CRISPR/Cas9 Genome Editing Introduction and Optimization in the Non-model Insect Pyrrhocoris apterus
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
31379599
PubMed Central
PMC6644776
DOI
10.3389/fphys.2019.00891
Knihovny.cz E-zdroje
- Klíčová slova
- CRISPR/Cas9, efficiency optimization, genetic mosaicism, genome editing, non-model insect,
- Publikační typ
- časopisecké články MeSH
The CRISPR/Cas9 technique is widely used in experimentation with human cell lines as well as with other model systems, such as mice Mus musculus, zebrafish Danio reiro, and the fruit fly Drosophila melanogaster. However, publications describing the use of CRISPR/Cas9 for genome editing in non-model organisms, including non-model insects, are scarce. The introduction of this relatively new method presents many problems even for experienced researchers, especially with the lack of procedures to tackle issues concerning the efficiency of mutant generation. Here we present a protocol for efficient genome editing in the non-model insect species Pyrrhocoris apterus. We collected data from several independent trials that targeted several genes using the CRISPR/Cas9 system and determined that several crucial optimization steps led to a remarkably increased efficiency of mutant production. The main steps are as follows: the timing of embryo injection, the use of the heteroduplex mobility assay as a screening method, in vivo testing of sgRNA efficiency, and G0 germline mosaicism screening. The timing and the method of egg injections used here need to be optimized for other species, but other here-described optimization solutions can be applied immediately for genome editing in other insect species.
Zobrazit více v PubMed
Adli M. (2018). The CRISPR tool kit for genome editing and beyond. PubMed DOI PMC
Bajgar A., Jindra M., Dolezel D. (2013). Autonomous regulation of the insect gut by circadian genes acting downstream of juvenile hormone signaling. PubMed DOI PMC
Banerjee T. D., Monteiro A. (2018). RISPR-Cas9 mediated genome editing in PubMed DOI PMC
Bassett A., Liu J. L. (2014). CRISPR/Cas9 mediated genome engineering in PubMed DOI
Bier E., Harrison M. M., O’Connor-Giles K. M., Wildonger J. (2018). Advances in engineering the fly genome with the CRISPR-Cas system. PubMed DOI PMC
Brocal I., White R. J., Dooley C. M., Carruthers S. N., Clark R., Hall A., et al. (2016). Efficient identification of CRISPR/Cas9-induced insertions/deletions by direct germline screening in zebrafish. PubMed DOI PMC
Ceasar S. A., Rajan V., Prykhozhij S. V., Berman J. N., Ignacimuthu S. (2016). Insert, remove or replace: a highly advanced genome editing system using CRISPR/Cas9. PubMed DOI
Chavez A., Tuttle M., Pruitt B. W., Ewen-Campen B., Chari R., Ter-Ovanesyan D., et al. (2016). Comparison of Cas9 activators in multiple species. PubMed DOI PMC
Cho S. W., Kim S., Kim Y., Kweon J., Kim H. S., Bae S., et al. (2014). Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. PubMed DOI PMC
Choo A., Crisp P., Saint R., O’Keefe L. V., Baxter S. W. (2018). CRISPR/Cas9-mediated mutagenesis of the white gene in the tephritid pest Bactrocera tryoni. DOI
Concordet J. P., Haeussler M. (2018). CRISPOR: intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens. PubMed DOI PMC
Cui Y., Xu J., Cheng M., Liao X., Peng S. (2018). Review of CRISPR/Cas9 sgRNA design tools. PubMed DOI
Dolezel D. (2015). Photoperiodic time measurement in insects. PubMed DOI
Gilbert S. F. (2000).
Gilles A. F., Schinko J. B., Averof M. (2015). Efficient CRISPR-mediated gene targeting and transgene replacement in the beetle PubMed DOI
Gratz S. J., Rubinstein C. D., Harrison M. M., Wildonger J., O’Connor-Giles K. M. (2015). CRISPR-Cas9 genome editing in PubMed DOI PMC
Haeussler M., Schonig K., Eckert H., Eschstruth A., Mianne J., Renaud J. B., et al. (2016). Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. PubMed DOI PMC
Hamblen M. J., White N. E., Emery P. T., Kaiser K., Hall J. C. (1998). Molecular and behavioral analysis of four period mutants in PubMed PMC
Henao-Mejia J., Williams A., Rongvaux A., Stein J., Hughes C., Flavell R. A. (2016). Generation of genetically modified mice using the CRISPR – Cas9 genome-editing system. PubMed DOI PMC
Housden B. E., Lin S. L., Perrimon N. (2014). “Cas9-based genome editing in PubMed DOI
Ikeno T., Tanaka S. I., Numata H., Goto S. G. (2010). Photoperiodic diapause under the control of circadian clock genes in an insect. PubMed DOI PMC
Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J. A., Charpentier E. (2012). A programmable Dual-RNA-Guided DNA endonuclease in adaptive bacterial immunity. PubMed DOI PMC
Kistler K. E., Vosshall L. B., Matthews B. J. (2015). Genome Engineering with CRISPR-Cas9 in the mosquito PubMed DOI PMC
Kohno H., Suenami S., Takeuchi H., Sasaki T., Kubo T. (2016). Production of knockout mutants by CRISPR/Cas9 in the european honeybee, PubMed DOI
Konopka R. J., Benzer S. (1971). Clock mutants of PubMed DOI PMC
Kotani H., Taimatsu K., Ohga R., Ota S., Kawahara A. (2015). Efficient multiple genome modifications induced by the crRNAs, tracrRNA and Cas9 protein complex in zebrafish. PubMed DOI PMC
Kotwica J., Bebas P., Gvakharia B. O., Giebultowicz J. M. (2009). RNA interference of the period gene affects the rhythm of sperm release in moths. PubMed DOI
Kotwica-Rolinska J., Pivarciova L., Vaneckova H., Dolezel D. (2017). The role of circadian clock genes in the photoperiodic timer of the linden bug DOI
Labuhn M., Adams F. F., Ng M., Knoess S., Schambach A., Charpentier E. M., et al. (2018). Refined sgRNA efficacy prediction improves large- and small-scale CRISPR-Cas9 applications. PubMed DOI PMC
Lee C. M., Davis T. H., Bao G. (2018). Examination of CRISPR/Cas9 design tools and the effect of target site accessibility on Cas9 activity. PubMed DOI PMC
Lee C. M., Zhu H., Davis T. H., Deshmukh H., Bao G. (2017). Design and validation of CRISPR/Cas9 systems for targeted gene modification in induced pluripotent stem cells. PubMed DOI
Li X., Fan D., Zhang W., Liu G., Zhang L., Zhao L., et al. (2015). Outbred genome sequencing and CRISPR/Cas9 gene editing in butterflies. PubMed DOI PMC
Li Y., Zhang J., Chen D. F., Yang P. C., Jiang F., Wang X. H., et al. (2016). CRISPR/Cas9 in locusts: successful establishment of an olfactory deficiency line by targeting the mutagenesis of an odorant receptor co-receptor (Orco). PubMed DOI
Markert M. J., Zhang Y., Enuameh M. S., Reppert S. M., Wolfe S. A., Merlin C. (2016). Genomic access to monarch migration using TALEN and CRISPR/Cas9-Mediated targeted mutagenesis. PubMed DOI PMC
Meccariello A., Monti S. M., Romanelli A., Colonna R., Primo P., Inghilterra M. G., et al. (2017). Highly efficient DNA-free gene disruption in the agricultural pest Ceratitis capitata by CRISPR-Cas9 ribonucleoprotein complexes. PubMed DOI PMC
Meyering-Vos M., Muller A. (2007). RNA interference suggests sulfakinins as satiety effectors in the cricket Gryllus bimaculatus. PubMed DOI
Modell J. W., Jiang W. Y., Marraffini L. A. (2017). CRISPR-Cas systems exploit viral DNA injection to establish and maintain adaptive immunity. PubMed DOI PMC
Moriyama Y., Sakamoto T., Karpova S. G., Matsumoto A., Noji S., Tomioka K. (2008). RNA interference of the clock gene period disrupts circadian rhythms in the cricket Gryllus bimaculatus. PubMed DOI
Nandety R. S., Kuo Y. W., Nouri S., Falk B. W. (2015). Emerging strategies for RNA interference (RNAi) applications in insects. PubMed DOI PMC
Niimi T., Kuwayama H., Yaginuma T. (2005). Larval RNAi applied to the analysis of postembryonic development in the Ladybird Beetle, DOI
Park J. H., Hall J. C. (1998). Isolation and chronobiological analysis of a neuropeptide pigment-dispersing factor gene in PubMed DOI
Pivarciova L., Vaneckova H., Provaznik J., Wu B. C. H., Pivarci M., Peckova O., et al. (2016). Unexpected geographic variability of the free running period in the linden Bug PubMed DOI
Port F., Chen H. M., Lee T., Bullock S. L. (2014). Optimized CRISPR/Cas tools for efficient germline and somatic genome engineering in Drosophila. PubMed DOI PMC
Renn S. C. P., Park J. H., Rosbash M., Hall J. C., Taghert P. H. (1999). A pdf neuropeptide gene mutation and ablation of PDF neurons each cause severe abnormalities of behavioral circadian rhythms in PubMed DOI
Schmitt-Engel C., Schultheis D., Schwirz J., Strohlein N., Troelenberg N., Majumdar U., et al. (2015). The iBeetle large-scale RNAi screen reveals gene functions for insect development and physiology. PubMed DOI PMC
Sim C., Denlinger D. L. (2008). Insulin signaling and FOXO regulate the overwintering diapause of the mosquito Culex pipiens. PubMed DOI PMC
Sim S. B., Kauwe A. N., Ruano R. E. Y., Rendon P., Geib S. M. (2018). The ABCs of CRISPR in Tephritidae: developing methods for inducing heritable mutations in the genera Anastrepha, Bactrocera and Ceratitis. PubMed DOI
Smykal V., Daimon T., Kayukawa T., Takaki K., Shinoda T., Jindra M. (2014). Importance of juvenile hormone signaling arises with competence of insect larvae to metamorphose. PubMed DOI
Socha R. (1993).
Sugahara R., Tanaka S., Shiotsuki T. (2017). RNAi-mediated knockdown of SPOOK reduces ecdysteroid titers and causes precocious metamorphosis in the desert locust Schistocerca gregaria. PubMed DOI
Sun D., Guo Z. J., Liu Y., Zhang Y. J. (2017). Progress and prospects of CRISPR/Cas systems in insects and other arthropods. PubMed DOI PMC
Terenius O., Papanicolaou A., Garbutt J. S., Eleftherianos I., Huvenne H., Kanginakudru S., et al. (2011). RNA interference in Lepidoptera: an overview of successful and unsuccessful studies and implications for experimental design. PubMed DOI
Thurtle-Schmidt D. M., Lo T. W. (2018). Molecular biology at the cutting edge: a review on CRISPR/CAS9 gene editing for undergraduates. PubMed DOI PMC
Urbanova V., Bazalova O., Vaneckova H., Dolezel D. (2016). Photoperiod regulates growth of male accessory glands through juvenile hormone signaling in the linden bug, Pyrrhocoris apterus. PubMed DOI
Uryu O., Kamae Y., Tomioka K., Yoshii T. (2013). Long-term effect of systemic RNA interference on circadian clock genes in hemimetabolous insects. PubMed DOI
Vosshall L. B., Price J. L., Sehgal A., Saez L., Young M. W. (1994). Block in nuclear localization of period protein by a second clock mutation, timeless. PubMed DOI
Xue W. H., Xu N., Yuan X. B., Chen H. H., Zhang J. L., Fu S. J., et al. (2018). CRISPR/Cas9-mediated knockout of two eye pigmentation genes in the brown planthopper, PubMed DOI
Ye Z. F., Liu X. L., Han Q., Liao H., Dong X. T., Zhu G. H., et al. (2017). Functional characterization of PBP1 gene in PubMed DOI PMC
Yuan Q., Metterville D., Briscoe A. D., Reppert S. M. (2007). Insect cryptochromes: gene duplication and loss define diverse ways to construct insect circadian clocks. PubMed DOI
Zhang L., Reed R. D. (2017). “A practical guide to CRISPR/Cas9 genome editing in lepidoptera,” in DOI
Zhang X. H., Tee L. Y., Wang X. G., Huang Q. S., Yang S. H. (2015). Off-target effects in CRISPR/Cas9-mediated genome engineering. PubMed DOI PMC
Zhao Y. G., Eggleston P. (1999). Comparative analysis of promoters for transient gene expression in cultured mosquito cells. PubMed DOI
Zhu X., Xu Y., Yu S., Lu L., Ding M., Cheng J., et al. (2014). An efficient genotyping method for genome-modified animals and human cells generated with CRISPR/Cas9 system. PubMed DOI PMC
Zischewski J., Fischer R., Bortesi L. (2017). Detection of on-target and off-target mutations generated by CRISPR/Cas9 and other sequence-specific nucleases. PubMed DOI
Evolution of casein kinase 1 and functional analysis of new doubletime mutants in Drosophila
Loss of Timeless Underlies an Evolutionary Transition within the Circadian Clock
Light and Temperature Synchronizes Locomotor Activity in the Linden Bug, Pyrrhocoris apterus