque, J., & Pickett, H. (2016). Telomeres and stress: Promising avenues for research in psycho-oncology. Asia-Pacific Journal of Oncology Nursing, 3, 137-147. https://doi.org/10.4103/2347-5625.182931
Liu, L., Trimarchi, J. R., Smith, P. J. S., & Keefe, D. L. (2002). Mitochondrial dysfunction leads to telomere attrition and genomic instability. Aging Cell, 1, 40-46. https://doi.org/10.1046/j.1474-9728.2002.00004.x
Lopez-Vaamonde, C., Raine, N. E., Koning, J. W., Brown, R. M., Pereboom, J. J. M., Ings, T. C., Ramos-Rodriguez, O., Jordan, W. C., & Bourke, A. F. G. (2009). Lifetime reproductive success and longevity of queens in an annual social insect. Journal of Evolutionary Biology, 22, 983-996. https://doi.org/10.1111/j.1420-9101.2009.01706.x
Lucas, E. R., & Keller, L. (2018). Elevated expression of ageing and immunity genes in queens of the black garden ant. Experimental Gerontology, 108, 92-98. https://doi.org/10.1016/j.exger.2018.03.020
Ma, H. M., Liu, W., Zhang, P., & Yuan, X. Y. (2012). Human skin fibroblast telomeres are shortened after ultraviolet irradiation. The Journal of International Medical Research, 40, 1871-1877. https://doi.org/10.1177/030006051204000526
Majoe, M., Libbrecht, R., Foitzik, S., & Nehring, V. (2021). Queen loss increases worker survival in leaf-cutting ants under paraquat-induced oxidative stress. Philosophical Transactions of the Royal Society B: Biological Sciences, 376, 20190735. https://doi.org/10.1098/rstb.2019.0735
Mason, J. M., Randall, T. A., & Frydrychova, R. C. (2016). Telomerase lost? Chromosoma, 125, 65-73. https://doi.org/10.1007/s00412-015-0528-7
Medawar, P. B. (1952). An unsolved problem in biology. H.K. Lewis.
Mu, M., Ren, L., Hu, X., Zhao, Y., Li, H., Lu, H., & Liu, D. (2015). Season-specific changes in telomere length and telomerase activity in Chinese pine (Pinus tabulaeformis Carr.). Russian Journal of Plant Physiology, 62, 487-493.
Mukherjee, S., Firpo, E. J., Wang, Y., & Roberts, J. M. (2011). Separation of telomerase functions by reverse genetics. Proceedings of the National Academy of Sciences of the United States of America, 108, 1363-1371. https://doi.org/10.1073/pnas.1112414108
Negroni, M. A., Foitzik, S., & Feldmeyer, B. (2019). Long-lived Temnothorax ant queens switch from investment in immunity to antioxidant production with age. Scientific Reports, 9, 1-10. https://doi.org/10.1038/s41598-019-43796-1
Nozaki, T., & Matsuura, K. (2019). Evolutionary relationship of fat body endoreduplication and queen fecundity in termites. Ecology and Evolution, 9, 11684-11694. https://doi.org/10.1002/ece3.5664
Olsson, M., Wapstra, E., & Friesen, C. (2018). Ectothermic telomeres: It's time they came in from the cold. Philosophical Transactions of the Royal Society B: Biological Sciences, 373, 20160449. https://doi.org/10.1098/rstb.2016.0449
Passos, F., Saretzki, G., Ahmed, S., Nelson, G., Richter, T., Peters, H., Wappler, I., Birket, M. J., Harold, G., Schaeuble, K., Birch-Machin, M. A., Kirkwood, T. B., & von Zglinicki, T. (2007). Mitochondrial dysfunction accounts for the stochastic heterogeneity in telomere-dependent senescence. PLoS Biology, 5, 1138-1151. https://doi.org/10.1371/journal.pbio.0050110
Razgonova, M. P., Zakharenko, A. M., Golokhvast, K. S., Thanasoula, M., Sarandi, E., Nikolouzakis, K., Fragkiadaki, P., Tsoukalas, D., Spandidos, D. A., & Tsatsakis, A. (2020). Telomerase and telomeres in aging theory and chronographic aging theory (Review). Molecular Medicine Reports, 22(3), 1679-1694. https://doi.org/10.3892/mmr.2020.11274
Remolina, S. C., & Hughes, K. A. (2008). Evolution and mechanisms of long life and high fertility in queen honey bees. Age (Omaha), 30, 177-185. https://doi.org/10.1007/s11357-008-9061-4
Reznick, D. (1985). Costs of reproduction: An evaluation of the empirical evidence. Oikos, 44, 257-267.
Rollings, N., Miller, E., & Olsson, M. (2014). Telomeric attrition with age and temperature in Eastern mosquitofish (Gambusia holbrooki). Naturwissenschaften, 101, 241-244.
Sahin, E., Colla, S., Liesa, M., Moslehi, J., Müller, F. L., Guo, M., Cooper, M., Kotton, D., Fabian, A. J., Walkey, C., Maser, R. S., Tonon, G., Foerster, F., Xiong, R., Wang, Y. A., Shukla, S. A., Jaskelioff, M., Martin, E. S., Heffernan, T. P., … DePinho, R. A. (2011). Telomere dysfunction induces metabolic and mitochondrial compromise. Nature, 470, 359-365. https://doi.org/10.1038/nature09787.Telomere
Saretzki, G. (2009). Telomerase, mitochondria and oxidative stress. Experimental Gerontology, 44, 485-492. https://doi.org/10.1016/j.exger.2009.05.004
Sauer, D. J., Heidinger, B. J., Kittilson, J. D., Lackmann, A. R., & Clark, M. E. (2021). No evidence of physiological declines with age in an extremely long-lived fish. Scientific Reports, 11, 9065. https://doi.org/10.1038/s41598-021-88626-5
Schneider, S. A., Schrader, C., Wagner, A. E., Boesch-Saadatmandi, C., Liebig, J., Rimbach, G., & Roeder, T. (2011). Stress resistance and longevity are not directly linked to levels of enzymatic antioxidants in the ponerine ant Harpegnathos saltator. PLoS One, 6, e14601. https://doi.org/10.1371/journal.pone.0014601
Schrempf, A., Cremer, S., & Heinze, J. (2011). Social influence on age and reproduction: Reduced lifespan and fecundity in multi-queen ant colonies. Journal of Evolutionary Biology, 24, 1455-1461. https://doi.org/10.1111/j.1420-9101.2011.02278.x
Schrempf, A., Heinze, J., & Cremer, S. (2005). Sexual cooperation: Mating increases longevity in ant Queens. Current Biology, 15, 267-270.
Schwartz, T. S., & Bronikowski, A. (2011). Molecular stress pathways and the evolution of life histories in reptiles. Molecular mechanisms of life history evolution: The genetics and physiology of life history traits and trade-off. In T. Flatt & A. Heyland (Eds.), The genetics and physiology of life history traits and trade-offs (pp. 193-209). Oxford University Press.
Ségal-Bendirdjian, E., Geli, V., & Cayuela, M. L. (2019). Non-canonical roles of telomerase: Unraveling the imbroglio. Frontiers in Cell and Development Biology, 7, 1-12. https://doi.org/10.3389/fcell.2019.00332
Seluanov, A., Chen, Z., Hine, C., Sasahara, T. H. C., Ribeiro, A. A. C. M., Catania, K. C., Presgraves, D. C., & Gorbunova, V. (2007). Telomerase activity coevolves with body mass, not lifespan. Aging Cell, 6, 45-52. https://doi.org/10.1111/j.1474-9726.2006.00262.x.Telomerase
Sharick, J. T., Vazquez-Medina, J. P., Ortiz, R. M., & Crocker, D. E. (2015). Oxidative stress is a potential cost of breeding in male and female northern elephant seals. Functional Ecology, 29, 367-376. https://doi.org/10.1111/1365-2435.12330
Sköld, H. N., Asplund, M. E., Wood, C. A., & Bishop, J. D. D. (2011). Telomerase deficiency in a colonial ascidian after prolonged asexual propagation. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 316, 276-283. https://doi.org/10.1002/jez.b.21399
Smith, S., Hoelzl, F., Zahn, S., & Criscuolo, F. (2021). Telomerase activity in ecological studies: What are its consequences for individual physiology and is there evidence for effects and trade-offs in wild populations. Molecular Ecology, 31, 6239-6251. https://doi.org/10.1111/mec.16233
Tan, T. C. J., Rahman, R., Jaber-Hijazi, F., Felix, D. A., Chen, C., Louis, E. J., & Aboobaker, A. (2012). Telomere maintenance and telomerase activity are differentially regulated in asexual and sexual worms. Proceedings of the National Academy of Sciences of the United States of America, 109, 4209-4214. https://doi.org/10.1073/pnas.1118885109
Tian, X., Doerig, K., Park, R., Can Ran Qin, A., Hwang, C., Neary, A., Gilbert, M., Seluanov, A., & Gorbunova, V. (2018). Evolution of telomere maintenance and tumour suppressor mechanisms across mammals. Philosophical Transactions of the Royal Society B: Biological Sciences, 373, 20160443. https://doi.org/10.1098/rstb.2016.0443
Tomiyama, A. J., O'Donovan, A., Lin, J., Puterman, E., Lazaro, A., Chan, J., Dhabhar, F. S., Wolkowitz, O., Kirschbaum, C., Blackburn, E., & Epel, E. (2012). Does cellular aging relate to patterns of allostasis? An examination of basal and stress reactive HPA axis activity and telomere length. Physiology & Behavior, 106, 40-45. https://doi.org/10.1016/j.physbeh.2011.11.016
Ulaner, G. A., & Giudice, L. C. (1997). Developmental regulation of telomerase activity in human fetal tissues during gestation. Molecular Human Reproduction, 3, 769-773.
von Zglinicki, T. (2002). Oxidative stress shortens telomeres. Trends in Biochemical Sciences, 27, 339-344.
Werner, J., & Griebeler, E. M. (2011). Reproductive biology and its impact on body size: Comparative analysis of mammalian, avian and dinosaurian reproduction. PLoS One, 6, e28442. https://doi.org/10.1371/journal.pone.0028442
Whittemore, K., Vera, E., Martínez-Nevado, E., Sanpera, C., & Blasco, M. A. (2019). Telomere shortening rate predicts species life span. Proceedings of the National Academy of Sciences of the United States of America, 116, 15122-15127. https://doi.org/10.1073/pnas.1902452116
Wiersma, P., Selman, C., Speakman, J. R., & Verhulst, S. (2004). Birds sacrifice oxidative protection for reproduction. Proceedings of the Royal Society B: Biological Sciences, 271, 360-363. https://doi.org/10.1098/rsbl.2004.0171
Wright, W. E., Piatyszek, M. A., Rainey, W. E., Byrd, W., & Shay, J. W. (1996). Telomerase activity in human germline and embryonic tissues and cells. Developmental Genetics, 18(2), 173-179.
Young, A. J. (2018). The role of telomeres in the mechanisms and evolution of life-history trade-offs and ageing. Philosophical Transactions of the Royal Society B: Biological Sciences, 373, 20160452. https://doi.org/10.1098/rstb.2016.0452
Young, R. C., Kitaysky, A. S., Haussmann, M. F., Descamps, S., Orben, R. A., Elliott, K. H., & Gaston, A. J. (2013). Age, sex, and telomere dynamics in a long-lived seabird with male-biased parental care. PLoS One, 8, 1-8. https://doi.org/10.1371/journal.pone.0074931
Zheng, Q., Huang, J., & Wang, G. (2019). Mitochondria, telomeres and telomerase subunits. Frontiers in Cell and Development Biology, 7, 1-10. https://doi.org/10.3389/fcell.2019.00274
Zhu, X., Kumar, R., Mandal, M., Sharma, N., Sharma, H. W., Dhingra, U., Sokoloski, J. A., Hsiao, R., & Narayanan, R. (1996). Cell cycle-dependent modulation of telomerase activity in tumor cells. Proceedings of the National Academy of Sciences of the United States of America, 93, 6091-6095.