• This record comes from PubMed

Common mechanisms of pain and depression: are antidepressants also analgesics?

. 2014 ; 8 () : 99. [epub] 20140325

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection

Document type Journal Article

Neither pain, nor depression exist as independent phenomena per se, they are highly subjective inner states, formed by our brain and built on the bases of our experiences, cognition and emotions. Chronic pain is associated with changes in brain physiology and anatomy. It has been suggested that the neuronal activity underlying subjective perception of chronic pain may be divergent from the activity associated with acute pain. We will discuss the possible common pathophysiological mechanism of chronic pain and depression with respect to the default mode network of the brain, neuroplasticity and the effect of antidepressants on these two pathological conditions. The default mode network of the brain has an important role in the representation of introspective mental activities and therefore can be considered as a nodal point, common for both chronic pain and depression. Neuroplasticity which involves molecular, cellular and synaptic processes modifying connectivity between neurons and neuronal circuits can also be affected by pathological states such as chronic pain or depression. We suppose that pathogenesis of depression and chronic pain shares common negative neuroplastic changes in the central nervous system (CNS). The positive impact of antidepressants would result in a reduction of these pathological cellular/molecular processes and in the amelioration of symptoms, but it may also increase survival times and quality of life of patients with chronic cancer pain.

See more in PubMed

Alexopoulos G. S., Hoptman M. J., Kanellopoulos D., Murphy C. F., Lim K. O., Gunning F. M. (2012). Functional connectivity in the cognitive control network and the default mode network in late-life depression. J. Affect. Disord. 139, 56–65 10.1016/j.jad.2011.12.002 PubMed DOI PMC

Altier N., Stewart J. (1999). The role of dopamine in the nucleus accumbens in analgesia. Life Sci. 65, 2269–2287 10.1016/s0024-3205(99)00298-2 PubMed DOI

Amado-Boccara I., Gougoulis N., Poirier Littré M. F., Galinowski A., Lôo H. (1995). Effects of antidepressants on cognitive functions: a review. Neurosci. Biobehav. Rev. 19, 479–493 10.1016/0149-7634(94)00068-c PubMed DOI

Andreescu C., Tudorascu D. L., Butters M. A., Tamburo E., Patel M., Price J., et al. (2013). Resting state functional connectivity and treatment response in late-life depression. Psychiatry Res. 214, 313–321 10.1016/j.pscychresns.2013.08.007 PubMed DOI PMC

Andrews-Hanna J. R. (2012). The brain’s default network and its adaptive role in internal mentation. Neuroscientist 18, 251–270 10.1177/1073858411403316 PubMed DOI PMC

Apkarian A. V. (2008). Pain perception in relation to emotional learning. Curr. Opin. Neurobiol. 18, 464–468 10.1016/j.conb.2008.09.012 PubMed DOI PMC

Apkarian A. V. (2011). The brain in chronic pain: clinical implications. Pain Manag. 1, 577–586 10.2217/pmt.11.53 PubMed DOI PMC

Apkarian A. V., Baliki M. N., Geha P. Y. (2009). Towards a theory of chronic pain. Prog. Neurobiol. 87, 81–97 10.1016/j.pneurobio.2008.09.018 PubMed DOI PMC

Arnone D., McKie S., Elliott R., Juhasz G., Thomas E. J., Downey D., et al. (2013). State-dependent changes in hippocampal grey matter in depression. Mol. Psychiatry 18, 1265–1272 10.1038/mp.2012.150 PubMed DOI

Asberg M., Träskman L., Thorén P. (1976). 5-HIAA in the cerebrospinal fluid. A biochemical suicide predictor? Arch. Gen. Psychiatry 33, 1193–1197 10.1001/archpsyc.1976.01770100055005 PubMed DOI

Austin M. P., Mitchell P., Goodwin G. M. (2001). Cognitive deficits in depression: possible implications for functional neuropathology. Br. J. Psychiatry 178, 200–206 10.1192/bjp.178.3.200 PubMed DOI

Badr H., Shen M. J. (2014). Pain catastrophizing, pain intensity and dyadic adjustment influence patient and partner depression in metastatic breast cancer. Clin. J. Pain [Epub ahead of print]. 10.1097/ajp.0000000000000058 PubMed DOI PMC

Bai Y. M., Chiou W. F., Su T. P., Li C. T., Chen M. H. (2014). Pro-inflammatory cytokine associated with somatic and pain symptoms in depression. J. Affect. Disord. 155, 28–34 10.1016/j.jad.2013.10.019 PubMed DOI

Baliki M. N., Geha P. Y., Apkarian A. V., Chialvo D. R. (2008). Beyond feeling: chronic pain hurts the brain, disrupting the default-mode network dynamics. J. Neurosci. 28, 1398–1403 10.1523/jneurosci.4123-07.2008 PubMed DOI PMC

Bandschapp O., Filitz J., Urwyler A., Koppert W., Ruppen W. (2011). Tropisetron blocks analgesic action of acetaminophen: a human pain model study. Pain 152, 1304–1310 10.1016/j.pain.2011.02.003 PubMed DOI

Barbon A., Caracciolo L., Orlandi C., Musazzi L., Mallei A., La Via L., et al. (2011). Chronic antidepressant treatments induce a time-dependent up-regulation of AMPA receptor subunit protein levels. Neurochem. Int. 59, 896–905 10.1016/j.neuint.2011.07.013 PubMed DOI

Baudino B., D’agata F., Caroppo P., Castellano G., Cauda S., Manfredi M., et al. (2012). The chemotherapy long-term effect on cognitive functions and brain metabolism in lymphoma patients. Q. J. Nucl. Med. Mol. Imaging 56, 559–568 PubMed

Berman R. M., Cappiello A., Anand A., Oren D. A., Heninger G. R., Charney D. S., et al. (2000). Antidepressant effects of ketamine in depressed patients. Biol. Psychiatry 47, 351–354 10.1016/s0006-3223(99)00230-9 PubMed DOI

Berton O., McClung C. A., Dileone R. J., Krishnan V., Renthal W., Russo S. J., et al. (2006). Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress. Science 311, 864–868 10.1126/science.1120972 PubMed DOI

Bielecka A. M., Obuchowicz E. (2013). Antidepressant drugs as a complementary therapeutic strategy in cancer. Exp. Biol. Med. (Maywood) 238, 849–858 10.1177/1535370213493721 PubMed DOI

Blackburn-Munro G., Blackburn-Munro R. (2003). Pain in the brain: are hormones to blame? Trends Endocrinol. Metab. 14, 20–27 10.1016/s1043-2760(02)00004-8 PubMed DOI

Blackburn-Munro G., Blackburn-Munro R. E. (2001). Chronic pain, chronic stress and depression: coincidence or consequence? J. Neuroendocrinol. 13, 1009–1023 10.1046/j.0007-1331.2001.00727.x PubMed DOI

Blaudszun G., Lysakowski C., Elia N., Tramèr M. R. (2012). Effect of perioperative systemic α2 agonists on postoperative morphine consumption and pain intensity: systematic review and meta-analysis of randomized controlled trials. Anesthesiology 116, 1312–1322 10.1097/ALN.0b013e31825681cb PubMed DOI

Bodnoff S. R., Humphreys A. G., Lehman J. C., Diamond D. M., Rose G. M., Meaney M. J. (1995). Enduring effects of chronic corticosterone treatment on spatial learning, synaptic plasticity and hippocampal neuropathology in young and mid-aged rats. J. Neurosci. 15, 61–69 PubMed PMC

Bohren Y., Tessier L. H., Megat S., Petitjean H., Hugel S., Daniel D., et al. (2013). Antidepressants suppress neuropathic pain by a peripheral β2-adrenoceptor mediated anti-TNFα mechanism. Neurobiol. Dis. 60, 39–50 10.1016/j.nbd.2013.08.012 PubMed DOI

Bondy B., Baghai T. C., Minov C., Schüle C., Schwarz M. J., Zwanzger P., et al. (2003). Substance P serum levels are increased in major depression: preliminary results. Biol. Psychiatry 53, 538–542 10.1016/s0006-3223(02)01544-5 PubMed DOI

Booij L., Van der Does A. J. W., Riedel W. J. (2003). Monoamine depletion in psychiatric and healthy populations: review. Mol. Psychiatry 8, 951–973 10.1038/sj.mp.4001423 PubMed DOI

Booij L., Van der Does A. J., Haffmans P. M., Riedel W. J., Fekkes D., Blom M. J. (2005). The effects of high-dose and low-dose tryptophan depletion on mood and cognitive functions of remitted depressed patients. J. Psychopharmacol. 19, 267–275 10.1177/0269881105051538 PubMed DOI

Breitbart W., Rosenfeld B., Tobias K., Pessin H., Ku G. Y., Yuan J., et al. (2014). Depression, cytokines, and pancreatic cancer. Psychooncology 23, 339–345 10.1002/pon.3422 PubMed DOI PMC

Browne C. A., Lucki I. (2013). Antidepressant effects of ketamine: mechanisms underlying fast-acting novel antidepressants. Front. Pharmacol. 4:161 10.3389/fphar.2013.00161 PubMed DOI PMC

Campbell L. C., Clauw D. J., Keefe F. J. (2003). Persistent pain and depression: a biopsychosocial perspective. Biol. Psychiatry 54, 399–409 10.1016/s0006-3223(03)00545-6 PubMed DOI

Carballedo A., Scheuerecker J., Meisenzahl E., Schoepf V., Bokde A., Möller H. J., et al. (2011). Functional connectivity of emotional processing in depression. J. Affect. Disord. 134, 272–279 10.1016/j.jad.2011.06.021 PubMed DOI

Castaneda A. E., Tuulio-Henriksson A., Marttunen M., Suvisaari J., Lönnqvist J. (2008). A review on cognitive impairments in depressive and anxiety disorders with a focus on young adults. J. Affect. Disord. 106, 1–27 10.1016/j.jad.2007.06.006 PubMed DOI

Cauda F., Torta D. M. E., Sacco K., Geda E., D’Agata F., Costa T., et al. (2012). Shared “core” areas between the pain and other task- related networks. PLoS One 7:e41929 10.1371/journal.pone.0041929 PubMed DOI PMC

Chapman C. R., Tuckett R. P., Song C. W. (2008). Pain and stress in a systems perspective: reciprocal neural, endocrine and immune interactions. J. Pain 9, 122–145 10.1016/j.jpain.2007.09.006 PubMed DOI PMC

Chatzittofis A., Nordström P., Hellström C., Arver S., Åsberg M., Jokinen J. (2013). CSF 5-HIAA, cortisol and DHEAS levels in suicide attempters. Eur. Neuropsychopharmacol. 23, 1280–1287 10.1016/j.euroneuro.2013.02.002 PubMed DOI

Chou K. L. (2007). Reciprocal relationship between pain and depression in older adults: evidence from the English longitudinal study of ageing. J. Affect. Disord. 102, 115–123 10.1016/j.jad.2006.12.013 PubMed DOI

Connor T. J., Leonard B. E. (1998). Depression, stress and immunological activation: the role of cytokines in depressive disorders. Life Sci. 62, 583–606 10.1016/s0024-3205(97)00990-9 PubMed DOI

Delgado P. L., Moreno F. A. (2000). Role of norepinephrine in depression. J. Clin. Psychiatry 61(Suppl. 1), 5–12 PubMed

Dowben J. S., Grant J. S., Keltner N. L. (2013). Ketamine as an alternative treatment for treatment-resistant depression. Perspect. Psychiatr. Care 49, 2–4 10.1111/ppc.12006 PubMed DOI

Dowlati Y., Herrmann N., Swardfager W., Liu H., Sham L., Reim E. K., et al. (2010). A meta-analysis of cytokines in major depression. Biol. Psychiatry 67, 446–457 10.1016/j.biopsych.2009.09.033 PubMed DOI

Fang C. K., Chen H. W., Chiang I. T., Chen C. C., Liao J. F., Su T. P., et al. (2012). Mirtazapine inhibits tumor growth via immune response and serotonergic system. PLoS One 7:e38886 10.1371/journal.pone.0038886 PubMed DOI PMC

Farmer M. A., Baliki M. N., Apkarian A. V. (2012). A dynamic network perspective of chronic pain. Neurosci. Lett. 520, 197–203 10.1016/j.neulet.2012.05.001 PubMed DOI PMC

Farooqui M., Li Y., Rogers T., Poonawala T., Griffin R. J., Song C. W., et al. (2007). COX-2 inhibitor celecoxib prevents chronic morphine-induced promotion of angiogenesis, tumour growth, metastasis and mortality, without compromising analgesia. Br. J. Cancer 97, 1523–1531 10.1038/sj.bjc.6604057 PubMed DOI PMC

Fields H. L., Heinricher M. M., Mason P. (1991). Neurotransmitters in nociceptive modulatory circuits. Annu. Rev. Neurosci. 14, 219–245 10.1146/annurev.ne.14.030191.001251 PubMed DOI

Finsterwald C., Alberini C. M. (2013). Stress and glucocorticoid receptor-dependent mechanisms in long-term memory: from adaptive responses to psychopathologies. Neurobiol. Learn. Mem. [Epub ahead of print]. 10.1016/j.nlm.2013.09.017 PubMed DOI PMC

Fox A., Medhurst S., Courade J. P., Glatt M., Dawson J., Urban L., et al. (2004). Anti-hyperalgesic activity of the cox-2 inhibitor lumiracoxib in a model of bone cancer pain in the rat. Pain 107, 33–40 10.1016/j.pain.2003.09.003 PubMed DOI

Fox M. D., Snyder A. Z., Vincent J. L., Corbetta M., Van Essen D. C., Raichle M. E. (2005). The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl. Acad. Sci. U S A 102, 9673–9678 10.1073/pnas.0504136102 PubMed DOI PMC

Franklin K. B. J. (1998). Analgesia and abuse potential: an accidental association or a common substrate? Pharmacol. Biochem. Behav. 59, 993–1002 10.1016/s0091-3057(97)00535-2 PubMed DOI

Frodl T., Schaub A., Banac S., Charypar M., Jäger M., Kümmler P., et al. (2006). Reduced hippocampal volume correlates with executive dysfunctioning in major depression. J. Psychiatry Neurosci. 31, 316–323 PubMed PMC

Gálvez V., O’Keefe E., Cotiga L., Leyden J., Harper S., Glue P., et al. (2014). Long-lasting effects of a single subcutaneous dose of ketamine for treating melancholic depression: a case report. Biol. Psychiatry [Epub ahead of print]. 10.1016/j.biopsych.2013.12.010 PubMed DOI

Geng S. J., Liao F. F., Dang W. H., Ding X., Liu X. D., Cai J., et al. (2010). Contribution of the spinal cord BDNF to the development of neuropathic pain by activation of the NR2B-containing NMDA receptors in rats with spinal nerve ligation. Exp. Neurol. 222, 256–266 10.1016/j.expneurol.2010.01.003 PubMed DOI

Geraerts E., Dritschel B., Kreplin U., Miyagawa L., Waddington J. (2012). Reduced specificity of negative autobiographical memories in repressive coping. J. Behav. Ther. Exp. Psychiatry 43(Suppl. 1), S32–S36 10.1016/j.jbtep.2011.05.007 PubMed DOI

Gorenstein C., de Carvalho S. C., Artes R., Moreno R. A., Marcourakis T. (2006). Cognitive performance in depressed patients after chronic use of antidepressants. Psychopharmacology (Berl) 185, 84–92 10.1007/s00213-005-0274-2 PubMed DOI

Greicius M. D., Flores B. H., Menon V., Glover G. H., Solvason H. B., Kenna H., et al. (2007). Resting-state functional connectivity in major depression: abnormally increased contributions from subgenual cingulate cortex and thalamus. Biol. Psychiatry 62, 429–437 10.1016/j.biopsych.2006.09.020 PubMed DOI PMC

Grimm S., Ernst J., Boesiger P., Schuepbach D., Boeker H., Northoff G. (2011). Reduced negative BOLD responses in the default-mode network and increased self-focus in depression. World J. Biol. Psychiatry 12, 627–637 10.3109/15622975.2010.545145 PubMed DOI

Grimm S., Ernst J., Boesiger P., Schuepbach D., Hell D., Boeker H., et al. (2009). Increased self-focus in major depressive disorder is related to neural abnormalities in subcortical-cortical midline structures. Hum. Brain Mapp. 30, 2617–2627 10.1002/hbm.20693 PubMed DOI PMC

Grosu I., Lavand’homme P. (2010). Use of dexmedetomidine for pain control. F1000 Med. Rep. 2:90 10.3410/m2-90 PubMed DOI PMC

Guo W., Liu F., Zhang J., Zhang Z., Yu L., Liu J., et al. (2013). Dissociation of regional activity in the default mode network in first-episode, drug-naive major depressive disorder at rest. J. Affect. Disord. 151, 1097–1101 10.1016/j.jad.2013.09.003 PubMed DOI

Gupta K., Kshirsagar S., Chang L., Schwartz R., Law P. Y., Yee D., et al. (2002). Morphine stimulates angiogenesis by activating proangiogenic and survival-promoting signaling and promotes breast tumor growth. Cancer Res. 62, 4491–4498 PubMed

Hashmi J. A., Baliki M. N., Huang L., Baria A. T., Torbey S., Hermann K. M., et al. (2013). Shape shifting pain: chronification of back pain shifts brain representation from nociceptive to emotional circuits. Brain 136, 2751–2768 10.1093/brain/awt211 PubMed DOI PMC

Hayley S., Litteljohn D. (2013). Neuroplasticity and the next wave of antidepressant strategies. Front. Cell. Neurosci. 7:218 10.3389/fncel.2013.00218 PubMed DOI PMC

Holderbach R., Clark K., Moreau J. L., Bischofberger J., Normann C. (2007). Enhanced long-term synaptic depression in an animal model of depression. Biol. Psychiatry 62, 92–100 10.1016/j.biopsych.2006.07.007 PubMed DOI

Hölscher C. (1999). Stress impairs performance in spatial water maze learning tasks. Behav. Brain Res. 100, 225–235 10.1016/s0166-4328(98)00134-x PubMed DOI

Höschl C., Hajek T. (2001). Hippocampal damage mediated by corticosteroids –a neuropsychiatric research challenge. Eur. Arch. Psychiatry Clin. Neurosci. 251(Suppl. 2), S81–S88 10.1007/bf03035134 PubMed DOI

Howren M. B., Lamkin D. M., Suls J. (2009). Associations of depression with C-reactive protein, IL-1 and IL-6: a meta-analysis. Psychosom. Med. 71, 171–186 10.1097/psy.0b013e3181907c1b PubMed DOI

Iannetti G. D., Mouraux A. (2010). From the neuromatrix to the pain matrix (and back). Exp. Brain Res. 205, 1–12 10.1007/s00221-010-2340-1 PubMed DOI

Jahchan N. S., Dudley J. T., Mazur P. K., Flores N., Yang D., Palmerton A., et al. (2013). A drug repositioning approach identifies tricyclic antidepressants as inhibitors of small cell lung cancer and other neuroendocrine tumors. Cancer Discov. 3, 1364–1377 10.1158/2159-8290.cd-13-0183 PubMed DOI PMC

Jasmin L., Tien D., Weishenker D., Palmiter R. D., Green P. G., Janni G., et al. (2002). The NK1 receptor mediates both the hyperalgesia and resistance to morphine in mice lacking noradrenaline. Proc. Natl. Acad. Sci. U S A 99, 1029–1034 10.1073/pnas.012598599 PubMed DOI PMC

Jeanjean A. P., Moussaoui S. M., Maloteaux J. M., Laduron P. M. (1995). Interleukin-1 beta induces long-term increase of axonally transported opiate receptors and substance P. Neuroscience 68, 151–157 10.1016/0306-4522(95)00106-s PubMed DOI

Jokinen J., Nordström A-L., Nordström P. (2009). CSF 5-HIAA and DST non-suppression–orthogonal biologic risk factors for suicide in male mood disorder inpatients. Psychiatry Res. 165, 96–102 10.1016/j.psychres.2007.10.007 PubMed DOI

Kamping S., Bomba I. C., Kanske P., Diesch E., Flor H. (2013). Deficient modulation of pain by a positive emotional context in fibromyalgia patients. Pain 154, 1846–1855 10.1016/j.pain.2013.06.003 PubMed DOI

Kawasaki Y., Kumamoto E., Furue H., Yoshimura M. (2003). Alpha 2 adrenoceptor-mediated presynaptic inhibition of primary afferent glutamatergic transmission in rat substantia gelatinosa neurons. Anesthesiology 98, 682–689 10.1097/00000542-200303000-00016 PubMed DOI

Klauenberg S., Maier C., Assion H.-J., Hoffmann A., Krumova E. K., Magerl W., et al. (2008). Depression and changed pain perception: hints for a central disinhibition mechanism. Pain 140, 332–343 10.1016/j.pain.2008.09.003 PubMed DOI

Klossika I., Flor H., Kamping S., Bleichhardt G., Trautmann N., Treede R. D., et al. (2006). Emotional modulation of pain: a clinical perspective. Pain 124, 264–268 10.1016/j.pain.2006.08.007 PubMed DOI

Knapp R. J., Goldenberg R., Shuck C., Cecil A., Watkins J., Miller C., et al. (2002). Antidepressant activity of memory-enhancing drugs in the reduction of submissive behavior model. Eur. J. Pharmacol. 440, 27–35 10.1016/s0014-2999(02)01338-9 PubMed DOI

Kole M. H., Swan L., Fuchs E. (2002). The antidepressant tianeptine persistently modulates glutamate receptor currents of the hippocampal CA3 commissural associational synapse in chronically stressed rats. Eur. J. Neurosci. 16, 807–816 10.1046/j.1460-9568.2002.02136.x PubMed DOI

Křikava K., Dostal M., Balcar K., Yamamotova A., Rokyta R. (2007). Clinical stress, emotions and lymphocyte subsets in peripheral blood. Cesk. Psychol. 51, 12–21

Kroenke K., Theobald D., Wu J., Loza J. K., Carpenter J. S., Tu W. (2010). The association of depression and pain with health-related quality of life, disability and health care use in cancer patients. J. Pain Symptom Manage. 40, 327–341 10.1016/j.jpainsymman.2009.12.023 PubMed DOI PMC

Kubera M., Grygier B., Wrona D., Rogóż Z., Roman A., Basta-Kaim A., et al. (2011). Stimulatory effect of antidepressant drug pretreatment on progression of B16F10 melanoma in high-active male and female C57BL/6J mice. J. Neuroimmunol. 240–241, 34–44 10.1016/j.jneuroim.2011.09.006 PubMed DOI

Latremoliere A., Woolf C. J. (2009). Central sensitization: a generator of pain hypersensitivity by central neural plasticity. J. Pain 10, 895–926 10.1016/j.jpain.2009.06.012 PubMed DOI PMC

Lee R. S. C., Hermens D. F., Porter M. A., Redoblado-Hodge M. A. (2012). A meta-analysis of cognitive deficits in first-episode major depressive disorder. J. Affect. Disord. 140, 113–124 10.1016/j.jad.2011.10.023 PubMed DOI

Lemogne C., Delaveau P., Freton M., Guionnet S., Fossati P. (2012). Medial prefrontal cortex and the self in major depression. J. Affect. Disord. 136, e1–e11 10.1016/j.jad.2010.11.034 PubMed DOI

Li B., Liu L., Friston K. J., Shen H., Wang L., Zeng L., et al. (2013). A treatment-resistant default mode subnetwork in major depression. Biol. Psychiatry 74, 48–54 10.1016/j.biopsych.2012.11.007 PubMed DOI

Li N., Lee B., Liu R. J., Banasr M., Dwyer J. M., Iwata M., et al. (2010). mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science 329, 959–964 10.1126/science.1190287 PubMed DOI PMC

Loggia M. L., Kim J., Gollub R. L., Vangel M. G., Kirsch I., Kong J., et al. (2013). Default mode network connectivity encodes clinical pain: an arterial spin labeling study. Pain 154, 24–33 10.1016/j.pain.2012.07.029 PubMed DOI PMC

Lussier D., Huskey A. G., Portenoy R. K. (2004). Adjuvant analgesics in cancer pain management. Oncologist 9, 571–591 10.1634/theoncologist.9-5-571 PubMed DOI

Maes M., Bosmans E., De Jongh R., Kenis G., Vandoolaeghe E., Neels H. (1997). Increased serum IL-6 and IL-1 receptor antagonist concentrations in major depression and treatment resistant depression. Cytokines 9, 853–858 10.1006/cyto.1997.0238 PubMed DOI

Mansour A. R., Farmer M. A., Baliki M. N., Apkarian A. V. (2013). Chronic pain: the role of learning and brain plasticity. Restor. Neurol. Neurosci. [Epub ahead of print]. 10.3233/RNN-139003 PubMed DOI PMC

Marchetti I., Koster E. H. W., Sonuga-Barke E. J., De Raedt R. (2012). The default mode network and recurrent depression: a neurobiological model of cognitive risk factors. Neuropsychol. Rev. 22, 229–251 10.1007/s11065-012-9199-9 PubMed DOI

Marsden W. N. (2013). Synaptic plasticity in depression: molecular, cellular and functional correlates. Prog. Neuropsychopharmacol. Biol. Psychiatry 43, 168–184 10.1016/j.pnpbp.2012.12.012 PubMed DOI

Martin K. P., Wellman C. L. (2011). NMDA receptor blockade alters stress-induced dendritic remodeling in medial prefrontal cortex. Cereb. Cortex 21, 2366–2373 10.1093/cercor/bhr021 PubMed DOI PMC

Martínez-Turrillas R., Del Río J., Frechilla D. (2007). Neuronal proteins involved in synaptic targeting of AMPA receptors in rat hippocampus by antidepressant drugs. Biochem. Biophys. Res. Commun. 353, 750–755 10.1016/j.bbrc.2006.12.078 PubMed DOI

Melemedjian O. K., Tillu D. V., Asiedu M. N., Mandell E. K., Moy J. K., Blute V. M., et al. (2013). BDNF regulates atypical PKC at spinal synapses to initiate and maintain a centralized chronic pain state. Mol. Pain 9:12 10.1186/1744-8069-9-12 PubMed DOI PMC

Melzack R. (1999). From the gate to the neuromatrix. Pain 82Suppl. 6, S121–S126 10.1016/s0304-3959(99)00145-1 PubMed DOI

Melzack R. (2001). Pain and the neuromatrix in the brain. J. Dent. Educ. 65, 1378–1382 PubMed

Michel T. M., Frangou S., Camara S., Thiemeyer D., Jecel J., Tatschner T., et al. (2008). Altered glial cell line-derived neurotrophic factor (GDNF) concentrations in the brain of patients with depressive disorder: a comparative post-mortem study. Eur. Psychiatry 23, 413–420 10.1016/j.eurpsy.2008.06.001 PubMed DOI

Monleón S., Vinader-Caerols C., Arenas M. C., Parra A. (2008). Antidepressant drugs and memory: insights from animal studies. Eur. Neuropsychopharmacol. 18, 235–248 10.1016/j.euroneuro.2007.07.001 PubMed DOI

Müller N. (2013). The role of anti-inflammatory treatment in psychiatric disorders. Psychiatr. Danub. 25, 292–298 PubMed

Müller N., Schwarz M. J. (2007). The immune-mediated alteration of serotonin and glutamate: towards an integrated view of depression. Mol. Psychiatry 12, 988–1000 10.1038/sj.mp.4002006 PubMed DOI

Müller N., Schwarz M. J., Dehning S., Douhe A., Cerovecki A., Goldstein-Müller B., et al. (2006). The cyclooxygenase-2 inhibitor celecoxib has therapeutic effects in major depression: results of a double-blind, randomized, placebo controlled, add-on pilot study to reboxetine. Mol. Psychiatry 11, 680–684 10.1038/sj.mp.4001805 PubMed DOI

Murrough J. W., Iacoviello B., Neumeister A., Charney D. S., Iosifescu D. V. (2011). Cognitive dysfunction in depression: neurocircuitry and new therapeutic strategies. Neurobiol. Learn. Mem. 96, 553–563 10.1016/j.nlm.2011.06.006 PubMed DOI

Murrough J. W., Iosifescu D. V., Chang L. C., Al Jurdi R. K., Green C. E., Perez A. M., et al. (2013). Antidepressant efficacy of ketamine in treatment-resistant major depression: a two-site randomized controlled trial. Am. J. Psychiatry 170, 1134–1142 10.1176/appi.ajp.2013.13030392 PubMed DOI PMC

Na K. S., Lee K. J., Lee J. S., Cho Y. S., Jung H. Y. (2014). Efficacy of adjunctive celecoxib treatment for patients with major depressive disorder: a meta-analysis. Prog. Neuropsychopharmacol. Biol. Psychiatry 48, 79–85 10.1016/j.pnpbp.2013.09.006 PubMed DOI

Nagata K., Imai T., Yamashita T., Tsuda M., Tozaki-Saitoh H., Inoue K. (2009). Antidepressants inhibit P2X4 receptor function: a possible involvement in neuropathic pain relief. Mol. Pain 5:20 10.1186/1744-8069-5-20 PubMed DOI PMC

Napadow V., LaCount L., Park K., As-Sanie S., Clauw D. J., Harris R. E. (2010). Intrinsic brain connectivity in fibromyalgia is associated with chronic pain intensity. Arthritis Rheum. 62, 2545–2555 10.1002/art.27497 PubMed DOI PMC

Neeb L., Hellen P., Boehnke C., Hoffmann J., Schuh-Hofer S., Dirnagl U., et al. (2011). IL-1β stimulates COX-2 dependent PGE2 synthesis and CGRP release in rat trigeminal ganglia cells. PLoS One 6:e17360 10.1371/journal.pone.0017360 PubMed DOI PMC

Nery F. G., Monkul E. S., Hatch J. P., Fonseca M., Zunta-Soares G. B., Frey B. N., et al. (2008). Celecoxib as an adjunct in the treatment of depressive or mixed episodes of bipolar disorder: a double-blind, randomized, placebo-controlled study. Hum. Psychopharmacol. 23, 87–94 10.1002/hup.912 PubMed DOI

Nestler E. J., Barrot M., DiLeone R. J., Eisch A. J., Gold S. J., Monteggia L. M. (2002). Neurobiology of depression. Neuron 34, 13–25 10.1016/S0896-6273(02)00653-0 PubMed DOI

Neveu P. J., Castanon N. (1999). “Is there evidence for an effect of antidepressant drugs on immune function,” in Cytokines, Stress and Depression, eds Dantzer R., Wollman E. E., Yirmiya R. (New York: Plenum Publishers, Kluwer Academic; ), 267–228

Nissen C., Holz J., Blechert J., Feige B., Riemann D., Voderholzer U., et al. (2010). Learning as a model for neural plasticity in major depression. Biol. Psychiatry 68, 544–552 10.1016/j.biopsych.2010.05.026 PubMed DOI

Nolen-Hoeksema S. (2000). The role of rumination in depressive disorders and mixed anxiety/depressive symptoms. J. Abnorm. Psychol. 109, 504–511 10.1037//0021-843x.109.3.504 PubMed DOI

Obata K., Noguchi K. (2006). BDNF in sensory neurons and chronic pain. Neurosci. Res. 55, 1–10 10.1016/j.neures.2006.01.005 PubMed DOI

Ozaktay A. C., Kallakuri S., Takebayashi T., Cavanaugh J. M., Asik I., DeLeo J. A., et al. (2006). Effects of interleukin-1 beta, interleukin-6 and tumor necrosis factor on sensitivity of dorsal root ganglion and peripheral receptive fields in rats. Eur. Spine J. 15, 1529–1537 10.1007/s00586-005-0058-8 PubMed DOI

Popoli M., Yan Z., McEwen B. S., Sanacora G. (2011). The stressed synapse: the impact of stress and glucocorticoids on glutamate transmission. Nat. Rev. Neurosci. 13, 22–37 10.1038/nrn3138 PubMed DOI PMC

Prasertsri N., Holden J., Keefe F. J., Wilkie D. J. (2011). Repressive coping style: relationships with depression, pain and pain coping strategies in lung cancer outpatients. Lung Cancer 71, 235–240 10.1016/j.lungcan.2010.05.009 PubMed DOI PMC

Racagni R., Popoli M. (2008). Cellular and molecular mechanisms in the long-term action of antidepressants. Dialogues Clin. Neurosci. 10, 385–400 PubMed PMC

Radley J. J., Morrison J. H. (2005). Repeated stress and structural plasticity in the brain. Ageing Res. Rev. 4, 271–287 10.1016/j.arr.2005.03.004 PubMed DOI

Raison C. L., Borisov A. S., Majer M., Drake D. F., Pagnoni G., Woolwine B. J., et al. (2009). Activation of central nervous system inflammatory pathways by interferon-alpha: relationship to monoamines and depression. Biol. Psychiatry 65, 296–303 10.1016/j.biopsych.2008.08.010 PubMed DOI PMC

Rhudy J. L. (2009). The importance of emotional processes in the modulation of pain. Pain 146, 233–234 10.1016/j.pain.2009.07.003 PubMed DOI

Rittner H. L., Brack A., Stein C. (2008). Pain and the immune system. Br. J. Anaesth. 101, 40–44 10.1093/bja/aen078 PubMed DOI

Rokyta R., Haklova O., Yamamotova A. (2009). Assessment of chronic benign and cancer pain using blood plasma biomarkers. Neuroendocrinol. Lett. 30, 637–642 PubMed

Rosenblat J. D., Cha D. S., Mansur R. B., McIntyre R. S. (2014). Inflamed moods: a review of the interactions between inflammation and mood disorders. Prog. Neuropsychopharmacol. Biol. Psychiatry [Epub ahead of print]. 10.1016/j.pnpbp.2014.01.013 PubMed DOI

Ruhé H. G., Mason N. S., Schene A. H. (2007). Mood is indirectly related to serotonin, norepinephrine and dopamine levels in humans: a meta-analysis of monoamine depletion studies. Mol. Psychiatry 12, 331–359 10.1038/sj.mp.4001949 PubMed DOI

Samad T. A., Moore K. A., Sapirstein A., Billet S., Allchorne A., Poole S., et al. (2001). Interleukin-1beta-mediated induction of Cox-2 in the CNS contributes to inflammatory pain hypersensitivity. Nature 410, 471–475 10.1038/35068566 PubMed DOI

Sandi C. (2011). Glucocorticoids act on glutamatergic pathways to affect memory processes. Trends Neurosci. 34, 165–176 10.1016/j.tins.2011.01.006 PubMed DOI

Sapolsky R. M. (1985). Glucocorticoid toxicity in the hippocampus: temporal aspects of neuronal vulnerability. Brain Res. 359, 300–305 10.1016/0006-8993(85)91440-4 PubMed DOI

Schwarz M. J., Offenbaecher M., Neumeister A., Ackenheil M. (2003). Experimental evaluation of an altered tryptophan metabolism in fibromyalgia. Adv. Exp. Med. Biol. 527, 265–275 10.1007/978-1-4615-0135-0_30 PubMed DOI

Scott J. A., Wood M., Flood P. (2006). The pronociceptive effect of ondansetron in the setting of P-glycoprotein inhibition. Anesth. Analg. 103, 742–746 10.1213/01.ane.0000228861.80314.22 PubMed DOI

Shi X., Wang L., Li X., Sahbaie P., Kingery W. S., Clark J. D. (2011). Neuropeptides contribute to peripheral nociceptive sensitization by regulating interleukin-1β production in keratinocytes. Anesth. Analg. 113, 175–183 10.1213/ane.0b013e31821a0258 PubMed DOI PMC

Shors T. J., Gallegos R. A., Breindl A. (1997). Transient and persistent consequences of acute stress on long-term potentiation (LTP), synaptic efficacy, theta rhythms and bursts in area CA1 of the hippocampus. Synapse 26, 209–217 10.1002/(sici)1098-2396(199707)26:3<209::aid-syn2>3.0.co;2-b PubMed DOI

Shulman G. L., Fiez J. A., Corbetta M., Buckner R. L., Miezen F. M., Raichle M. E. (1997). Common blood flow changes across visual tasks: II. Decreases in cerebral cortex. J. Cog. Neurosci. 9, 648–663 10.1162/jocn.1997.9.5.648 PubMed DOI

Silva R., Mesquita A. R., Bessa J., Sousa J. C., Sotiropoulos I., Leão P., et al. (2008). Lithium blocks stress-induced changes in depressive-like behavior and hippocampal cell fate: the role of glycogen-synthase-kinase-3beta. Neuroscience 152, 656–669 10.1016/j.neuroscience.2007.12.026 PubMed DOI

Simons L. E., Elman I., Borsook D. (2014). Psychological processing in chronic pain: a neural systems approach. Neurosci. Biobehav. Rev. [Epub ahead print]. 10.1016/j.neubiorev.2013.12.006 PubMed DOI PMC

Siniscalco D., Giordano C., Rossi F., Maione S., de Novellis V. (2011). Role of neurotrophins in neuropathic pain. Curr. Neuropharmacol. 9, 523–529 10.2174/157015911798376208 PubMed DOI PMC

Smith M. A., Makino S., Kvetnansky R., Post R. M. (1995). Stress and glucocorticoids affect the expression of brain-derived neurotrophic factor and neurotrophin-3 mRNAs in the hippocampus. J. Neurosci. 15, 1768–1777 PubMed PMC

Sos P., Klirova M., Novak T., Kohutova B., Horacek J., Palenicek T. (2013). Relationship of ketamine’s antidepressant and psychotomimetic effects in unipolar depression. Neuro. Endocrinol. Lett. 34, 287–293 PubMed

Steingart A. B., Cotterchio M. (1995). Do antidepressants cause, promote, or inhibit cancers? J. Clin. Epidemiol. 48, 1407–1412 10.1016/0895-4356(95)00545-5 PubMed DOI

Su H. C., Ma C. T., Yu B. C., Chien Y. C., Tsai C. C., Huang W. C., et al. (2012). Glycogen synthase kinase-3β regulates anti-inflammatory property of fluoxetine. Int. Immunopharmacol. 14, 150–156 10.1016/j.intimp.2012.06.015 PubMed DOI

Supornsilpchai W., Sanguanrangsirikul S., Maneesri S., Srikiatkhachorn A. (2006). Serotonin depletion, cortical spreading depression and trigeminal nociception. Headache 46, 34–39 10.1111/j.1526-4610.2006.00310.x PubMed DOI

Tagliazucchi E., Balenzuela P., Fraiman D., Chialvo D. R. (2010). Brain resting state is disrupted in chronic back pain patients. Neurosci. Lett. 485, 26–31 10.1016/j.neulet.2010.08.053 PubMed DOI PMC

Telleria-Diaz A., Schmidt M., Kreusch S., Neubert A. K., Schache F., Vazquez E., et al. (2010). Spinal antinociceptive effects of cyclooxygenase inhibition during inflammation: involvement of prostaglandins and endocannabinoids. Pain 148, 26–35 10.1016/j.pain.2009.08.013 PubMed DOI

Tenant F., Hermann L. (2002). Normalization of serum cortisol concentration with opioid treatment of severe chronic pain. Pain Med. 3, 132–134 10.1046/j.1526-4637.2002.02019.x PubMed DOI

Tindall E. (1999). Celecoxib for the treatment of pain and inflammation: the preclinical and clinical results. J. Am. Osteopath. Assoc. 99(Suppl. 11), S13–S17 PubMed

Torta R. G., Munari J. (2010). Symptom cluster: depression and pain. Surg. Oncol. 19, 155–159 10.1016/j.suronc.2009.11.007 PubMed DOI

Tuveson B., Leffler A. S., Hansson P. (2011). Ondansetron, a 5HT3-antagonist, does not alter dynamic mechanical allodynia or spontaneous ongoing pain in peripheral neuropathy. Clin. J. Pain 27, 323–329 10.1097/ajp.0b013e31820215c5 PubMed DOI

Van Hunsel F., Wauters A., Vandoolaeghe E., Neels H., Demedts P., Maes M. (1996). Lower total serum protein, albumin and beta- and gamma-globulin in major and treatment-resistant depression: effects of antidepressant treatments. Psychiatry Res. 65, 159–169 10.1016/s0165-1781(96)03010-7 PubMed DOI

van Steenbergen H., Booij L., Band G. P., Hommel B., van der Does A. J. (2012). Affective regulation of cognitive-control adjustments in remitted depressive patients after acute tryptophan depletion. Cogn. Affect. Behav. Neurosci. 12, 280–286 10.3758/s13415-011-0078-2 PubMed DOI PMC

Walker A. J., Card T., Bates T. E., Muir K. (2011). Tricyclic antidepressants and the incidence of certain cancers: a study using the GPRD. Br. J. Cancer 104, 193–197 10.1038/sj.bjc.6605996 PubMed DOI PMC

Walker A. J., Grainge M., Bates T. E., Card T. R. (2012). Survival of glioma and colorectal cancer patients using tricyclic antidepressants post-diagnosis. Cancer Causes Control 23, 1959–1964 10.1007/s10552-012-0073-0 PubMed DOI

Wang X., Hou Z., Yuan Y., Hou G., Liu Y., Li H., et al. (2011). Association study between plasma GDNF and cognitive function in late-onset depression. J. Affect. Disord. 132, 418–421 10.1016/j.jad.2011.03.043 PubMed DOI

Wang Y., Zhang X., Guo Q. L., Zou W. Y., Huang C. S., Yan J. Q. (2010). Cyclooxygenase inhibitors suppress the expression of P2X(3) receptors in the DRG and attenuate hyperalgesia following chronic constriction injury in rats. Neurosci. Lett. 478, 77–81 10.1016/j.neulet.2010.04.069 PubMed DOI

Warner-Schmidt J. L., Duman R. S. (2006). Hippocampal neurogenesis: opposing effects of stress and antidepressant treatment. Hippocampus 16, 239–249 10.1002/hipo.20156 PubMed DOI

Watanabe Y., Gould E., Cameron H. A., Daniels D. C., McEwen B. S. (1992). Phenytoin prevents stress - and corticosterone - induced atrophy of CA3 pyramidal neurons. Hippocampus 2, 431–435 10.1002/hipo.450020410 PubMed DOI

Wattiez A. S., Libert F., Privat A. M., Loiodice S., Fialip J., Eschalier A., et al. (2011). Evidence for a differential opioidergic involvement in the analgesic effect of antidepressants: prediction for efficacy in animal models of neuropathic pain? Br. J. Pharmacol. 163, 792–803 10.1111/j.1476-5381.2011.01297.x PubMed DOI PMC

Wei F., Dubner R., Zou S., Ren K., Bai G., Wei D., et al. (2010). Molecular depletion of descending serotonin unmasks its novel facilitatory role in the development of persistent pain. J. Neurosci. 30, 8624–8636 10.1523/jneurosci.5389-09.2010 PubMed DOI PMC

Wei T., Guo T. Z., Li W. W., Hou S., Kingery W. S., Clark J. D. (2012). Keratinocyte expression of inflammatory mediators plays a crucial role in substance P-induced acute and chronic pain. J. Neuroinflammation 9:181 10.1186/1742-2094-9-181 PubMed DOI PMC

Wenbin G., Feng L., Zhimin X., Keming G., Zhening L., Changqing X., et al. (2013). Abnormal resting-state cerebellar-cerebral functional connectivity in treatment-resistant depression and treatment sensitive depression. Prog. Neuropsychopharmacol. Biol. Psychiatry 44, 51–57 10.1016/j.pnpbp.2013.01.010 PubMed DOI

Wiech K., Ploner M., Tracey I. (2008). Neurocognitive aspects of pain perception. Trends Cogn. Sci. 12, 306–313 10.1016/j.tics.2008.05.005 PubMed DOI

Wood P. B. (2006). Mesolimbic dopaminergic mechanisms and pain control. Pain 120, 230–234 10.1016/j.pain.2005.12.014 PubMed DOI

Woolley C. S., Gould E., McEwen B. S. (1990). Exposure to excess glucocorticoids alters dendritic morphology of adult hippocampal pyramidal neurons. Brain Res. 531, 225–231 10.1016/0006-8993(90)90778-a PubMed DOI

Xueling Z., Xiang W., Jin X., Jian L., Mingtian Z., Wei W., et al. (2012). Evidence of a dissociation pattern in resting-state default mode network connectivity in first-episode, treatment-naive major depression patients. Biol. Psychiatry 71, 611–617 10.1016/j.biopsych.2011.10.035 PubMed DOI

Yamamotová A., Hrubá L., Schutová B., Rokyta R., Šlamberová R. (2011). Perinatal effect of methamphetamine on nociception in adult Wistar rats. Int. J. Dev. Neurosci. 29, 85–92 10.1016/j.ijdevneu.2010.08.004 PubMed DOI

Yamamotová A., Šlamberová R. (2012). Behavioral and antinociceptive effects of different psychostimulant drugs in prenatally methamphetamine-exposed rats. Physiol. Res. 61Suppl. 2, S139–S147 PubMed

Yaron I., Shirazi I., Judovich R., Levartovsky D., Caspi D., Yaron M. (1999). Fluoxetine and amitriptyline inhibit nitric oxide, prostaglandin E2 and hyaluronic acid production in human synovial cells and synovial tissue cultures. Arthritis Rheum. 42, 2561–2568 10.1002/1529-0131(199912)42:12<2561::AID-ANR8>3.0.CO;2-U PubMed DOI

Zarate C. A., Jr., Singh J. B., Quiroz J. A., De Jesus G., Denicoff K. K., Luckenbaugh D. A., et al. (2006). A double-blind, placebo-controlled study of memantine in the treatment of major depression. Am. J. Psychiatry 163, 153–155 10.1176/appi.ajp.163.1.153 PubMed DOI

Zhang J.-M., An J. (2007). Cytokines, inflammation and pain. Int. Anesthesiol. Clin. 45, 27–37 10.1097/AIA.0b013e318034194e PubMed DOI PMC

Zhu X., Wang X., Xiao J., Liao J., Zhong M., Wang W., et al. (2012). Evidence of a dissociation pattern in resting-state default mode network connectivity in first-episode, treatment-naive major depression patients. Biol. Psychiatry 71, 611–617 10.1016/j.biopsych.2011.10.035 PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...