Theoretical Modeling of Cognitive Dysfunction in Schizophrenia by Means of Errors and Corresponding Brain Networks
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
30026711
PubMed Central
PMC6042473
DOI
10.3389/fpsyg.2018.01027
Knihovny.cz E-zdroje
- Klíčová slova
- brain networks, cognitive deficits, cognitive tests, errors, fMRI, lesions, schizophrenia,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The current evidence of cognitive disturbances and brain alterations in schizophrenia does not provide the plausible explanation of the underlying mechanisms. Neuropsychological studies outlined the cognitive profile of patients with schizophrenia, that embodied the substantial disturbances in perceptual and motor processes, spatial functions, verbal and non-verbal memory, processing speed and executive functioning. Standardized scoring in the majority of the neurocognitive tests renders the index scores or the achievement indicating the severity of the cognitive impairment rather than the actual performance by means of errors. At the same time, the quantitative evaluation may lead to the situation when two patients with the same index score of the particular cognitive test, demonstrate qualitatively different performances. This may support the view why test paradigms that habitually incorporate different cognitive variables associate weakly, reflecting an ambiguity in the interpretation of noted cognitive constructs. With minor exceptions, cognitive functions are not attributed to the localized activity but eventuate from the coordinated activity in the generally dispersed brain networks. Functional neuroimaging has progressively explored the connectivity in the brain networks in the absence of the specific task and during the task processing. The spatio-temporal fluctuations of the activity of the brain areas detected in the resting state and being highly reproducible in numerous studies, resemble the activation and communication patterns during the task performance. Relatedly, the activation in the specific brain regions oftentimes is attributed to a number of cognitive processes. Given the complex organization of the cognitive functions, it becomes crucial to designate the roles of the brain networks in relation to the specific cognitive functions. One possible approach is to identify the commonalities of the deficits across the number of cognitive tests or, common errors in the various tests and identify their common "denominators" in the brain networks. The qualitative characterization of cognitive performance might be beneficial in addressing diffuse cognitive alterations presumably caused by the dysconnectivity of the distributed brain networks. Therefore, in the review, we use this approach in the description of standardized tests in the scope of potential errors in patients with schizophrenia with a subsequent reference to the brain networks.
Zobrazit více v PubMed
Ahn A. A., Krawitz A., Kim W., Busmeyer J. R., Brown J. W. (2011). A model-based fMRI Analysis with hierarchical parameter estimation. J. Neurosci. Psychol. Econ. 4, 95–110. 10.1037/a0020684 PubMed DOI PMC
Aleman A., Hijman R., de Haan E. H., Kahn R. S. (1999). Memory impairment in schizophrenia: a meta-analysis. Am. J. Psychiatry 156, 1358–1366. PubMed
Allen M. D., Owens T. E., Fong A. K., Richards D. R. (2011). A functional neuroimaging analysis of the Trail Making Test-B: implications for clinical application. Behav. Neurol. 24, 159–171. 10.1155/2011/476893 PubMed DOI PMC
Allen P., Seal M. L., Valli I., Fusar-Poli P., Perlini C., Day F., et al. . (2009). Altered prefrontal and hippocampal function during verbal encoding and recognition in people with prodromal symptoms of psychosis. Schizophr. Bull. 37, 746–756. 10.1093/schbul/sbp113 PubMed DOI PMC
Andreasen N. C., O'Leary D. S., Cizadlo T., Arndt S., Rezai K., Ponto L. L., et al. . (1996). Schizophrenia and cognitive dysmetria: a positron-emission tomography study of dysfunctional prefrontal-thalamic-cerebellar circuitry. Proc. Natl. Acad. Sci. U.S.A. 93, 9985–9990. PubMed PMC
Antonova E., Kumari V., Morris R., Halari R., Anilkumar A., Mehrotra R., et al. . (2005). The relationship of structural alterations to cognitive deficits in schizophrenia: a voxel-based morphometry study. Biol. Psychiatry 58, 457–467. 10.1016/j.biopsych.2005.04.036 PubMed DOI
Argyelan M., Ikuta T., DeRosse P., Braga R. J., Burdick K. E., John M., et al. . (2013). Resting-state fMRI connectivity impairment in schizophrenia and bipolar disorder. Schizophr. Bull. 40, 100–110. 10.1093/schbul/sbt092 PubMed DOI PMC
Atkinson R. C., Brelsford J. W., Shiffrin R. M. (1967). Multiprocess models for memory with applications to a continuous presentation task. J. Math. Psychol. 4, 277–300. 10.1016/0022-2496(67)90053-3 DOI
Azuma T. (2004). Working memory and perseveration in verbal fluency. Neuropsychology 18:69 10.1037/0894-4105.18.1.69 PubMed DOI
Baaré W. F., Hulshoff Pol H. E., Hijman R., Willem P. T., Viergever M. A., Kahn R. S. (1999). Volumetric analysis of frontal lobe regions in schizophrenia: relation to cognitive function and symptomatology. Biol. Psychiatry 45, 1597–1605. 10.1016/S0006-3223(98)00266-2 PubMed DOI
Badcock J. C., Dragovic M., Dawson L., Jones R. (2011). Normative data for rey's auditory verbal learning test in individuals with schizophrenia. Arch. Clin. Neuropsychol. 26, 205–213. PubMed
Bajaj S., Adhikari B. M., Friston K. J., Dhamala M. (2016). Bridging the gap: dynamic causal modeling and Granger causality analysis of resting state functional magnetic resonance imaging. Brain Connect. 6, 652–661. 10.1089/brain.2016.0422 PubMed DOI
Baldo J. V., Delis D., Kramer J., Shimamura A. P. (2002). Memory performance on the California Verbal Learning Test–II: findings from patients with focal frontal lesions. J. Int. Neuropsychol. Soc. 8, 539–546. 10.1017/S135561770281428X PubMed DOI
Banken J. A. (1985). Clinical utility of considering Digits Forward and Digits Backward as separate components of the wechsler adult intelligence Scale-Revised. J. Clin. Psychol. 41, 686–691. 10.1002/1097-4679(198509)41:5<686::AID-JCLP2270410517>3.0.CO;2-D DOI
Barba G. D., Mantovan M. C., Traykov L. T., Rieu D., Laurent A., Ermani M., et al. (2002). The functional locus of intrusions: encoding or retrieval? J. Clin. Exp. Neuropsychol. 24, 633–641. 10.1076/jcen.24.5.633.1008 PubMed DOI
Barch D. M., Ceaser A. (2012). Cognition in schizophrenia: core psychological and neural mechanisms. Trends Cogn. Sci. 16, 27–34. 10.1016/j.tics.2011.11.015 PubMed DOI PMC
Benton A. L., Hamsher K. (1978). Multilingual Aphasia Examination: Manual of Instructions. Iowa City, IA: University of Iowa.
Bertola L., Mota N. B., Copelli M., Rivero T., Diniz B. S., Romano-Silva M. A., et al. . (2014). Graph analysis of verbal fluency test discriminate between patients with Alzheimer's disease, mild cognitive impairment and normal elderly controls. Front. Aging Neurosci. 6:185. 10.3389/fnagi.2014.00185 PubMed DOI PMC
Bezdicek O., Stepankova H., Moták L., Axelrod B. N., Woodard J. L., Preiss M., et al. . (2014). Czech version of Rey Auditory Verbal Learning test: normative data. Aging Neuropsychol. Cogn. 21, 693–721. 10.1080/13825585.2013.865699 PubMed DOI
Bhojraj T. S., Francis A. N., Rajarethinam R., Eack S., Kulkarni S., Prasad K. M., et al. . (2009). Verbal fluency deficits and altered lateralization of language brain areas in individuals genetically predisposed to schizophrenia. Schizophr. Res. 115, 202–208. 10.1016/j.schres.2009.09.033 PubMed DOI PMC
Bigler E. D., Rosa L., Schultz F., Hall S., Harris J. (1989). Rey-auditory verbal learning and rey-osterrieth complex figure design performance in Alzheimer's disease and closed head injury. J. Clin. Psychol. 45, 277–280. PubMed
Birn R. M., Kenworthy L., Case L., Caravella R., Jones T. B., Bandettini P. A., et al. (2010). Neural systems supporting lexical search guided by letter and semantic category cues: a self-paced overt response fMRI study of verbal fluency. Neuroimage 49, 1099–1107. 10.1016/j.neuroimage.2009.07.036 PubMed DOI PMC
Bishara A. J., Kruschke J. K., Stout J. C., Bechara A., McCabe D. P., Busemeyer J. R. (2010). Sequential learning models for the Wisconsin Card Sorting Task: assessing processes in substance dependent individuals. J. Math. Psychol. 54, 5–13. 10.1016/j.jmp.2008.10.002 PubMed DOI PMC
Black F. W. (1986). Digit repetition in brain-damaged adults: clinical and theoretical implications. J. Clin. Psychol. 42, 770–782. PubMed
Bleecker M. L., Ford D. P., Lindgren K. N., Hoese V. M., Walsh K. S., Vaughan C. G. (2005). Differential effects of lead exposure on components of verbal memory. Occup. Environ. Med. 62, 181–187. 10.1136/oem.2003.011346 PubMed DOI PMC
Boksman K., Théberge J., Williamson P., Drost D. J., Malla A., Densmore M., et al. . (2005). A 4.0-T fMRI study of brain connectivity during word fluency in first-episode schizophrenia. Schizophr. Res. 75, 247–263. 10.1016/j.schres.2004.09.025 PubMed DOI
Botvinick M. M., Braver T. S, Barch D. M., Carter C. S., Cohen J. D. (2001). Conflict monitoring and cognitive control. Psychol. Rev. 108, 624–652. 10.1037/0033-295X.108.3.624 PubMed DOI
Boyer P., Phillips J. L., Rousseau F. L., Ilivitsky S. (2007). Hippocampal abnormalities and memory deficits: new evidence of a strong pathophysiological link in schizophrenia. Brain Res. Rev. 54, 92–112. 10.1016/j.brainresrev.2006.12.008 PubMed DOI
Brébion G., David A. S., Jones H. M., Pilowsky L. S. (2009). Working memory span and motor and cognitive speed in schizophrenia. Cogn. Behav. Neurol. 22, 101–108. 10.1097/WNN.0b013e3181a722a0 PubMed DOI
Brébion G., David A. S., Jones H., Pilowsky LS. (2005). Hallucinations, negative symptoms, and response bias in a verbal recognition task in schizophrenia. Neuropsychology 19:612 10.1037/0894-4105.19.5.612 PubMed DOI
Brébion G., Gorman J. M., Amador X., Malaspina D., Sharif Z. (2002). Source monitoring impairments in schizophrenia: characterisation and associations with positive and negative symptomatology. Psychiatry Res. 112, 27–39. 10.1016/S0165-1781(02)00187-7 PubMed DOI
Brébion G., Ohlsen R. I., Pilowsky L. S., David A. S. (2008). Visual hallucinations in schizophrenia: confusion between imagination and perception. Neuropsychology 22:383 10.1037/0894-4105.22.3.383 PubMed DOI
Brébion G., Smith M. J., Amador X., Malaspina D., Gorman J. M. (1998). Word recognition, discrimination accuracy, and decision bias in schizophrenia: association with positive symptomatology and depressive symptomatology. J. Nerv. Ment. Dis. 186, 604–609. 10.1097/00005053-199810000-00003 PubMed DOI
Brugnolo A., Morbelli S., Arnaldi D., De Carli F., Accardo J., Bossert I., et al. . (2014). Metabolic correlates of Rey auditory verbal learning test in elderly subjects with memory complaints. J. Alzheimers Dis. 39, 103–113. 10.3233/JAD-121684 PubMed DOI
Burgess P. W. (1996). Confabulation and the control of recollection. Memory 4, 359–412. 10.1080/096582196388906 PubMed DOI
Cave C. B., Squire L. R. (1992). Intact verbal and nonverbal short-term memory following damage to the human hippocampus. Hippocampus 2, 151–163. 10.1002/hipo.450020207 PubMed DOI
Chan E., MacPherson S. E., Robinson G., Turner M., Lecce F., Shallice T., et al. . (2015). Limitations of the trail making test part-B in assessing frontal executive dysfunction. J. Int. Neuropsychol. Soc. 21, 169–174. 10.1017/S135561771500003X PubMed DOI
Chertkow H., Bub D. (1990). Semantic memory loss in dementia of Alzheimer's type: what do various measures measure? Brain 113, 397–417. PubMed
Chiricozzi F. R., Clausi S., Molinari M., Leggio M. G. (2008). Phonological short-term store impairment after cerebellar lesion: a single case study. Neuropsychologia 46, 1940–1953. 10.1016/j.neuropsychologia.2008.01.024 PubMed DOI
Chouiter L., Holmberg J., Manuel A. L., Colombo F., Clarke S., Annoni J.-M., et al. . (2016). Partly segregated cortico-subcortical pathways support phonologic and semantic verbal fluency: a lesion study. Neuroscience 329, 275–283. 10.1016/j.neuroscience.2016.05.029 PubMed DOI
Cole D. M., Smith S. M., Beckmann C. F. (2010). Advances and pitfalls in the analysis and interpretation of resting-state FMRI data. Front. Syst. Neurosci. 4:8. 10.3389/fnsys.2010.00008 PubMed DOI PMC
Collie A., Maruff P. (2002). An analysis of systems of classifying mild cognitive impairment in older people. Aust. N. Z. J. Psychiatry 36, 133–140. 10.1046/j.1440-1614.2002.00972.x PubMed DOI
Conklin H. M., Curtis C. E., Katsanis J., Iacono W. G. (2000). Verbal working memory impairment in schizophrenia patients and their first-degree relatives: evidence from the digit span task. Am. J. Psychiatry 157, 275–277. 10.1176/appi.ajp.157.2.275 PubMed DOI
Conners C. K. (2014). Conners Continuous Performance Test 3rd Edition (Conners CPT 3) & Conners Continuous Auditory Test of Attention (Conners CATA): Technical Manual (Multi-Health Systems Inc.).
Cordes D., Haughton V. M., Arfanakis K., Carew J. D., Turski P. A., Moritz C. H., et al. . (2001). Frequencies contributing to functional connectivity in the cerebral cortex in “resting-state” data. Am. J. Neuroradiol. 22, 1326–1333. PubMed PMC
Costafreda S. G., Fu C. H., Lee L., Everitt B., Brammer M. J., David A. S. (2006). A systematic review and quantitative appraisal of fMRI studies of verbal fluency: role of the left inferior frontal gyrus. Hum. Brain Mapp. 27, 799–810. 10.1002/hbm.20221 PubMed DOI PMC
Crespo-Facorro B., Paradiso S., Andreasen N. C., O'Leary D. S., Watkins G. L., Boles Ponto L. L., et al. . (1999). Recalling word lists reveals “cognitive dysmetria” in schizophrenia: a positron emission tomography study. Am. J. Psychiatry 156, 386–392. PubMed
Cunningham J. M., Pliskin N. H., Cassisi J. E., Tsang B., Rao S. M. (1997). Relationship between confabulation and measures of memory and executive function. J. Clin. Exp. Neuropsychol. 19, 867–877. 10.1080/01688639708403767 PubMed DOI
Damoiseaux J. S., Rombouts S., Barkhof F., Scheltens P., Stam C. J., Smith S. M., et al. . (2006). Consistent resting-state networks across healthy subjects. Proc. Natl. Acad. Sci. U.S.A. 103, 13848–13853. 10.1073/pnas.0601417103 PubMed DOI PMC
Daunizeau J., David O., Stephan K. E. (2011). Dynamic causal modelling: a critical review of the biophysical and statistical foundations. Neuroimage 58, 312–322. 10.1016/j.neuroimage.2009.11.062 PubMed DOI
Deco G., Ponce-Alvarez A., Mantini D., Romani G. L., Hagmann P., Corbetta M. (2013). Resting-state functional connectivity emerges from structurally and dynamically shaped slow linear fluctuations. J. Neurosci. 33, 11239–11252. 10.1523/JNEUROSCI.1091-13.2013 PubMed DOI PMC
DeLuca J. (1993). Predicting neurobehavioral patterns following anterior communicating artery aneurysm. Cortex 29, 639–647. 10.1016/S0010-9452(13)80287-0 PubMed DOI
Dixon M. L., De La Vega A., Mills C., Andrews-Hanna J., Spreng N., Christoff K., et al. . (2018). Heterogeneity within the frontoparietal control network and its relationship to the default and dorsal attention network. Proc. Natl. Acad. Sci. U.S.A. 115, 1598–1607. 10.1073/pnas.1715766115 PubMed DOI PMC
Dosenbach N. U., Fair D. A., Cohen A. L., Schlaggar B. L., Petersen S. E. (2008). A dual-networks architecture of top-down control. Trends Cogn. Sci. 12, 99–105. 10.1016/j.tics.2008.01.001 PubMed DOI PMC
Earle-Boyer E. A., Serper M. R., Davidson M., Harvey P. D. (1991). Continuous performance tests in schizophrenic patients: stimulus and medication effects on performance. Psychiatry Res. 37, 47–56. 10.1016/0165-1781(91)90105-X PubMed DOI
Elvevag B., Weinberger D. R., Suter J. C., Goldberg T. E. (2000). Continuous performance test and schizophrenia: a test of stimulus-response compatibility, working memory, response readiness, or none of the above? Am. J. Psychiatry 157, 772–780. 10.1176/appi.ajp.157.5.772 PubMed DOI
Esposito F., Scarabino T., Hyvarinen A., Himberg J., Formisano E., Comani S., et al. . (2005). Independent component analysis of fMRI group studies by self-organizing clustering. Neuroimage 25, 193–205. 10.1016/j.neuroimage.2004.10.042 PubMed DOI
Estes W. K. (1974). Learning theory and intelligence. Am. Psychol. 29:740 10.1037/h0037458 DOI
Eyler L. T., Olsen R. K., Jeste D. V., Brown G. G. (2004). Abnormal brain response of chronic schizophrenia patients despite normal performance during a visual vigilance task. Psychiatry Res. Neuroimaging 130, 245–257. 10.1016/j.pscychresns.2004.01.003 PubMed DOI
Fernaeus S.-E., Julin P., Almqvist O., Wahlund L.-O. (2013). Medial temporal lobe volume predicts rate of learning in Rey-AVLT. Adv. Alzheimers Dis. 2:7 10.4236/aad.2013.21002 DOI
Fischer R. S., Alexander M. P., D'esposito M, Otto R. (1995). Neuropsychological and neuroanatomical correlates of confabulation. J. Clin. Exp. Neuropsychol. 17, 20–28. PubMed
Fischer-Baum S., Miozzo M., Laiacona M., Capitani E. (2016). Perseveration during verbal fluency in traumatic brain injury reflects impairments in working memory. PubMed
Fornito A., Yoon J., Zalesky A., Bullmore E. T., Carter C. S. (2011). General and specific functional connectivity disturbances in first-episode schizophrenia during cognitive control performance. Biol. Psychiatry 70, 64–72. 10.1016/j.biopsych.2011.02.019 PubMed DOI PMC
Fox M. D., Zhang D., Snyder A. Z., Raichle M. E. (2009). The global signal and observed anticorrelated resting state brain networks. J. Neurophysiol. 101, 3270–3283. 10.1152/jn.90777.2008 PubMed DOI PMC
Frässle S., Yao Y., Schöbi D., Aponte E. A., Heinzle J., Stephan K. E. (2018). Generative models for clinical applications in computational psychiatry. Wiley Interdiscip. Rev. Cogn. Sci. 9:e1460. 10.1002/wcs.1460 PubMed DOI
Fridberg D. J., Queller S., Ahn W.-Y., Kim W., Bishara A. J., Busemeyer J. R., et al. . (2010). Cognitive mechanisms underlying risky decision-making in chronic cannabis users. J. Math. Psychol. 54, 28–38. 10.1016/j.jmp.2009.10.002 PubMed DOI PMC
Friston K., Moran R., Seth A. K. (2013). Analysing connectivity with Granger causality and dynamic causal modelling. Curr. Opin. Neurobiol. 23, 172–178. 10.1016/j.conb.2012.11.010 PubMed DOI PMC
Frith C. D. (1995). The cognitive abnormalities underlying the symptomatology and the disability of patients with schizophrenia. Int. Clin. Psychopharmacol. 10, 87–98. PubMed
Frydecka D., Beszłej J. A., Gościmski P., Kiejna A., Misiak B. (2016). Profiling cognitive impairment in treatment-resistant schizophrenia patients. Psychiatry Res. 235, 133–138. 10.1016/j.psychres.2015.11.028 PubMed DOI
Fu C. H., Suckling J., Williams S. C., Andrew C. M., Vythelingum G. N., McGuire PK. (2005). Effects of psychotic state and task demand on prefrontal function in schizophrenia: an fMRI study of overt verbal fluency. Am. J. Psychiatry 162, 485–494. 10.1176/appi.ajp.162.3.485 PubMed DOI
Galaverna F. S., Morra C. A., Bueno A. M. (2012). Attention in patients with chronic schizophrenia: deficit in inhibitory control and positive symptoms. Eur. J. Psychiatry 26, 185–195. 10.4321/S0213-61632012000300005 DOI
Galaverna F., Bueno A. M., Morra C. A., Roca M., Torralva T. (2016). Analysis of errors in verbal fluency tasks in patients with chronic schizophrenia. Eur. J. Psychiatry 30, 305–320.
Geffen G., Moar K. J., O'hanlon A. P., Clark C. R., Geffen L. B. (1990). Performance measures of 16–to 86-year-old males and females on the auditory verbal learning test. Clin. Neuropsychol. 4, 45–63. PubMed
Ghilardi M. F., Moisello C., Silvestri G., Chez C., Krakauer J. W. (2009). Learning of a sequential motor skill comprises explicit and implicit components that consolidate differently. J. Neurophysiol. 101, 2218–2229. 10.1152/jn.01138.2007 PubMed DOI PMC
Gilbert E., Mérette C., Jomphe V., Emond C., Rouleau N., Bouchard R. H., et al. . (2014). Cluster analysis of cognitive deficits may mark heterogeneity in schizophrenia in terms of outcome and response to treatment. Eur. Arch. Psychiatry Clin. Neurosci. 264, 333–334. 10.1007/s00406-013-0463-7 PubMed DOI PMC
Golden C. J., Espe-Pfeifer P., Wachsler-Felder J. (2000). Neuropsychological Interpretation of Objective Psychological Tests (Fort Lauderdale, FL: Kluwer Academic Publishers; Nova Southeastern University; ).
Goldman A. L., Pazewas L., Mattay V. S., Fischl B., Verchiniski B. A., Zoitick B., et al. (2008). Heritability of brain morphology related to schizophrenia: a large-scale automated magnetic resonance imaging segmentation study. Biol. Psychiatry 63, 475–483. 10.1016/j.biopsych.2007.06.006 PubMed DOI
Goldman-Rakic P. S. (1996). Memory: recording experience in cells and circuits: diversity in memory research. Proc. Natl. Acad. Sci. U.S.A. 93, 13435–13437. 10.1073/pnas.93.24.13435 PubMed DOI PMC
Goldstein G., Allen D. N., Seaton B. E. (1998). A comparison of clustering solutions for cognitive heterogeneity in schizophrenia. J. Int. Neuropsychol. Soc. 4, 353–362. PubMed
Goldstein G., Shemansky W. J. (1995). Influences of cognitive heterogeneity in schizophrenia. Schizophr. Res. 18, 56–69. 10.1016/0920-9964(95)00040-2 PubMed DOI
González-Blanch C., Crespo-Facorro B., Álvarez-Jiménez M., Rodríguez-Sánchez J. M., Pelayo-Terán J. M., Pérez-Iglesias R., et al. . (2007). Cognitive dimensions in first-episode schizophrenia spectrum disorders. J. Psychiatr. Res. 41, 968–977. 10.1016/j.jpsychires.2006.08.009 PubMed DOI
Green M. F., Harvey P. D. (2014). Cognition in schizophrenia: past, present, and future. Schizophr. Res. Cogn. 1, e1–e9. 10.1016/j.scog.2014.02.001 PubMed DOI PMC
Gur R. E., Calkins M. E., Gur R. C., Horan W. P., Nuechterlein K. H., Seidman L. J., et al. . (2007). The consortium on the genetics of schizophrenia: neurocognitive endophenotypes. Schizophr. Bull. 33, 49–68. 10.1093/schbul/sbl055 PubMed DOI PMC
Hackert V. H., den Heijer T., Oudkerk M., Koudstaal P. J., Hofman A., Breteler MMB. (2002). Hippocampal head size associated with verbal memory performance in nondemented elderly. Neuroimage 17, 1365–1372. 10.1006/nimg.2002.1248 PubMed DOI
Haenschel C., Bittner R. A., Waltz J., Haertling F., Wibral M., Singer W., et al. . (2009). Cortical oscillatory activity is critical for working memory as revealed by deficits in early-onset schizophrenia. J. Neurosci. 29, 9481–9489. 10.1523/JNEUROSCI.1428-09.2009 PubMed DOI PMC
Hagen K., Ehlis A. C., Haeussinger F. B., Heinzel S., Dresler T., Mueller L. D., et al. . (2014). Activation during the Trail Making Test measured with functional near-infrared spectroscopy in healthy elderly subjects. Neuroimage 85, 583–591. 10.1016/j.neuroimage.2013.09.014 PubMed DOI
Halperin J. M., Wolf L., Greenblatt E. R., Young G. (1991). Subtype analysis of commission errors on the continuous performance test in children. Dev. Neuropsychol. 7, 207–217. 10.1080/87565649109540488 DOI
Harvey P. (1997). Cognitive Function in Patients With Schizophrenia. Report from a roundtable meeting of experts in cognitive dysfunction in schizophrenia, Budapest. PubMed
Hauser M. D. (1999). Perseveration, inhibition and the prefrontal cortex: a new look. Curr. Opin. Neurobiol. 9, 214–222. 10.1016/S0959-4388(99)80030-0 PubMed DOI
Hazlett E. A., Buchsbaum M. S., Jeu L. A., Nenadic I., Fleischman M. B., Shihabuddin L., et al. . (2000). Hypofrontality in unmedicated schizophrenia patients studied with PET during performance of a serial verbal learning task. Schizophr. Res. 43, 33–46. 10.1016/S0920-9964(99)00178-4 PubMed DOI
Heinrichs R. W., Vaz S. M. (2004). Verbal memory errors and symptoms in schizophrenia. Cogn. Behav. Neurol. 17, 98–101. 10.1097/01.wnn.0000116252.78804.73 PubMed DOI
Henry J. D., Crawford J. R. (2004). A meta-analytic review of verbal fluency performance following focal cortical lesions. Neuropsychology 18, 284–295. 10.1037/0894-4105.18.2.2842 PubMed DOI
Henry J. D., Crawford J. (2005). A meta-analytic review of verbal fluency deficits in schizophrenia relative to other neurocognitive deficits. Cogn. Neuropsychiatry 10, 1–33. 10.1080/13546800344000309 PubMed DOI
Hofer A., Weiss E. M., Golaszewski S. M., Siedentopf C. M., Brinkhoff C., Kremser C., et al. . (2003). An FMRI study of episodic encoding and recognition of words in patients with schizophrenia in remission. Am. J. Psychiatry 160, 911–918. 10.1176/appi.ajp.160.5.911 PubMed DOI
Honey G. D., Pomarol-Clotet E., Corlett P. R., Honey R. A., McKenna P. J., Bullmore E. T., et al. . (2005). Functional dysconnectivity in schizophrenia associated with attentional modulation of motor function. Brain 128, 2597–2611. 10.1093/brain/awh632 PubMed DOI PMC
Horacek J., Dockery C., Kopecek M., Spaniel F., Novak T., Tislerova B., et al. . (2006). Regional brain metabolism as the predictor of performance on the Trail Making Test in schizophrenia. A 18FDG PET covariation study. Neuroendocrinol. Lett. 27, 587–594. PubMed
Hurks P. P., Vles J. S. H., Hendriksen J. G. M., Kalff A. C., Feron F. J. M., Kroes M., et al. . (2006). Semantic category fluency versus initial letter fluency over 60 seconds as a measure of automatic and controlled processing in healthy school-aged children. J. Clin. Exp. Neuropsychol. 28, 684–695. 10.1080/13803390590954191 PubMed DOI
Hurks P. P., Schrans D., Meijs C., Wassenberg R., Feron F. J. M., Jolles J. (2010). Developmental changes in semantic verbal fluency: analyses of word productivity as a function of time, clustering, and switching. Child Neuropsychol. 16, 366–387. 10.1080/09297041003671184 PubMed DOI
Hurlemann R., Jessen F., Wagner M., Frommann I., Ruhrmann S., Brockhaus A., et al. . (2008). Interrelated neuropsychological and anatomical evidence of hippocampal pathology in the at-risk mental state. Psychol. Med. 38, 843–851. 10.1017/S0033291708003279 PubMed DOI
Jacobson S. C., Blanchard M., Connolly C. C., Cannon M., Garavan H. (2011). An fMRI investigation of a novel analogue to the Trail-Making Test. Brain Cogn. 77, 60–70. 10.1016/j.bandc.2011.06.001 PubMed DOI
James G. A., Kearney-Ramos T. E., Young J. A., Kilts C. D., Gess J. L., Fausett J. S. (2016). Functional independence in resting-state connectivity facilitates higher-order cognition. Brain Cogn. 105, 78–87. 10.1016/j.bandc.2016.03.008 PubMed DOI PMC
Johnson S. C., Saykin A. J., Flashman L. A., McAllister T. W., Sparling M. B. (2001). Brain activation on fMRI and verbal memory ability: functional neuroanatomic correlates of CVLT performance. J. Int. Neuropsychol. Soc. 7, 55–62. 10.1017/S135561770171106X PubMed DOI
Joyce E. M., Collinson S. L., Crichton P. (1996). Verbal Fluency in Schizophrenia. Psychol. Med. 26, 41–52. 10.1017/S0033291700033705 PubMed DOI
Kaplan E. (1991). WAIS-R as a Neuropsychological Instrument (WAIS-R NI) (Psychological Corporation) (San Antonio, TX: ).
Karilampi U., Helldin L., Hjärthag F., Norlander T., Archer T. (2007). Verbal learning in schizopsychotic outpatients and healthy volunteers as a function of cognitive performance levels. Arch. Clin. Neuropsychol. 22, 161–174. 10.1016/j.acn.2006.12.003 PubMed DOI
Katz K. S., Dubowitz L. M., Henderson S., Jongmans M., Kay G. G., Nolte C. A., et al. . (1996). Effect of cerebral lesions on continuous performance test responses of school age children born prematurely. J. Pediatric Psychol. 21, 841–855. 10.1093/jpepsy/21.6.841 PubMed DOI
Keefe R. S. (2008). Should cognitive impairment be included in the diagnostic criteria for schizophrenia? World Psychiatry 7, 22–28. 10.1002/j.2051-5545.2008.tb00142.x PubMed DOI PMC
Kopp B., Rösser N., Tabeling S., Stürenburg H. J., de Haan B., Karnath H.-O., et al. (2015). Errors on the trail making test are associated with right hemispheric frontal lobe damage in stroke patients. Behav. Neurol. 2015:309235 10.1155/2015/309235 PubMed DOI PMC
Kraepelin E. (1919). Dementia Praecox and Paraphrenia. Chicago, IL: E and S Livingstone.
Kubo M., Shoshi C., Kitawaki T., Takemoto R., Kinugasa K., Yoshida H., et al. . (2008). Increase in prefrontal cortex blood flow during the computer version trail making test. Neuropsychobiology 58, 200–210. 10.1159/000201717 PubMed DOI
Kuchinke L., Meer E. V., Krueger F. (2009). Differences in processing of taxonomic and sequential relations in semantic memory: an fMRI investigation. Brain Cogn. 69, 245–251. 10.1016/j.bandc.2008.07.014 PubMed DOI
Laine M. (1988). Correlates of word fluency performance. Stud. Lang. 12, 43–61.
Laws K. R., Duncan A., Gale T. M. (2010). ‘Normal'semantic–phonemic fluency discrepancy in Alzheimer's disease? A meta-analytic study. Cortex 46, 595–601. 10.1016/j.cortex.2009.04.009 PubMed DOI
Lepage M., Bodnar M., Bowie C. R. (2014). Neurocognition: clinical and functional outcomes in schizophrenia. Can. J. Psychiatry 59, 5–12. 10.1177/070674371405900103 PubMed DOI PMC
Lesh T. A., Westphal A. J., Niendam T. A., Yoon J. H., Minzenberg M. J., Ragland J. D., et al. . (2013). Proactive and reactive cognitive control and dorsolateral prefrontal cortex dysfunction in first episode schizophrenia. Neuroimage Clin. 2, 590–599. 10.1016/j.nicl.2013.04.010 PubMed DOI PMC
Levin H. S., Peters B. H., Kalisky Z., High W. M., Jr., von Laufen A., Eisenberg H., et al. (1986). Effects of oral physostigmine and lecithin on memory and attention in closed head-injured patients. Cent. Nerv. Syst. Trauma 3, 333–342. 10.1089/cns.1986.3.333 PubMed DOI
Lezak M. D., Howieson D. B., Bigler E. D., Tranel D. (2012). Neuropsychological Assessment. New York, NY: Oxford University Press.
Liu Y., Zhang Y., Lv L., Hu F., Wu R., Zhao J., et al. (2017).Decreased resting-state interhemispheric functional connectivity correlated with neurocognitive deficits in drug-naive first-episode adolescent-onset schizophrenia. Int. J. Neuropsychopharmacol. 21, 33–41. 10.1093/ijnp/pyx095 PubMed DOI PMC
Lorente-Rovira E., Berrios G., McKenna P., Moro-Ipola M., Villagran-Moreno J. M. (2011). Confabulaciones (I): Concepto, clasificación y neuropatología. Actas EspPsiquiatr 39, 251–259. PubMed
Lowe M. J., Mock B. J., Sorenson J. A. (1998). Functional connectivity in single and multislice echoplanar imaging using resting-state fluctuations. Neuroimage 7, 119–132. 10.1006/nimg.1997.0315 PubMed DOI
Lynall M. E., Bassett D. S., Kerwin R., McKenna P. J., Kitzbichler M., Muller U., et al. . (2010). Functional connectivity and brain networks in schizophrenia. J. Neurosci. 30, 9477–9487. 10.1523/JNEUROSCI.0333-10.2010 PubMed DOI PMC
Mahone E. M., Koth C. W., Cutting L., Singer H. S., Denckla M. B. (2001). Executive function in fluency and recall measures among children with Tourette syndrome or ADHD. J. Int. Neuropsychol. Soc. 7, 102–111. 10.1017/S1355617701711101 PubMed DOI
Mahurin R. K., Velligan D. I., Hazleton B., Mark Davis J., Eckert S., Miller A. L. (2006). Trail making test errors and executive function in schizophrenia and depression. Clin. Neuropsychol. 20, 271–288. 10.1080/13854040590947498 PubMed DOI
Manglam M. K., Das A. (2013). Verbal learning and memory and psychopathology in schizophrenia. Asian J. Psychiatry 6, 417–420. 10.1016/j.ajp.2013.05.009 PubMed DOI
Marien P., Engelborghs S., Fabbro F., De Deyn P. P. (2001). The lateralized linguistic cerebellum: a review and a new hypothesis. Brain Lang. 79, 580–600. 10.1006/brln.2001.2569 PubMed DOI
McKay A. P., McKenna P. J., Bentham P., Mortimer A. M., Holbery A., Hodges J. R. (1996). Semantic memory is impaired in schizophrenia. Biol. Psychiatry 39, 929–937. 10.1016/0006-3223(95)00250-2 PubMed DOI
Meijer J. H., Schmitz N., Nieman D. H., Becker H. E., van Amelsvoort T. A., Dingemans P. M., et al. . (2011). Semantic fluency deficits and reduced grey matter before transition to psychosis: a voxelwise correlational analysis. Psychiatry Res. Neuroimaging 194, 1–6. 10.1016/j.pscychresns.2011.01.004 PubMed DOI
Menon V. (2011). Large-scale brain networks and psychopathology: a unifying triple network model. Trends Cogn. Sci. 15, 483–506. 10.1016/j.tics.2011.08.003 PubMed DOI
Menon V., Uddin L. Q. (2010). Saliency, switching, attention and control: a network model of insula function. Brain Struct. Funct. 214, 655–667. 10.1007/s00429-010-0262-0 PubMed DOI PMC
Mensebach C., Beblo T., Driessen M., Wingenfeld K., Mertens M., Rullkoetter N., et al. . (2009). Neural correlates of episodic and semantic memory retrieval in borderline personality disorder: an fMRI study. Psychiatry Res. Neuroimaging 171, 94–105. 10.1016/j.pscychresns.2008.02.006 PubMed DOI
Mesholam-Gately R. I., Giuliano A. J., Goff K. P., Faraone S. V., Seidman L. J. (2009). Neurocognition in first-episode schizophrenia: a meta-analytic review. Neuropsychology 23, 315–336. 10.1037/a0014708 PubMed DOI
Minatogawa-Chang T. M., Schaufelberger M. S., Ayres A. M., Duran F. L., Gutt E. K., Murray R. M., et al. . (2009). Cognitive performance is related to cortical grey matter volumes in early stages of schizophrenia: a population-based study of first-episode psychosis. Schizophr. Res. 113, 200–209. 10.1016/j.schres.2009.06.020 PubMed DOI PMC
Mitrushina M., Boone K. B., Razani J., D'Elia L. F. (2005). Handbook of Normative Data for Neuropsychological Assessment. New York, NY: Oxford University Press.
Moll J., Oliveira-Souza R., de Moll F. T., Bramati I. E., Andreiuolo P. A. (2002). The cerebral correlates of set-shifting: an fMRI study of the trail making test. Arq. Neuropsiquiatr. 60, 900–905. 10.1590/S0004-282X2002000600002 PubMed DOI
Moritz S., Lambert M., Andresen B., Böthern A., Naber D., Krausz M. (2001). Subjective cognitive dysfunction in first-episode and chronic schizophrenic patients. Compr. Psychiatry 42, 213–216. 10.1053/comp.2001.23144 PubMed DOI
Moscovitch M., Melo B. (1997). Strategic retrieval and the frontal lobes: evidence from confabulation and amnesia. Neuropsychologia 35, 1017–1034. 10.1016/S0028-3932(97)00028-6 PubMed DOI
Munakata Y., Morton J. B., Stedron J. M. (2003). The role of prefrontal cortex in perseveration: developmental and computational explorations, in Studies in Developmental Psychology. Connectionist Models of Development: Developmental Processes in Real and Artificial Neural Networks, ed Quinlan P. T. (New York, NY: Psychology Press; ), 83–114.
Nahum L., Bouzerda-Wahlen A., Guggisberg A., Ptak R., Schnider A. (2012). Forms of confabulation: dissociations and associations. Neuropsychologia 50, 2524–2534. 10.1016/j.neuropsychologia.2012.06.026 PubMed DOI
Nekovarova T., Yamamotova A., Vales K., Stuchlik A., Fricova J., Rokyta R. (2014). Common mechanisms of pain and depression: are antidepressants also analgesics? Front. Behav. Neurosci. 8:99. 10.3389/fnbeh.2014.00099 PubMed DOI PMC
Neufeld R. W. J. (2007). Composition and uses of formal clinical cognitive science, in Modeling Complex Systems: Nebraska Symposium on Motivation, Vol. 52, eds Shuart B., Spaulding W., Poland J. (Lincoln, NE: University of Nebraska Press; ). PubMed
Neufeld R. W. J. (2015). Mathematical modeling applications in clinical psychology, in Oxford Handbook of Computational and Mathematical Psychology, eds Busemeyer J. R., Townsend J. T., Wang Z., Eidels A. (Oxford: Oxford University Press; ), 341–368.
Nys G. M, van Zandvoort M. J. E., van der Worp H. B., Kappelle L. J., de Han E. H. F. (2006). Neuropsychological and neuroanatomical correlates of perseverative responses in subacute stroke. Brain 129, 2148–2157. 10.1093/brain/awl199 PubMed DOI
Ogg R. J., Zou P., Allen D. N., Hutchins S. B, Dutkiewicz R. M., Mulhern R. K. (2008). Neural correlates of a clinical continuous performance test. Magn. Reson. Imaging 26, 504–512. 10.1016/j.mri.2007.09.004 PubMed DOI
Oosterman J. M., Vogels R. L., van Harten B., Gouw A. A., Poggesi A., Scheltens P., et al. . (2010). Assessing mental flexibility: neuroanatomical and neuropsychological correlates of the Trail Making Test in elderly people. Clin. Neuropsychol. 24, 203–219. 10.1080/13854040903482848 PubMed DOI
Owen A. M., Downes J. J., Sahakian B. J., Polkey C. E., Robbins T. W. (1990). Planning and spatial working memory following frontal lobe lesions in man. Neuropsychologia 28, 1021–1034. 10.1016/0028-3932(90)90137-D PubMed DOI
Pantelis C., Brewer W. (1996). Neurocognitive and neurobehavioural patterns and the syndromes of schizophrenia: role of frontal-subcortical networks, in Schizophrenia: A Neuropsychological Perspective, eds Pantelis C., Nelson H. E., Barnes T. R. E. (West Sussex: John Wiley and Sons Ltd; ), 317-343.
Park H.-J., Friston K. (2013). Structural and functional brain networks: from connections to cognition. Science 342:1238411 10.1126/science.1238411 PubMed DOI
Park S., Gooding D. C. (2014). Working memory impairment as an endophenotypic marker of a schizophrenia diathesis. Schizophr. Res. Cogn. 1, 127–136. 10.1016/j.scog.2014.09.005 PubMed DOI PMC
Pérez-Iglesias R., Tordesillas-Gutiérrez D., McGuire P. K., Barker G. J., Roiz-Santiañez R., Mata I., et al. . (2010). White matter integrity and cognitive impairment in first-episode psychosis. Am. J. Psychiatry 167, 451–458. 10.1176/appi.ajp.2009.09050716 PubMed DOI
Płotek W., Łyskawa W., Kluzik A., Grześkowiak M., Podlewski R., Zaba Z, Drobnik L. (2014). Evaluation of the Trail Making Test and interval timing as measures of cognition in healthy adults: comparisons by age, education, and gender. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res 20, 173–181. 10.12659/MSM.889776 PubMed DOI PMC
Poldrack R. A. (2011). Inferring mental states from neuroimaging data: from reverse inference to large-scale decoding. Neuron 72, 692–697. 10.1016/j.neuron.2011.11.001 PubMed DOI PMC
Pöppel E. (1989). Taxonomy of the subjective: an evolutionary perspective, in Neuropsychology of Visual Perception, ed Brown J. W. (Hillsdale, NJ: Lawrence Erlbaum Associates; ), 219–232.
Power J. D., Cohen A. L., Nelson S. M., Wig G. S., Barnes K. A., Church J. A., et al. . (2011). Functional network organization of the human brain. Neuron 72, 665–678. 10.1016/j.neuron.2011.09.006 PubMed DOI PMC
Preiss M., Bartoš A., Cermáková R., Nondek M., Benešová M., Rodriguez M., et al. (2012). Neuropsychologická baterie Psychiatrického centra Praha. Klinické vyšetrení základních kognitivních funkcí. 3. Vydání. Praha: Psychiatrické centrum Praha.
Ragland J. D., Gur R. C., Valdez J., Turetsky B. I., Elliott M., Kohler C., et al. . (2004). Event-related fMRI of frontotemporal activity during word encoding and recognition in schizophrenia. Am. J. Psychiatry 161, 1004–1015. 10.1176/appi.ajp.161.6.1004 PubMed DOI PMC
Ragland J. D., Moelter S. T., McGrath C., Hill S. K., Gur R. E., Bilker W. B., et al. . (2003). Levels-of-processing effect on word recognition in schizophrenia. Biol. Psychiatry 54, 1154–1161. 10.1016/S0006-3223(03)00235-X PubMed DOI PMC
Ramage A., Bayles K., Helm-Estabrooks N., Cruz R. (1999). Frequency of perseveration in normal subjects. Brain Lang. 66, 329–340. 10.1006/brln.1999.2032 PubMed DOI
Riccio C. A., Reynolds C. R., Lowe P., Moore J. J. (2002). The continuous performance test: a window on the neural substrates for attention?. Arch. Clin. Neuropsychol. 17, 235–272. 10.1093/arclin/17.3.235 PubMed DOI
Rodriguez M., Spaniel F., Konradova L., Sedlakova K., Dvorska K., Prajsova J., et al. . (2015). Comparison of visuospatial and verbal abilities in first psychotic episode of schizophrenia spectrum disorder: impact on global functioning and quality of life. Front. Behav. Neurosci. 9:322. 10.3389/fnbeh.2015.00322 PubMed DOI PMC
Rosvold H. E., Mirsky A. F., Sarason I., Bransome E. D., Jr, Beck L. H. (1956). A continuous performance test of brain damage. J. Consult. Psychol. 20:343 10.1037/h0043220 PubMed DOI
Rouleau I., Imbault H., Laframboise M., Bédard M. A. (2001). Pattern of intrusions in verbal recall: comparison of Alzheimer's disease, Parkinson's disease, and frontal lobe dementia. Brain Cogn. 46, 244–249. 10.1016/S0278-2626(01)80076-2 PubMed DOI
Rueckert L., Grafman J. (1996). Sustained attention deficits in pat ients with right frontal lesions. Neuropsychologia 34, 953–963. 10.1016/0028-3932(96)00016-4 PubMed DOI
Ruffolo L. F., Guilmette T. J., Willis G. W. (2000). FORUM comparison of time and error rates on the trail making test among patients with head injuries, experimental malingerers, patients with suspect effort on testing, and normal controls. Clin. Neuropsychol. 14, 223–230. 10.1076/1385-4046(200005)14:2;1-Z;FT223 PubMed DOI
Salgado-Pineda P., Junqué C., Vendrell P., Baeza I., Bargalló N., Falcón C., et al. . (2004). Decreased cerebral activation during CPT performance: structural and functional deficits in schizophrenic patients. Neuroimage 21, 840–847. 10.1016/j.neuroimage.2003.10.027 PubMed DOI
Sánchez-Cubillo I., Perianez J. A., Adrover-Roig D., Rodriguez-Sanchez J. M., Rios-Lago M., Tirapu J., et al. . (2009). Construct validity of the Trail Making Test: role of task-switching, working memory, inhibition/interference control, and visuomotor abilities. J. Int. Neuropsychol. Soc. 15, 438–450. 10.1017/S1355617709090626 PubMed DOI
Sanfilipo M., Lafargue T., Rusinek H., Arena L., Loneragan C., Lautin A., et al. . (2002). Cognitive performance in schizophrenia: relationship to regional brain volumes and psychiatric symptoms. Psychiatry Res. Neuroimaging 116, 1–23. 10.1016/S0925-4927(02)00046-X PubMed DOI
Savage C. R., Deckersbach T., Heckers S., Wagner A. D., Schacter D. L., Alpert N. M., et al. . (2001). Prefrontal regions supporting spontaneous and directed application of verbal learning strategies: evidence from PET. Brain 124, 219–231. 10.1093/brain/124.1.219 PubMed DOI
Schindler A. G., Caplan L. R., Hier D. B. (1984). Intrusions and perseverations. Brain Lang. 23, 148–158. 10.1016/0093-934X(84)90013-0 PubMed DOI
Schmidt M. (1996). Rey Auditory Verbal Learning Test: A Handbook. Los Angeles, CA: Western Psychological Services.
Schnider A., von Däniken C., Gutbrod K. (1996). The mechanisms of spontaneous and provoked confabulations. Brain 119, 1365–1375. 10.1093/brain/119.4.1365 PubMed DOI
Schouten E. A., Schiemanck S. K., Brand N., Post M. W. (2009). Long-term deficits in episodic memory after ischemic stroke: evaluation and prediction of verbal and visual memory performance based on lesion characteristics. J. Stroke Cerebrovasc. Dis. 18, 128–138. 10.1016/j.jstrokecerebrovasdis.2008.09.017 PubMed DOI
Schuepbach D., Egger S., Herpertz S. C. (2016). Cerebral hemodynamics in schizophrenia during the Trail Making Test: a functional transcranial Doppler sonography study. Eur. Psychiatry 33:S107 10.1016/j.eurpsy.2016.01.094 DOI
Seltzer J., Conrad C., Cassens G. (1997). Neuropsychological profiles in schizophrenia: paranoid versus undifferentiated distinctions. Schizophr. Res. 23, 131–138. 10.1016/S0920-9964(96)00094-1 PubMed DOI
Senden M., Reuter N., van den Heuvel M., Goebel R., Gustavo D., Gilson M. (2018). Task-related effective connectivity reveals that the cortical rich club gates cortex-wide communications. Hum. Brain Mapp. 39, 1246–1262. 10.1002/hbm.23913 PubMed DOI PMC
Sepede G., Spano M. C., Lorusso M., De Berardis D., Salerno R. M., Di Giannantonio M., et al. . (2014). Sustained attention in psychosis: neuroimaging findings. World J. Radiol. 6:261. 10.4329/wjr.v6.i6.261 PubMed DOI PMC
Shao Z., Janse E., Visser K., Meyer A. S. (2014). What do verbal fluency tasks measure? Predictors of verbal fluency performance in older adults. Front. Psychol. 5:772. 10.3389/fpsyg.2014.00772 PubMed DOI PMC
Shaposhnyk V., Villa A. E. P. (2012). The effect of short and long reciprocal projections on evolution of hierarchical neural networks at ICANN 2012, in Artificial Neural Networks and Machine Learning ICANN 2012 (Berlin; Heidelberg: ), 371–378.
Sheffield J. M., Barch D. M. (2016). Cognition and resting state functional connectivity in schizophrenia. Neurosci. Biobehav. Rev. 61, 108–120. 10.1016/j.neubiorev.2015.12.007 PubMed DOI PMC
Silverstein S. M. (2008). Measuring specific, rather than generalized, cognitive deficits and maximizing between-group effect size in studies of cognition and cognitive change. Schizophr. Bull. 34, 645–655. 10.1093/schbul/sbn032 PubMed DOI PMC
Singer W. (2013). Cortical dynamics revisited. Trends Cogn. Sci. 17, 616–626. 10.1016/j.tics.2013.09.006 PubMed DOI
Smith S. M., Miller K. L., Moeller S., Xu J., Auerbach E. J., Woolrich M. W., et al. . (2012). Temporally-independent functional modes of spontaneous brain activity. Proc. Natl. Acad. Sci. 109, 3131–3136. 10.1073/pnas.1121329109 PubMed DOI PMC
Sporns O. (2013). The human connectome: origins and challenges. Neuroimage 80, 53–61. 10.1016/j.neuroimage.2013.03.023 PubMed DOI
Sridharan D., Levitin D. J., Menon V. (2008). A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proc. Natl. Acad. Sci. 105, 12569–12574. 10.1073/pnas.0800005105 PubMed DOI PMC
Stephan K. E., Friston K. J. (2010). Analyzing effective connectivity with fMRI. Wiley Interdiscip. Rev. Cogn. Sci. 1, 446–459. 10.1002/wcs.58 PubMed DOI PMC
Stephan K. E., Mattout J., David O., Friston K. J. (2006). Models of functional neuroimaging data. Curr. Med. Imaging Rev. 2, 15–34. 10.2174/157340506775541659 PubMed DOI PMC
Stevens M. C., Kiehl K. A., Pearlson G. D., Calhoun V. D. (2009). Brain Networks dynamics during error commission. Hum. Brain Mapp. 30, 24–37. 10.1002/hbm.20478 PubMed DOI PMC
Stirling J. D., Hellewell J. S., Quraishi N. (1998). Self-monitoring dysfunction and the schizophrenic symptoms of alien control. Psychol. Med. 28, 675–683. 10.1017/S0033291798006679 PubMed DOI
Strauss E., Sherman E. M., Spreen O. (2006). A Compendium of Neuropsychological Tests: Administration, Norms, and Commentary. New York, NY: Oxford University Press.
Stuss D. T., Bisschop S. M., Alexander M. P., Levine B., Katz D., Izukawa D. (2001). The trail making test: a study in focal lesion patients. Psychol. Assess. 13:230 10.1037/1040-3590.13.2.230 PubMed DOI
Subotnik K. L., Nuechterlein K. H., Green M. F., Horan W. P., Nienow T. M., Ventura J., et al. . (2006). Neurocognitive and social cognitive correlates of formal thought disorder in schizophrenia patients. Schizophr. Res. 85, 84–95. 10.1016/j.schres.2006.03.007 PubMed DOI
Taki Y., Kinomura S., Sato K., Goto R., Wu K., Kawashima R., et al. . (2011). Correlation between gray/white matter volume and cognition in healthy elderly people. Brain Cogn. 75, 170–176. 10.1016/j.bandc.2010.11.008 PubMed DOI
Takizawa R., Kasai K., Kawakubo Y., Marumo K., Kawasaki S., Yamasue H., et al. . (2008). Reduced frontopolar activation during verbal fluency task in schizophrenia: a multi-channel near-infrared spectroscopy study. Schizophr. Res. 99, 250–262. 10.1016/j.schres.2007.10.025 PubMed DOI
Taylor R., Théberge J., Williamson P. C., Densmore M., Neufeld R. W. (2016). ACC neuro-over connectivity is associated with mathematically modeled additional encoding operations of schizophrenia Stroop-task performance. Front. Psychol. 7:1295. 10.3389/fpsyg.2016.01295 PubMed DOI PMC
Thompson J. C., Stopford C. L., Snowden J. S., Neary D. (2005). Qualitative neuropsychological performance characteristics in frontotemporal dementia and Alzheimer's disease. J. Neurol. Neurosurg. Psychiatry 76, 920–927. 10.1136/jnnp.2003.033779 PubMed DOI PMC
Titova O. E., Lindberg E., Elmståhl S, Lind L., Schiöth H. B., Benedict C. (2016). Association between shift work history and performance on the trail making test in middle-aged and elderly humans: the EpiHealth study. Neurobiol. Aging 45, 23–29. 10.1016/j.neurobiolaging.2016.05.007 PubMed DOI
Townsend J. T., Ashby F. G. (1983). The Stochastic Modeling of Elementary Psychological Processes. New York, NY: Cambridge University Press.
Turetsky B. I., Moberg P. J., Mozley L. H., Moelter S. T., Agrin R. N., Gur R. C., et al. (2002). Memory-delineated subtypes of schizophrenia: relationship to clinical, neuroanatomical, and neurophysiological measures. Neuropsychology 16:481 10.1037/0894-4105.16.4.481 PubMed DOI
van Buuren M., Gladwin T. E., Zandbelt B. B., Kahn R. S., Vink M. (2010). Reduced functional coupling in the default-mode network during self-referential processing. Hum. Brain Mapp. 31, 1117–1127. 10.1002/hbm.20920 PubMed DOI PMC
van den Heuvel M. P., Sporns O. (2013). Network hubs in the human brain. Trends Cogn. Sci. 17, 683–696. 10.1016/j.tics.2013.09.012 PubMed DOI
Van Dijk K. R., Hedden T., Venkataraman A., Evans K. C., Lazar S. W., Buckner R. L. (2010). Intrinsic functional connectivity as a tool for human connectomics: theory, properties, and optimization. J. Neurophysiol. 103, 297–321. 10.1152/jn.00783.2009 PubMed DOI PMC
Van Vreeswijk C., Abbott L. F., Ermentrout G. B. (1994). When inhibition not excitation synchronizes neural firing. J. Comput. Neurosci. 1, 313–321. 10.1007/BF00961879 PubMed DOI
Vandevelde A., Leroux E., Delcroix N., Dollfus S. (2017). Fronto-subcortical functional connectivity in patients with schizophrenia and bipolar disorder during a verbal fluency task. World J. Biol. Psychiatry 1–9. 10.1080/15622975.2017.1349339 PubMed DOI
Volz H. P., Gaser C., Häger F., Rzanny R., Pönisch J., Mentzel H.-J., et al. . (1999). Decreased frontal activation in schizophrenics during stimulation with the continuous performance test-a functional magnetic resonance imaging study. Eur. Psychiatry 14, 17–24. 10.1016/S0924-9338(99)80711-1 PubMed DOI
Wagner S., Sebastian A., Lieb K., Tüscher O., Tadić A. (2014). A coordinate-based ALE functional MRI meta-analysis of brain activation during verbal fluency tasks in healthy control subjects. BMC Neurosci. 15:19 10.1186/1471-2202-15-19 PubMed DOI PMC
Wang X., Zhang W., Sun Y., Chen A. (2016). Aberrant intra-salience network dynamic functional connectivity impairs large-scale network interactions in schizophrenia. Neuropsychologia 93, 262–270. 10.1016/j.neuropsychologia.2016.11.003 PubMed DOI
Weiss E. M., Hofer A., Golaszewski S., Siedentopf C., Brinkhoff C., Kremser C., et al. . (2004). Brain activation patterns during a verbal fluency test—a functional MRI study in healthy volunteers and patients with schizophrenia. Schizophr. Res. 70, 287–291. 10.1016/j.schres.2004.01.010 PubMed DOI
Weiss E. M., Ragland J. D., Brensinger C. M., Bilker W. B., Deisenhammer E. A., Delazer M. (2006). Sex differences in clustering and switching in verbal fluency tasks. J. Int. Neuropsychol. Soc. 12, 502–509. 10.1017/S1355617706060656 PubMed DOI
Weiss E. M., Siedentopf C., Hofer A., Deisenhammer E. A., Hoptman M. J., Kremser C., et al. . (2003). Brain activation pattern during a verbal fluency test in healthy male and female volunteers: a functional magnetic resonance imaging study. Neurosci. Lett. 352, 191–194. 10.1016/j.neulet.2003.08.071 PubMed DOI
Whitaker H. (1972).Phonological Processes and Brain Mechanisms Springer-Verlag.
White C. N., Mumford J. A., Poldrack R. A. (2012). Perceptual criteria in the human brain. Th. J. Neurosci. 32, 16716–16724. 10.1523/JNEUROSCI.1744-12.2012 PubMed DOI PMC
Whitfield-Gabrieli S., Thermenos H. W., Milanovic S., Tsuang M. T., Faraone S. V., McCarley R. W., et al. . (2009). Hyperactivity and hyperconnectivity of the default network in schizophrenia and in first-degree relatives of persons with schizophrenia. Proc. Natl. Acad. Sci. 106, 1279–1284. 10.1073/pnas.0809141106 PubMed DOI PMC
Wierenga L. M., van den Heuvel M., van Dijk S., Rijks Y., de Reus M. A., Durston S. (2015). The development of brain network architecture. Hum. Brain Mapp. 37, 717–729. 10.1002/hbm.23062 PubMed DOI PMC
Wolfe N., Linn R., Babikian V. L., Knoefel J. E., Albert M. L. (1990). Frontal systems impairment following multiple lacunar infarcts. Arch. Neurol. 47, 129–132. 10.1001/archneur.1990.00530020025010 PubMed DOI
Wolk D. A., Dickerson B. C. (2011). Fractionating verbal episodic memory in Alzheimer's disease. Neuroimage 54, 1530–1539. 10.1016/j.neuroimage.2010.09.005 PubMed DOI PMC
Woods D. L., Herron T. J., Yund E. W., Hink R. F., Kishiyama M. M., Reed B. (2011). Computerized analysis of error patterns in digit span recall. J. Clin. Exp. Neuropsychol. 33, 721–734. 10.1080/13803395.2010.550602 PubMed DOI
Yang Z., Jutagir D. R., Koyama M. S., Craddock R. C., Yan C.-G., Shehzad Z., et al. . (2015). Intrinsic brain indices of verbal working memory capacity in children and adolescents. Dev. Cogn. Neurosci. 15, 67–82. 10.1016/j.dcn.2015.07.007 PubMed DOI PMC
Yechiam E., Goodnight J., Bates J. E., Busemeyer J. R., Dodge K. A., Pettit G. S., et al. . (2006). A formal cognitive model of the Go/No-Go Discrimination Task: evaluation and implications. Psychol. Assess. 18, 239–249. 10.1037/1040-3590.18.3.239 PubMed DOI PMC
Ystad M., Eichele T., Lundervold A. J., Lundervold A. (2010). Subcortical functional connectivity and verbal episodic memory in healthy elderly—a resting state fMRI study. Neuroimage 52, 379–388. 10.1016/j.neuroimage.2010.03.062 PubMed DOI
Zakzanis K. K., Mraz R., Graham S. J. (2005). An fMRI study of the trail making test. Neuropsychologia 43, 1878–1886. 10.1016/j.neuropsychologia.2005.03.013 PubMed DOI
Zaytseva Y., Chan R. C., Pöppel E., Heinz A. (2015). Luria revisited: cognitive research in schizophrenia, past implications and future challenges. Philos. Ethics Humanit. Med. 10:4 10.1186/s13010-015-0026-9 PubMed DOI PMC