Autonomous regulation of the insect gut by circadian genes acting downstream of juvenile hormone signaling

. 2013 Mar 12 ; 110 (11) : 4416-21. [epub] 20130226

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid23442387

In temperate regions, the shortening day length informs many insect species to prepare for winter by inducing diapause. The adult diapause of the linden bug, Pyrrhocoris apterus, involves a reproductive arrest accompanied by energy storage, reduction of metabolic needs, and preparation to withstand low temperatures. By contrast, nondiapause animals direct nutrient energy to muscle activity and reproduction. The photoperiod-dependent switch from diapause to reproduction is systemically transmitted throughout the organism by juvenile hormone (JH). Here, we show that, at the organ-autonomous level of the insect gut, the decision between reproduction and diapause relies on an interaction between JH signaling and circadian clock genes acting independently of the daily cycle. The JH receptor Methoprene-tolerant and the circadian proteins Clock and Cycle are all required in the gut to activate the Par domain protein 1 gene during reproduction and to simultaneously suppress a mammalian-type cryptochrome 2 gene that promotes the diapause program. A nonperiodic, organ-autonomous feedback between Par domain protein 1 and Cryptochrome 2 then orchestrates expression of downstream genes that mark the diapause vs. reproductive states of the gut. These results show that hormonal signaling through Methoprene-tolerant and circadian proteins controls gut-specific gene activity that is independent of circadian oscillations but differs between reproductive and diapausing animals.

Zobrazit více v PubMed

Hahn DA, Denlinger DL. Energetics of insect diapause. Annu Rev Entomol. 2011;56:103–121. PubMed

Koštál V. Insect photoperiodic calendar and circadian clock: Independence, cooperation, or unity? J Insect Physiol. 2011;57(5):538–556. PubMed

Bradshaw WE, Holzapfel CM. What season is it anyway? Circadian tracking vs. photoperiodic anticipation in insects. J Biol Rhythms. 2010;25(3):155–165. PubMed

Hodek I. Diapause in females of Pyrrhocoris apterus L (Heteroptera) Acta Entomol Bohemoslov. 1968;65:422–435.

Slama K. Hormonal control of respiratory metabolism during growth, reproduction, and diapause in female adults of Pyrrhocoris apterus L (Hemiptera) J Insect Physiol. 1964;10:283–303.

Ikeno T, Tanaka SI, Numata H, Goto SG. Photoperiodic diapause under the control of circadian clock genes in an insect. BMC Biol. 2010;8:116. PubMed PMC

Socha R, Sula J, Zemek R. Feeding, drinking and digestive enzyme activities in long- and short-day females of Pyrrhocoris apterus (Heteroptera) Physiol Entomol. 1997;22:161–169.

Kostál V, Tollarová M, Dolezel D. Dynamism in physiology and gene transcription during reproductive diapause in a heteropteran bug, Pyrrhocoris apterus. J Insect Physiol. 2008;54(1):77–88. PubMed

Hodková M. Nervous inhibition of corpora allata by photoperoid in Pyrrhocoris apterus. Nature. 1976;263(5577):521–523. PubMed

Hodková M, Okuda T, Wagner RM. Regulation of corpora allata in females of Pyrrhocoris apterus (Heteroptera) (a mini-review) In Vitro Cell Dev Biol Anim. 2001;37(9):560–563. PubMed

Shimokawa K, Numata H, Shiga S. Neurons important for the photoperiodic control of diapause in the bean bug, Riptortus pedestris. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2008;194(8):751–762. PubMed

Raikhel AS, Brown MR, Bellés X. Hormonal control of reproductive processes. In: Gilbert LI, Iatrou K, Gill SS, editors. Comprehensive Insect Science. Amsterdam: Elsevier; 2005. pp. 433–491.

Jindra M, Palli SR, Riddiford LM. The juvenile hormone signaling pathway in insect development. Annu Rev Entomol. 2013;58:181–204. PubMed

Denlinger DL, Yocum GD, Rinehart JP. Hormonal control of diapause. In: Gilbert LI, editor. Insect Endocrinology. Amsterdam: Elsevier; 2012. pp. 430–463.

Slama K. Physiological and biochemical effects of juvenoids. In: Slama K, Romanuk M, Sorm F, editors. Insect Hormones and Bioanalogues. New York: Springer; 1974. pp. 236–243.

Konopova B, Smykal V, Jindra M. Common and distinct roles of juvenile hormone signaling genes in metamorphosis of holometabolous and hemimetabolous insects. PLoS ONE. 2011;6(12):e28728. PubMed PMC

Ashok M, Turner C, Wilson TG. Insect juvenile hormone resistance gene homology with the bHLH-PAS family of transcriptional regulators. Proc Natl Acad Sci USA. 1998;95(6):2761–2766. PubMed PMC

Miura K, Oda M, Makita S, Chinzei Y. Characterization of the Drosophila Methoprene -tolerant gene product. Juvenile hormone binding and ligand-dependent gene regulation. FEBS J. 2005;272(5):1169–1178. PubMed

Charles JP, et al. Ligand-binding properties of a juvenile hormone receptor, Methoprene-tolerant. Proc Natl Acad Sci USA. 2011;108(52):21128–21133. PubMed PMC

Li M, Mead EA, Zhu JS. Heterodimer of two bHLH-PAS proteins mediates juvenile hormone-induced gene expression. Proc Natl Acad Sci USA. 2011;108(2):638–643. PubMed PMC

Shin SW, Zou Z, Saha TT, Raikhel AS. bHLH-PAS heterodimer of methoprene-tolerant and Cycle mediates circadian expression of juvenile hormone-induced mosquito genes. Proc Natl Acad Sci USA. 2012;109(41):16576–16581. PubMed PMC

Bradshaw WE, Holzapfel CM. Circadian clock genes, ovarian development and diapause. BMC Biol. 2010;8:115. PubMed PMC

Saunders DS, Bertossa RC. Deciphering time measurement: The role of circadian ‘clock’ genes and formal experimentation in insect photoperiodism. J Insect Physiol. 2011;57(5):557–566. PubMed

Schiesari L, Kyriacou CP, Costa R. The hormonal and circadian basis for insect photoperiodic timing. FEBS Lett. 2011;585(10):1450–1460. PubMed

Sandrelli F, et al. A molecular basis for natural selection at the timeless locus in Drosophila melanogaster. Science. 2007;316(5833):1898–1900. PubMed

Tauber E, et al. Natural selection favors a newly derived timeless allele in Drosophila melanogaster. Science. 2007;316(5833):1895–1898. PubMed

Stehlík J, Závodská R, Shimada K, Sauman I, Kostál V. Photoperiodic induction of diapause requires regulated transcription of timeless in the larval brain of Chymomyza costata. J Biol Rhythms. 2008;23(2):129–139. PubMed

Kobelková A, Bajgar A, Dolezel D. Functional molecular analysis of a circadian clock gene timeless promoter from the Drosophilid fly Chymomyza costata. J Biol Rhythms. 2010;25(6):399–409. PubMed

Ikeno T, Numata H, Goto SG. Circadian clock genes period and cycle regulate photoperiodic diapause in the bean bug Riptortus pedestris males. J Insect Physiol. 2011;57(7):935–938. PubMed

Ikeno T, Numata H, Goto SG. Photoperiodic response requires mammalian-type cryptochrome in the bean bug Riptortus pedestris. Biochem Biophys Res Commun. 2011;410(3):394–397. PubMed

Emerson KJ, Bradshaw WE, Holzapfel CM. Complications of complexity: Integrating environmental, genetic and hormonal control of insect diapause. Trends Genet. 2009;25(5):217–225. PubMed

Socha R. Pyrrhocoris apterus (Heteroptera) - an experimental model species: A review. Eur J Entomol. 1993;90:241–286.

Cyran SA, et al. vrille, Pdp1, and dClock form a second feedback loop in the Drosophila circadian clock. Cell. 2003;112(3):329–341. PubMed

Yuan Q, Metterville D, Briscoe AD, Reppert SM. Insect cryptochromes: Gene duplication and loss define diverse ways to construct insect circadian clocks. Mol Biol Evol. 2007;24(4):948–955. PubMed

Kume K, et al. mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop. Cell. 1999;98(2):193–205. PubMed

Allada R, White NE, So WV, Hall JC, Rosbash M. A mutant Drosophila homolog of mammalian Clock disrupts circadian rhythms and transcription of period and timeless. Cell. 1998;93(5):791–804. PubMed

Rutila JE, et al. CYCLE is a second bHLH-PAS clock protein essential for circadian rhythmicity and transcription of Drosophila period and timeless. Cell. 1998;93(5):805–814. PubMed

Zhang ZL, Xu JJ, Sheng ZT, Sui YP, Palli SR. Steroid receptor co-activator is required for juvenile hormone signal transduction through a bHLH-PAS transcription factor, methoprene tolerant. J Biol Chem. 2011;286(10):8437–8447. PubMed PMC

Ikeno T, Katagiri C, Numata H, Goto SG. Causal involvement of mammalian-type cryptochrome in the circadian cuticle deposition rhythm in the bean bug Riptortus pedestris. Insect Mol Biol. 2011;20(3):409–415. PubMed

Dolezel D, Sauman I, Kost’ál V, Hodkova M. Photoperiodic and food signals control expression pattern of the clock gene, period, in the linden bug, Pyrrhocoris apterus. J Biol Rhythms. 2007;22(4):335–342. PubMed

Dolezel D, Zdechovanova L, Sauman I, Hodkova M. Endocrine-dependent expression of circadian clock genes in insects. Cell Mol Life Sci. 2008;65(6):964–969. PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Impact of photoperiod and functional clock on male diapause in cryptochrome and pdf mutants in the linden bug Pyrrhocoris apterus

. 2024 Jul ; 210 (4) : 575-584. [epub] 20230611

Circadian rhythms and circadian clock gene homologs of complex alga Chromera velia

. 2023 ; 14 () : 1226027. [epub] 20231208

The gut microbiome mediates adaptation to scarce food in Coleoptera

. 2023 Nov 13 ; 18 (1) : 80. [epub] 20231113

Steroid receptor coactivator TAIMAN is a new modulator of insect circadian clock

. 2023 Sep ; 19 (9) : e1010924. [epub] 20230908

Evolution of proteins involved in the final steps of juvenile hormone synthesis

. 2023 Mar ; 145 () : 104487. [epub] 20230125

Evolution of casein kinase 1 and functional analysis of new doubletime mutants in Drosophila

. 2022 ; 13 () : 1062632. [epub] 20221214

Loss of Timeless Underlies an Evolutionary Transition within the Circadian Clock

. 2022 Jan 07 ; 39 (1) : .

Functional analysis and localisation of a thyrotropin-releasing hormone-type neuropeptide (EFLa) in hemipteran insects

. 2020 Jul ; 122 () : 103376. [epub] 20200424

Light and Temperature Synchronizes Locomotor Activity in the Linden Bug, Pyrrhocoris apterus

. 2020 ; 11 () : 242. [epub] 20200402

CRISPR/Cas9 Genome Editing Introduction and Optimization in the Non-model Insect Pyrrhocoris apterus

. 2019 ; 10 () : 891. [epub] 20190715

Daily Activity of the Housefly, Musca domestica, Is Influenced by Temperature Independent of 3' UTR period Gene Splicing

. 2017 Aug 07 ; 7 (8) : 2637-2649. [epub] 20170807

Gene Expression Dynamics in Major Endocrine Regulatory Pathways along the Transition from Solitary to Social Life in a Bumblebee, Bombus terrestris

. 2016 ; 7 () : 574. [epub] 20161124

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...