Luria revisited: cognitive research in schizophrenia, past implications and future challenges
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
25886206
PubMed Central
PMC4351688
DOI
10.1186/s13010-015-0026-9
PII: 10.1186/s13010-015-0026-9
Knihovny.cz E-zdroje
- MeSH
- lidé MeSH
- mozek patofyziologie MeSH
- neuropsychologické testy MeSH
- schizofrenie etiologie MeSH
- výzkum * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Contemporary psychiatry is becoming more biologically oriented in the attempt to elicit a biological rationale of mental diseases. Although mental disorders comprise mostly functional abnormalities, there is a substantial overlap between neurology and psychiatry in addressing cognitive disturbances. In schizophrenia, the presence of cognitive impairment prior to the onset of psychosis and early after its manifestation suggests that some neurocognitive abnormalities precede the onset of psychosis and may represent a trait marker. These cognitive alterations may arise from functional disconnectivity, as no significant brain damage has been found. In this review we aim to revise A.R. Luria's systematic approach used in the neuropsychological evaluation of cognitive functions, which was primarily applied in patients with neurological disorders and in the cognitive evaluation in schizophrenia and other related disorders. As proposed by Luria, cognitive processes, associated with higher cortical functions, may represent functional systems that are not localized in narrow, circumscribed areas of the brain, but occur among groups of concertedly working brain structures, each of which makes its own particular contribution to the organization of the functional system. Current developments in neuroscience provide evidence of functional connectivity in the brain. Therefore, Luria's approach may serve as a frame of reference for the analysis and interpretation of cognitive functions in general and their abnormalities in schizophrenia in particular. Having said that, modern technology, as well as experimental evidence, may help us to understand the brain better and lead us towards creating a new classification of cognitive functions. In schizophrenia research, multidisciplinary approaches must be utilized to address specific cognitive alterations. The relationships among the components of cognitive functions derived from the functional connectivity of the brain may provide an insight into cognitive machinery.
Department of Psychology Peking University 5Yiheyuan Road Beijing 100871 China
Moscow Research Institute of Psychiatry Poteshnaya str 3 107076 Moscow Russia
Zobrazit více v PubMed
Karlsgodt KG, Sun D, Cannon TD. Structural and functional abnormalities in schizophrenia. Curr Dir Psychol Sci. 2010;19(4):226–31. PubMed PMC
Keefe RS, Harvey PD. Cognitive impairment in schizophrenia. Handb Exp Pharmacol. 2012;213:11–37. PubMed
Bombin I, Arango C, Buchanan RW. Significance and meaning of neurological signs in schizophrenia: two decades later. Schizophr Bull. 2005;31(4):962–77. PubMed
Chan RSK, Gottesman II. Neurological soft signs as candidate endophenotype for schizophrenia: A shooting star or a Northern Star? Neurosci Behav Rev. 2008;32:957–71. PubMed
Seidman LJ, Giuliano AJ, Meyer EC. North American Prodrome Longitudinal Study (NAPLS) Group, Neuropsychology of the prodrome to psychosis in the NAPLS consortium: relationship to family history and conversion to psychosis. Arch Gen Psychiatry. 2010;67(6):578–88. PubMed PMC
Niendam TA, Bearden CE, Johnson JK. Neurocognitive performance and functional disability in the psychosis prodrome. Schizophr Res. 2006;84:100–11. PubMed
Gold JM, Harvey PD. Cognitive deficits in schizophrenia. Psychiatr Clin North Am. 1993;16(2):295–312. PubMed
Blanchard JJ, Neale JM. The neuropsychological signature of schizophrenia: generalized or differential deficit? Am J Psychiatry. 1994;151(1):40–8. PubMed
Kenny JT, Friedman L, Findling RL, Swales TP, Strauss ME, Jesberger JA, et al. Cognitive impairment in adolescents with schizophrenia. Am J Psychiatr. 1997;154(11):1613–5. PubMed
Heinrichs R, Zakanis K. Neurocognitive deficit in schizophrenia: A quantitative review of the evidence. Neuropsychology. 1998;12(3):426–45. PubMed
Riley EM, McGovern D, Mockler D, Doku VC, OCeallaigh S, Fannon DG, et al. Neuropsychological functioning in first-episode psychosis – evidence of specific deficits. Schizophr Res. 2000;43(1):47–55. PubMed
Green MF, Kern RS, Braff DL, Mintz J. Neurocognitive deficits and functional outcome inschizophrenia: Are we measuring the “right stuff? Schizophr Bull. 2000;26:119–36. PubMed
Green MF, Kern RS, Heaton RK. Longitudinal studies of cognition and functional outcome in schizophrenia: implications for MATRICS. Schizophr Res. 2004;72:41–51. PubMed
Hecker S, Barch DM, Bustillo J, Gaebel W, Gur R, Malaspina D, et al. Structure of the psychotic disorders classification in DSM-5. Schizophr Res. 2013;150(1):11–4. PubMed
Diagnostic and Statistical Manual of Mental of Mental Disorders . Diagnostic and Statistical Manual of Mental Disorders. Arlington, VA: American Psychiatric Publishing; 2013. Fifth Edition (DSM-5) American Psychiatric Association (2013)
Onitsuka T, Shenton ME, Salisbury DF, Dickey CC, Kasai K, Toner SK, et al. Middle and inferior temporal gyrus gray matter volume abnormalities in chronic schizophrenia: an MRI study. Am J Psychiatr. 2004;161(9):1603–11. PubMed PMC
Haijma SV, Van Haren N, Cahn W, Koolschijn PC, Hulshoff Pol HE, Kahn RS. Brain volumes in schizophrenia: a meta-analysis in over 18 000 subjects. Schizophr Bull. 2013;39(5):1129–38. PubMed PMC
Fusar-Poli P, Smieskova R, Kempton MJ, Ho BC, Andreasen NC, Borgwardt S. Progressive brain changes in schizophrenia related to antipsychotic treatment? A meta-analysis of longitudinal MRI studies. Neurosci Biobehav Rev. 2013;37(8):1680–91. PubMed PMC
Wright IC, Rabe-Hesketh S, Woodruff PW, David AS, Murray RM, Bullmore ET. Meta-analysis of regional brain volumes in schizophrenia. Am J Psychiatr. 2000;157(1):16–25. PubMed
Antonova E, Kumari V, Morris R, Halari R, Anilkumar A, Mehrotra R, et al. The relationship of structural alterations to cognitive deficits in schizophrenia: a voxel-based morphometry study. Biol Psychiatry. 2005;58(6):457–67. PubMed
Andreasen NC, O’Leary DS, Cizadlo T, Arndt S, Rezai K, Ponto LL, et al. Schizophrenia and cognitive dysmetria: a positron-emission tomography study of dysfunctional prefrontal-thalamic-cerebellar circuitry. Proc Natl Acad Sci U S A. 1996;93(18):9985–90. PubMed PMC
Stephan KE, Mattout J, David O, Friston KJ. Models of functional neuroimaging data. Curr Med Imaging Rev. 2006;2(1):15–34. PubMed PMC
Fornito A, Yoon J, Zalesky A, Bullmore ET, Carter CS. General and specific functional connectivity disturbances in first-episode schizophrenia during cognitive control performance. Biol Psychiatry. 2011;70(1):64–72. PubMed PMC
Whitfield-Gabrieli S, Thermenos HW, Milanovic S, et al. Hyperactivity and hyperconnectivity of the default network in schizophrenia and in first-degree relatives of persons with schizophrenia. Proc Natl Acad Sci U S A. 2009;106:1279–84. PubMed PMC
Repovš G, Barch DM. Working memory related brain network connectivity in individuals with schizophrenia and their siblings. Front Hum Neurosci. 2012;6:137. PubMed PMC
Pöppel E, Ruhnau E. Psychologie als eine auf Modelle angewiesene Angelegenheit ohne Taxonomie - eine Polemik. Nova Acta Leopoldina NF. 2011;110(377):213–33.
Luria AR. The Working Brain. New York: Basic Books; 1973.
Pöppel E. Time perception. In: Held R, Leibowitz HW, Teuber H-L, editors. Handbook of Sensory Physiology. 8. Perception. Berlin: Springer Verlag; 1978. pp. 713–29.
Pöppel E. A hierarchical model of temporal perception. Trends Cogn Sci. 1997;1(2):56–61. PubMed
Anokhin PK. Essays on the physiology of functional systems. Moscow: Medicine; 1975.
von Holst E, Mittelstaedt H. Das Reafferenzprinzip (Wechselwirkungen zwischen Zentralnervensystem und Peripherie) Naturwissenschaften. 1950;37:464–74.
Tanida K, Pöppel E. A hierarchical model of operational anticipation windows in driving an automobile. Cogn Process. 2006;7:275–87. PubMed
Luria AR. The neuropsychology of memory. WinstonT: Washington, D.C; 1976.
Luria AR. Higher Cortical Functions in Man. New York: Basic Books; 1973.
Teuber HL. Physiological Psychology. Annual Rev Psychol. 1955;6:267–96. PubMed
Avram M, Gutyrchik E, Bao Y, Pöppel E, Reiser M, Blautzik J. Neurofunctional correlates of aesthetic and moral judgments: Equal but not the same. Neurosci Lett. 2013;534:128–32. PubMed
Bao Y, Pöppel E. Anthropological universals and cultural specifics: conceptual and methodological challenges in cultural neuroscience. Neurosci Biobehav Rev. 2012;36:2143–6. PubMed
Zaytseva Y, Gutyrchik E, Bao Y, Pöppel E, Han S, Northoff G, et al. Self processing in the brain: A paradigmatic fMRI case study with a professional singer. Brain Cogn. 2014;87:104–8. PubMed
Neuchterlein KH, Green MF, Kern RS, Baade LE, Barch DM, Cohen JD, et al. The MATRICS Consensus Cognitive Battery, part1: test selection, reliability, and validity. Am J Psychiatry. 2008;165(2):203–13. PubMed
Keefe RS, Goldberg TE, Harvey PD, Gold JM, Poe MP, Coughenour L. The Brief Assessment of Cognition in Schizophrenia: reliability, sensitivity, and comparison with a standard neuropsychological battery. Schizophr Res. 2004;68(2–3):283–97. PubMed
Robbins TW, James M, Owen AM, Sahakian BJ, McInnes L, Rabbitt P. Cambridge Neuropsychological Test Automated Battery (CANTAB): a factor analytic study of a large sample of normal elderly volunteers. Dementia. 1995;5(5):266–81. PubMed
Cole M, Levitin K, Luria AR. The Autobiography of Alexander Luria: a dialogue with the making of mind. New Jersey: Lawrence Erlbaum Associates; 2006.
Christensen AL. Luria’s Neuropsychological Investigation, Manual and Test Material. Fourth edition. N .Y. USA: Munksgaard, Copenhagen, Spectrum Publications Inc; 1975.
Christensen AL, Goldberg E, Bougakov D. Luria’s legacy in the 21st century. New York: Oxford University Press; 2009.
Goldberg E. Contemporary neuropsychology and the legacy of Luria. Hillside-London: Lawrence Erlbaum; 1990.
Goldberg E. The frontal lobes. In: Zillmer E, Spiers M, editors. Principles of Neuropsychology. 2000.
Homskaya ED. Alexander Romanovich Luria: a scientific biography. New York: Kluwer Academic; Plenum; 2001.
Homskaya ED. Neuropsychology: St. Petersburg, 4th edition. 2005.
Korsakova NK, Moskovichyute LI. Clinical neuropsychology. M.: Akademiya; 2003. [in Russian]
Tsvetkova LS, Luria AR. Neuropsychological analysis tasks disruption recovery intellectual activity locally struck brain. Moscow: MPSI; 2010.
Naglieri JA, Das JP. Intelligence Revised. In: Dillon R, editor. Handbook on testing. Westport, Conn: Greenwood Press; 1997.
Das JP, Naglieri JA. The Das-Naglieri Cognitive Assessment System in practice. In: Andrews S, Janzen H, editors. Handbook of Psychoeducational Assessment. San Diego: Academic; 2001.
Luria AR. The making of mind: A personal account of Soviet psychology. Cambridge, M A: Harvard University Press; 1979.
Golden CJ. A standardized version of Luria’s neuropsychological tests: a quantitative and qualitative approach to neuropsychological evaluation. In: Filskov SB, Boll TJ, editors. Handbook of Clinical Neuropsychology. New York: Wiley; 1981.
Luria AR. Restoration of Function After Brain Injury. Oxford, England: Pergamon Press; 1963.
Silverstein ML, McDonald C, Fogg L. Intelligence and neurological functioning in psychiatric disorders. Arch Clin Neuropsychol. 1980;5(3):317–23. PubMed
Milberg WP, Hebben NA, Kaplan E. The Boston process approach to neuropsychological assessment. In: Adams G, editor. Neuropsychological Assessment of Neuropsychiatric Disorders. New York: Oxford University Press; 1986.
Wasserman LI, Dorofeeva SI, Meerson YaA. Methods of neuropsychological diagnosis. SPb: Stroilespechat’; 1997. [in Russian].
Glozman JM. Quantitative and qualitative integration of Lurian procedures. Neuropsychol Rev. 1999;9(1):23–32. PubMed
Filatova TV. PhD thesis. Moscow State University: Department of Pathopsychology and neuropsychology; 2000. Cognitive activity peculiarities under endogenous Depressions with “juvenile asthenic malfunctions” (neuropsychological research)
Akhutina TV. Neuropsychological examination of children 5–9 years old. Moscow: Moscow State University of Psychology and Education Press; 2007.
Korsakova NK, Balashova EY, Roschina IF. Express-method of assessment of cognitive functions in normal aging. Psychological examination. 2009;3:5. PubMed
Poldrack RA. Inferring mental states from neuroimaging data: from reverse inference to large-scale decoding. Neuron. 2011;72(5):692–7. PubMed PMC
Dean RS. Perspectives on the future of neuropsychological assessment. In: Plake BS, Witt JC, editors. Buros-Nebraska Series on Measurement and Testing. New Jersey: Lawrence Erlbaum, Inc; 1985.
Seidman LJ. Schizophrenia and brain dysfunction: An integration of recent neurodiagnostic findings. Psychol Bull. 1983;94:195–238. PubMed
Golden CJ, Moses JA, Jr, Zelazowski R, Graber B, Zatz LM, Horvath TB, et al. Cerebral ventricular size and neuropsychological impairment in young chronic schizophrenics, Measurement by the standardized Luria-Nebraska Neuropsychological Battery. Arch Gen Psychiatry. 1980;37(6):619–23. PubMed
Heaton RK, Baade LE, Johnson KL. Neuropsychological test results associated with psychiatric disorders in adults. Psychol Bull. 1978;85(1):141–62. PubMed
Moses JA. Schizophreniс groups with normal and abnormal cognitive functioning on the Luria-Nebraska Neuropsychological battery. Int J Neurosci. 1983;21(1–2):129–35. PubMed
Puente AE, Heidelberg-Sanders C, Lund NL. Discrimination of schizophrenics with and without nervous system damage using the Luria-Nebraska Neuropsychological battery. Int J Neurosci. 1982;16(1):59–62. PubMed
Mishra BP, Gupta V, Mahajan R, Narang RL. Pattern performance of schizophrenic patients on Luria-Nebraska Neuropsychological Battery. Indian J Psychiatry. 2002;44(1):47–52. PubMed PMC
Taylor MA, Abrams R. Cognitive impairment in schizophrenia. Am J Psychiatry. 1984;141(2):196–201. PubMed
Dolgopolova OA. PhD thesis. Moscow State University: Department of Pathopsychology and neuropsychology; 1990. Lateralization of verbal memory using the model of recognition in norm and pathology.
Tkachenko SV, Bocharov AV. Schizophrenia defect. Diagnostics, pathogenesis, treatment. Petersburg: St. Bechterev V.M. Psycho-nevrological Institute, St; 1991. Neurocognitive evaluation of defect is schizophrenia and affective psychosis; p. 95.
Korsakova NK, Magomedova MV. Method of syndrom analysis of neurocognitive disfunction in schizophrenia. Vesnik of Moscow State University. 2002;4:5–12.
Zaytseva Y, Korsakova NK, Gurovich IY. Neurocognitive deficit changes in relation to the course of schizophrenia and schizophrenia spectrum disorders: 5-year follow-up study. Psychiatr Danub. 2010;22(Suppl 1):149–51. PubMed
Zaytseva Y, Gurovich I, Sarkisyan G, Sarkisyan V. Neurocognitive functioning in drug-naïve patients with first episode of psychosis before and after treatment. Psychiatr Danub. 2011;23(Suppl 1):155–7. PubMed
Fuller R, Jahanshahi M. Concurrent performance of motor tasks and processing capacity in patients with schizophrenia. J Neurol Neurosurg Psychiatry. 1996;6(5):668–71. PubMed PMC
Crider A. Perseveration in schizophrenia. Schizophr Bull. 1997;23(1):63–74. PubMed
Umetsu A, Okuda J, Fujii T, Tsukiura T, Nagasaka T, Yanagava I, et al. Brain activation during the fist-edge-palm test: a functional MRI study. Neuroimage. 2002;17:385–92. PubMed
Rao H, Di H, Chan RCK, Ding Y, Ye B, Gao D. A regulatory role of the prefrontal cortex in the fist-edge-palm task: evidence from functional connectivity analysis. Neuroimage. 2006;41:1345–51. PubMed
Heinrichs DW, Buchanan RW. Significance and meaning of neurological signs in schizophrenia. Am J Psychiatr. 1988;145:11–8. PubMed
Chen EYH, Shapleske J, Luque R, McKenna PJ, Hodges JR, Callloway SP, et al. The Cambridge Neurological Inventory: a clinical instrument for soft neurological signs and the further neurological examination for psychiatric patients. Psychiatry Res. 1995;56:183–202. PubMed
Tsuang MT, Faraone SV. The concept of target features in schizophrenia research. Acta Psychiatrica Scand. 1999;395(Suppl 1):2–11. PubMed
Chan RCK, Xu T, Heinrichs RW, Yu Y, Gong Q. Neurological soft signs in non-psychotic first-degree relatives of patients with schizophrenia: A systematic review and meta-analysis. Neurosci Biobehav Rev. 2010;34:889–96. PubMed
Chan RCK, Xu T, Heinrichs RW, Yu Y, Wang Y. Neurological soft signs in schizophrenia: A meta analysis. Schizophr Bull. 2010;36(6):1089–104. PubMed PMC
Zaytseva Y, Korsakova N, Gurovich IY, Heinz A, Rapp MA. Luria revisited: complex motor phenomena in first episode schizophrenia and schizophrenia spectrum disorders. Psychiatry Res. 2014;220:145–51. PubMed
Niendam TA, Laird AR, Ray KL, Dean YM, Glahn DC, Carter CS. Meta-analytic evidence for a superordinate cognitive control network subserving diverse cognitive functions. Cogn Affect Behav Neurosci. 2012;12(2):241–68. PubMed PMC
Goldman-Rakic PS. Regional and cellular fractionation of working memory. Proceedings of the National Academy of Sciences 93, 13473–13480. PubMed PMC
Gillebert CR, Humphreys GW. Mutual interplay between perceptual organization and attention: a neuropsychological perspective. In: Wagemans J, editor. The Oxford Handbook of Perceptual Organization. 2013.
Carpenter PA, Just MA, Reichle ED. Working memory and executive function: evidencefrom neuroimaging. Cur Opin Neurobiol. 2000;10(2):195–9. PubMed
Fougnie D. The relationship between attention and working memory. In: Johansen NB, editor. New research on short-term memory. New York: Nova; 2009.
Rubia K, Schuri U, von Cramon DY, Pöppel E. Time estimation as a neuronal network property: a lesion study. Neuroreport. 1997;8:1273–6. PubMed
Pöppel E. Taxonomy of the subjective: An evolutionary perspective. In: Brown JW, editor. neuropsychology of visual perception. N. J., USA: Lawrence Erlbaum Associates, Hillsdale; 1989.
Behrens TE, Sporns O. Human connectomics. Cunnent Opin Neurobiol. 2012;22(1):144–53. PubMed PMC
Singer W. Cortical dynamics revisited. Cell. 2013;1242:1–11. PubMed
Sporns O. The human connectome, Origins and challenges. Neuroimage. 2013;80:53–61. PubMed
Goldstein EB. Sensation and Perception. Pacific Grove (USA): Wadsworth; 2002.
Park HJ, Friston K. Structural and functional brain networks: from connections to cognition. Science. 2013;342:1238411. PubMed
Bressler S, Menon V. Large-scale brain netwoks in cognition: emerging methods and principles. Trends Cogn Sci. 2010;14(6):277–90. PubMed
Salvador R, Suckling J, Coleman MR, Pickard JD, Menon D, Bullmore E. Neurophysiological architecture of functional magnetic resonance images of human brain. Cereb Cortex. 2005;15:1332–42. PubMed
Smith SM, Miller KL, Moeller S, Xu L, Auerbach EJ, Woolrich MW, et al. Temporally-independent functional modes of spontaneous brain activity. Proc Natl Acad Sci U S A. 2012;109:3131–6. PubMed PMC
Deco G, Ponce-Alvarez A, Mantini D, Romani GL, Hagmann P, Corbetta M. Resting-state functional connectivity emerges from structurally and dynamically shaped slow linear fluctuations. J Neurosci. 2013;33(27):11239–52. PubMed PMC
van Vreeswijk C, Sompolinsky H. Chaos in neuronal networks with balanced excitatory and inhibitory activity. Science. 1996;274(5293):1724–6. PubMed
Lowe MJ, Mock BJ, Sorenson JA. Functional connectivity in single and multislice echoplanar imaging using resting-state fluctuations. Neuroimage. 1998;7(2):119–32. PubMed
Cordes D, Haughton VM, Arfanakis K, Carew JD, Turski PA, Moritz CH, et al. Frequencies contribution to functional connectivity n the cerebral cortex in “resting-state” data. AJNR Am J Neuroradiol. 2001;22(7):1326–33. PubMed PMC
Damoiseaux JS, Rombouts SA, Barkhof F, Scheltens P, Stam CJ, Smith SM, et al. Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci U S A. 2006;103(37):13848–53. PubMed PMC
Vincent JL, Snyder AZ, Fox MD, Shannon BJ, Andrews JR, Raichle ME, et al. Coherent spontaneous activity identifies a hippocampal-parietal memory network. J Neurophysiol. 2006;96(6):3517–31. PubMed
Mesulam M. Defining neurocognitive networks in the BOLD new world of computed connectivity. Neuron. 2009;62(1):1–3. PubMed
Sridharan D, Levitin DJ, Menon V. A central role pf the right fronto-insular cortex in switching between central-executive and default-mode networks. Proc Natl Acad Sci U S A. 2008;105(34):12569–74. PubMed PMC
Menon V, Uddin LQ. Saliency, switching, attention and control: a network model of insula function. Brain Struct Funct. 2010;214(5–6):655–67. PubMed PMC
van Buuren M, Gladwin TE, Zandbelt BB, Kahn RS, Vink M. Reduced functional coupling in the default-mode network during self-referential processing. Hum Brain Mapp. 2010;31(8):1117–27. PubMed PMC
Nekovarova T, Fajnerova I, Horacek J, Spaniel F. Bridging disparate symptoms of schizophrenia: a triple network theory. Front Behav Neurosci. 2014;30(8):171. PubMed PMC
Power JD, Cohen AL, Nelson SM, Wig GS, Barnes KA, Church JA, et al. Functional network organization of the human brain. Neuron. 2011;72:65–678. PubMed PMC
Dosenbach NU, Fair DA, Cohen AL, Schlaggar BL, Petersen SE. A dual-network architecture of top-down control. Trends Cogn Sci. 2008;12(3):99–105. PubMed PMC
Fox MD, Zhang D, Snyder AZ, Raichle ME. The global signal and observed anticorrelated resting state brain networks. J Neurophysiol. 2009;101(6):3270–83. PubMed PMC
Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A. 2005;102:9673–8. PubMed PMC
Fingelkurts AA, Fingelkurts AA. Timing in cognition and EEG brain dynamics: discreteness versus continuity. Cogn Process. 2006;7(3):135–62. PubMed
Grossberg S. The complementary brain: unifying brain dynamics and modularity. Trends Cogn Sci. 2000;4(6):233–46. PubMed
Fries P, Neuenschwander S, Engel AK, Goebel R, Singer W. Rapid feature selective neuronal synchronization through correlated latency shifting. Nat Neurosci. 2001;4(2):194–200. PubMed
Leopold DA, Logothetis NK. Spatial patterns of spontaneous local field activity in the monkey visual cortex. Rev Neurosci. 2003;14(1–2):195–205. PubMed
Lehmann D, Skrandies W. Reference-free identification of components of checkerboard-evoked multichannel potential fields. Electroencephalogr Clin Neurophysiol. 1980;48(6):609–21. PubMed
Lehmann D. Past, present and future of the topographical mapping. Brain Topogr. 1990;3(1):191–202. PubMed
Lehmann D, Strik WK, Henggeler B, Koenig T, Koukkou M. Brain electric microstates and momentary conscious mind states as building blocks of spontaneous thinking: I Visual imagery and abstract thoughts. Int J Psychophysiol. 1998;29(1):1–11. PubMed
Pöppel E, Bao Y. Temporal windows as bridge from objective time to subjective time. In: Dan Lloyd and Valtteri Arstila, editor. Subjective Time: the Philosophy, Psychology, and Neuroscience of Temporality. Cambridge: MIT Press; 2014. pp. 241–61.
Sechenov IM. Selected Works. Soviet Union: Academic Publishing Press; 1952.
Baars BJ. Spatial brain coherence during the establishment of a conscious event. Conscious Cogn. 1997;6(1):1–2. PubMed
Dehaene S, Naccache L. Towards a cognitive neuroscience of consciousness: basic evidence and a workspace framework. Cognition. 2001;79(1–2):1–37. PubMed
Shulman GL, Astafiev SV, Franke D, Pope DL, Snyder AZ, McAvoy MP, et al. Interaction of stimulus-driven reorienting and expectation in ventral and dorsal frontoparietal and basal ganglia-cortical networks. J Neurosci. 2009;29(14):4392–407. PubMed PMC
Lynall ME, Basset DS, Kerwin R, McKenna PJ, Kitzbichler M, Muller U, et al. Functional connectivity and brain networks in schizophrenia. J Neurosci. 2010;30(28):9477–87. PubMed PMC
Barch DM, Ceaser A. Cognition in schizophrenia: core psychological and neural mechanisms. Trends in Cog Sci. 2012;16(1):27–34. PubMed PMC