CRISPR/Cas9 Genome Editing Introduction and Optimization in the Non-model Insect Pyrrhocoris apterus

. 2019 ; 10 () : 891. [epub] 20190715

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31379599

The CRISPR/Cas9 technique is widely used in experimentation with human cell lines as well as with other model systems, such as mice Mus musculus, zebrafish Danio reiro, and the fruit fly Drosophila melanogaster. However, publications describing the use of CRISPR/Cas9 for genome editing in non-model organisms, including non-model insects, are scarce. The introduction of this relatively new method presents many problems even for experienced researchers, especially with the lack of procedures to tackle issues concerning the efficiency of mutant generation. Here we present a protocol for efficient genome editing in the non-model insect species Pyrrhocoris apterus. We collected data from several independent trials that targeted several genes using the CRISPR/Cas9 system and determined that several crucial optimization steps led to a remarkably increased efficiency of mutant production. The main steps are as follows: the timing of embryo injection, the use of the heteroduplex mobility assay as a screening method, in vivo testing of sgRNA efficiency, and G0 germline mosaicism screening. The timing and the method of egg injections used here need to be optimized for other species, but other here-described optimization solutions can be applied immediately for genome editing in other insect species.

Zobrazit více v PubMed

Adli M. (2018). The CRISPR tool kit for genome editing and beyond. Nat. Commun. 9:1911. 10.1038/s41467-018-04252-2 PubMed DOI PMC

Bajgar A., Jindra M., Dolezel D. (2013). Autonomous regulation of the insect gut by circadian genes acting downstream of juvenile hormone signaling. Proc. Natl. Acad. Sci. U.S.A. 110 4416–4421. 10.1073/pnas.1217060110 PubMed DOI PMC

Banerjee T. D., Monteiro A. (2018). RISPR-Cas9 mediated genome editing in Bicyclus anynana butterflies. Methods Protoc. 1:16. 10.3390/mps1020016 PubMed DOI PMC

Bassett A., Liu J. L. (2014). CRISPR/Cas9 mediated genome engineering in Drosophila. Methods 69 128–136. 10.1016/j.ymeth.2014.02.019 PubMed DOI

Bier E., Harrison M. M., O’Connor-Giles K. M., Wildonger J. (2018). Advances in engineering the fly genome with the CRISPR-Cas system. Genetics 208 1–18. 10.1534/genetics.117.1113 PubMed DOI PMC

Brocal I., White R. J., Dooley C. M., Carruthers S. N., Clark R., Hall A., et al. (2016). Efficient identification of CRISPR/Cas9-induced insertions/deletions by direct germline screening in zebrafish. BMC Genomics 17:259. 10.1186/s12864-016-2563-z PubMed DOI PMC

Ceasar S. A., Rajan V., Prykhozhij S. V., Berman J. N., Ignacimuthu S. (2016). Insert, remove or replace: a highly advanced genome editing system using CRISPR/Cas9. Biochim. Biophys. Acta 1863 2333–2344. 10.1016/j.bbamcr.2016.06.009 PubMed DOI

Chavez A., Tuttle M., Pruitt B. W., Ewen-Campen B., Chari R., Ter-Ovanesyan D., et al. (2016). Comparison of Cas9 activators in multiple species. Nat. Methods 13 563–567. 10.1038/nmeth.3871 PubMed DOI PMC

Cho S. W., Kim S., Kim Y., Kweon J., Kim H. S., Bae S., et al. (2014). Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res. 24 132–141. 10.1101/gr.162339.113 PubMed DOI PMC

Choo A., Crisp P., Saint R., O’Keefe L. V., Baxter S. W. (2018). CRISPR/Cas9-mediated mutagenesis of the white gene in the tephritid pest Bactrocera tryoni. J. Appl. Entomol. 142 52–58. 10.1111/jen.12411 DOI

Concordet J. P., Haeussler M. (2018). CRISPOR: intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens. Nucleic Acids Res. 46 W242–W245. 10.1093/nar/gky354 PubMed DOI PMC

Cui Y., Xu J., Cheng M., Liao X., Peng S. (2018). Review of CRISPR/Cas9 sgRNA design tools. Interdiscip. Sci. 10 455–465. 10.1007/s12539-018-0298-z PubMed DOI

Dolezel D. (2015). Photoperiodic time measurement in insects. Curr. Opin. Insect Sci. 7 98–103. 10.1016/j.cois.2014.12.002 PubMed DOI

Gilbert S. F. (2000). Developmental biology. Sunderland: Sinauer Associates.

Gilles A. F., Schinko J. B., Averof M. (2015). Efficient CRISPR-mediated gene targeting and transgene replacement in the beetle Tribolium castaneum. Development 142 2832–2839. 10.1242/dev.125054 PubMed DOI

Gratz S. J., Rubinstein C. D., Harrison M. M., Wildonger J., O’Connor-Giles K. M. (2015). CRISPR-Cas9 genome editing in Drosophila. Curr Protoc Mol Biol 111 31.2.1–31.2.20. 10.1002/0471142727.mb3102s111 PubMed DOI PMC

Haeussler M., Schonig K., Eckert H., Eschstruth A., Mianne J., Renaud J. B., et al. (2016). Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biol. 17:148. 10.1186/s13059-016-1012-2 PubMed DOI PMC

Hamblen M. J., White N. E., Emery P. T., Kaiser K., Hall J. C. (1998). Molecular and behavioral analysis of four period mutants in Drosophila melanogaster encompassing extreme short, novel long, and unorthodox arrhythmic types. Genetics 149 165–178. PubMed PMC

Henao-Mejia J., Williams A., Rongvaux A., Stein J., Hughes C., Flavell R. A. (2016). Generation of genetically modified mice using the CRISPR – Cas9 genome-editing system. Cold Spring Harb. Protoc 2016:pdb.rot090704. 10.1101/pdb.prot090704 PubMed DOI PMC

Housden B. E., Lin S. L., Perrimon N. (2014). “Cas9-based genome editing in Drosophila,” in Use of Crispr/Cas9, Zfns, and Talens in Generating Site-Specific Genome Alterations, Vol. 546 eds Doudna J. A., Sontheimer E. J. (Amsterdam: Elsevier Science; ), 415–439. 10.1016/B978-0-12-801185-0.00019-2 PubMed DOI

Ikeno T., Tanaka S. I., Numata H., Goto S. G. (2010). Photoperiodic diapause under the control of circadian clock genes in an insect. BMC Biol. 8:116. 10.1186/1741-7007-8-116 PubMed DOI PMC

Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J. A., Charpentier E. (2012). A programmable Dual-RNA-Guided DNA endonuclease in adaptive bacterial immunity. Science 337 816–821. 10.1126/science.1225829 PubMed DOI PMC

Kistler K. E., Vosshall L. B., Matthews B. J. (2015). Genome Engineering with CRISPR-Cas9 in the mosquito Aedes aegypti. Cell Rep. 11 51–60. 10.1016/j.celrep.2015.03.009 PubMed DOI PMC

Kohno H., Suenami S., Takeuchi H., Sasaki T., Kubo T. (2016). Production of knockout mutants by CRISPR/Cas9 in the european honeybee, Apis mellifera L. Zool. Sci. 33 505–512. 10.2108/zs160043 PubMed DOI

Konopka R. J., Benzer S. (1971). Clock mutants of Drosophila melanogaster. Proc. Natl. Acad. Sci. U.S.A. 68 2112–2116. 10.1073/pnas.68.9.2112 PubMed DOI PMC

Kotani H., Taimatsu K., Ohga R., Ota S., Kawahara A. (2015). Efficient multiple genome modifications induced by the crRNAs, tracrRNA and Cas9 protein complex in zebrafish. PLoS One 10:e0128319. 10.1371/journal.pone.0128319 PubMed DOI PMC

Kotwica J., Bebas P., Gvakharia B. O., Giebultowicz J. M. (2009). RNA interference of the period gene affects the rhythm of sperm release in moths. J. Biol. Rhythms 24 25–34. 10.1177/0748730408329109 PubMed DOI

Kotwica-Rolinska J., Pivarciova L., Vaneckova H., Dolezel D. (2017). The role of circadian clock genes in the photoperiodic timer of the linden bug Pyrrhocoris apterus during the nymphal stage. Physiol. Entomol. 42 266–273. 10.1111/phen.12197 DOI

Labuhn M., Adams F. F., Ng M., Knoess S., Schambach A., Charpentier E. M., et al. (2018). Refined sgRNA efficacy prediction improves large- and small-scale CRISPR-Cas9 applications. Nucleic Acids Res. 46 1375–1385. 10.1093/nar/gkx1268 PubMed DOI PMC

Lee C. M., Davis T. H., Bao G. (2018). Examination of CRISPR/Cas9 design tools and the effect of target site accessibility on Cas9 activity. Exp. Physiol. 103 456–460. 10.1113/EP086043 PubMed DOI PMC

Lee C. M., Zhu H., Davis T. H., Deshmukh H., Bao G. (2017). Design and validation of CRISPR/Cas9 systems for targeted gene modification in induced pluripotent stem cells. Methods Mol. Biol. 1498 3–21. 10.1007/978-1-4939-6472-7_1 PubMed DOI

Li X., Fan D., Zhang W., Liu G., Zhang L., Zhao L., et al. (2015). Outbred genome sequencing and CRISPR/Cas9 gene editing in butterflies. Nat. Commun. 6:8212. 10.1038/ncomms9212 PubMed DOI PMC

Li Y., Zhang J., Chen D. F., Yang P. C., Jiang F., Wang X. H., et al. (2016). CRISPR/Cas9 in locusts: successful establishment of an olfactory deficiency line by targeting the mutagenesis of an odorant receptor co-receptor (Orco). Insect Biochem. Mol. Biol. 79 27–35. 10.1016/j.ibmb.2016.10.003 PubMed DOI

Markert M. J., Zhang Y., Enuameh M. S., Reppert S. M., Wolfe S. A., Merlin C. (2016). Genomic access to monarch migration using TALEN and CRISPR/Cas9-Mediated targeted mutagenesis. G3-Genes Genomes Genet. 6 905–915. 10.1534/g3.116.027029 PubMed DOI PMC

Meccariello A., Monti S. M., Romanelli A., Colonna R., Primo P., Inghilterra M. G., et al. (2017). Highly efficient DNA-free gene disruption in the agricultural pest Ceratitis capitata by CRISPR-Cas9 ribonucleoprotein complexes. Sci. Rep. 7:10061. 10.1038/s41598-017-10347-5 PubMed DOI PMC

Meyering-Vos M., Muller A. (2007). RNA interference suggests sulfakinins as satiety effectors in the cricket Gryllus bimaculatus. J. Insect. Physiol. 53 840–848. 10.1016/j.jinsphys.2007.04.003 PubMed DOI

Modell J. W., Jiang W. Y., Marraffini L. A. (2017). CRISPR-Cas systems exploit viral DNA injection to establish and maintain adaptive immunity. Nature 544 101–104. 10.1038/nature21719 PubMed DOI PMC

Moriyama Y., Sakamoto T., Karpova S. G., Matsumoto A., Noji S., Tomioka K. (2008). RNA interference of the clock gene period disrupts circadian rhythms in the cricket Gryllus bimaculatus. J. Biol. Rhyth. 23 308–318. 10.1177/0748730408320486 PubMed DOI

Nandety R. S., Kuo Y. W., Nouri S., Falk B. W. (2015). Emerging strategies for RNA interference (RNAi) applications in insects. Bioengineered 6 8–19. 10.4161/21655979.2014.979701 PubMed DOI PMC

Niimi T., Kuwayama H., Yaginuma T. (2005). Larval RNAi applied to the analysis of postembryonic development in the Ladybird Beetle, Harmonia axyridis. J. Insect. Biotechnol. Sericol. 74 95–102. 10.11416/jibs.74.95 DOI

Park J. H., Hall J. C. (1998). Isolation and chronobiological analysis of a neuropeptide pigment-dispersing factor gene in Drosophila melanogaster. J. Biol. Rhythms 13 219–228. 10.1177/074873098129000066 PubMed DOI

Pivarciova L., Vaneckova H., Provaznik J., Wu B. C. H., Pivarci M., Peckova O., et al. (2016). Unexpected geographic variability of the free running period in the linden Bug Pyrrhocoris apterus. J. Biol. Rhythms 31 568–576. 10.1177/0748730416671213 PubMed DOI

Port F., Chen H. M., Lee T., Bullock S. L. (2014). Optimized CRISPR/Cas tools for efficient germline and somatic genome engineering in Drosophila. Proc. Natl. Acad. Sci. U.S.A. 111 E2967–E2976. 10.1073/pnas.1405500111 PubMed DOI PMC

Renn S. C. P., Park J. H., Rosbash M., Hall J. C., Taghert P. H. (1999). A pdf neuropeptide gene mutation and ablation of PDF neurons each cause severe abnormalities of behavioral circadian rhythms in Drosophila. Cell 99 791–802. 10.1016/S0092-8674(00)81676-1 PubMed DOI

Schmitt-Engel C., Schultheis D., Schwirz J., Strohlein N., Troelenberg N., Majumdar U., et al. (2015). The iBeetle large-scale RNAi screen reveals gene functions for insect development and physiology. Nat. Commun. 6:7822. 10.1038/ncomms8822 PubMed DOI PMC

Sim C., Denlinger D. L. (2008). Insulin signaling and FOXO regulate the overwintering diapause of the mosquito Culex pipiens. Proc. Natl. Acad. Sci. U.S.A. 105 6777–6781. 10.1073/pnas.0802067105 PubMed DOI PMC

Sim S. B., Kauwe A. N., Ruano R. E. Y., Rendon P., Geib S. M. (2018). The ABCs of CRISPR in Tephritidae: developing methods for inducing heritable mutations in the genera Anastrepha, Bactrocera and Ceratitis. Insect Mol. Biol. 28 277–289. 10.1111/imb.12550 PubMed DOI

Smykal V., Daimon T., Kayukawa T., Takaki K., Shinoda T., Jindra M. (2014). Importance of juvenile hormone signaling arises with competence of insect larvae to metamorphose. Dev. Biol. 390 221–230. 10.1016/j.ydbio.2014.03.006 PubMed DOI

Socha R. (1993). Pyrrhocoris-Apterus (Heteroptera) - an experimental-model species - a review. Eur. J. Entomol. 90 241–286.

Sugahara R., Tanaka S., Shiotsuki T. (2017). RNAi-mediated knockdown of SPOOK reduces ecdysteroid titers and causes precocious metamorphosis in the desert locust Schistocerca gregaria. Dev. Biol. 429 71–80. 10.1016/j.ydbio.2017.07.007 PubMed DOI

Sun D., Guo Z. J., Liu Y., Zhang Y. J. (2017). Progress and prospects of CRISPR/Cas systems in insects and other arthropods. Front. Physiol. 8:608. 10.3389/fphys.2017.00608 PubMed DOI PMC

Terenius O., Papanicolaou A., Garbutt J. S., Eleftherianos I., Huvenne H., Kanginakudru S., et al. (2011). RNA interference in Lepidoptera: an overview of successful and unsuccessful studies and implications for experimental design. J. Insect Physiol. 57 231–245. 10.1016/j.jinsphys.2010.11.006 PubMed DOI

Thurtle-Schmidt D. M., Lo T. W. (2018). Molecular biology at the cutting edge: a review on CRISPR/CAS9 gene editing for undergraduates. Biochem. Mol. Biol. Educ. 46 195–205. 10.1002/bmb.21108 PubMed DOI PMC

Urbanova V., Bazalova O., Vaneckova H., Dolezel D. (2016). Photoperiod regulates growth of male accessory glands through juvenile hormone signaling in the linden bug, Pyrrhocoris apterus. Insect Biochem. Mol. Biol. 70 184–190. 10.1016/j.ibmb.2016.01.003 PubMed DOI

Uryu O., Kamae Y., Tomioka K., Yoshii T. (2013). Long-term effect of systemic RNA interference on circadian clock genes in hemimetabolous insects. J. Insect Physiol. 59 494–499. 10.1016/j.jinsphys.2013.02.009 PubMed DOI

Vosshall L. B., Price J. L., Sehgal A., Saez L., Young M. W. (1994). Block in nuclear localization of period protein by a second clock mutation, timeless. Science 263 1606–1609. 10.1126/science.8128247 PubMed DOI

Xue W. H., Xu N., Yuan X. B., Chen H. H., Zhang J. L., Fu S. J., et al. (2018). CRISPR/Cas9-mediated knockout of two eye pigmentation genes in the brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae). Insect Biochem. Mol. Biol. 93 19–26. 10.1016/j.ibmb.2017.12.003 PubMed DOI

Ye Z. F., Liu X. L., Han Q., Liao H., Dong X. T., Zhu G. H., et al. (2017). Functional characterization of PBP1 gene in Helicoverpa armigera (Lepidoptera: Noctuidae) by using the CRISPR/Cas9 system. Sci. Rep. 7:8470. 10.1038/s41598-017-08769-2 PubMed DOI PMC

Yuan Q., Metterville D., Briscoe A. D., Reppert S. M. (2007). Insect cryptochromes: gene duplication and loss define diverse ways to construct insect circadian clocks. Mol. Biol. Evol. 24 948–955. 10.1093/molbev/msm011 PubMed DOI

Zhang L., Reed R. D. (2017). “A practical guide to CRISPR/Cas9 genome editing in lepidoptera,” in Diversity and Evolution of Butterfly Wing Patterns, eds Sekimura T., Nijhout H. (Singapore: Springer; ), 10.1007/978-981-10-4956-9_8 DOI

Zhang X. H., Tee L. Y., Wang X. G., Huang Q. S., Yang S. H. (2015). Off-target effects in CRISPR/Cas9-mediated genome engineering. Mol. Ther. Nucleic Acids 4:e264. 10.1038/mtna.2015.37 PubMed DOI PMC

Zhao Y. G., Eggleston P. (1999). Comparative analysis of promoters for transient gene expression in cultured mosquito cells. Insect Mol. Biol. 8 31–38. 10.1046/j.1365-2583.1999.810031.x PubMed DOI

Zhu X., Xu Y., Yu S., Lu L., Ding M., Cheng J., et al. (2014). An efficient genotyping method for genome-modified animals and human cells generated with CRISPR/Cas9 system. Sci. Rep. 4:6420. 10.1038/srep06420 PubMed DOI PMC

Zischewski J., Fischer R., Bortesi L. (2017). Detection of on-target and off-target mutations generated by CRISPR/Cas9 and other sequence-specific nucleases. Biotechnol. Adv. 35 95–104. 10.1016/j.biotechadv.2016.12.003 PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Impact of photoperiod and functional clock on male diapause in cryptochrome and pdf mutants in the linden bug Pyrrhocoris apterus

. 2024 Jul ; 210 (4) : 575-584. [epub] 20230611

Evolution of casein kinase 1 and functional analysis of new doubletime mutants in Drosophila

. 2022 ; 13 () : 1062632. [epub] 20221214

Pigment Dispersing Factor Is a Circadian Clock Output and Regulates Photoperiodic Response in the Linden Bug, Pyrrhocoris apterus

. 2022 ; 13 () : 884909. [epub] 20220429

Loss of Timeless Underlies an Evolutionary Transition within the Circadian Clock

. 2022 Jan 07 ; 39 (1) : .

Functional analysis and localisation of a thyrotropin-releasing hormone-type neuropeptide (EFLa) in hemipteran insects

. 2020 Jul ; 122 () : 103376. [epub] 20200424

Light and Temperature Synchronizes Locomotor Activity in the Linden Bug, Pyrrhocoris apterus

. 2020 ; 11 () : 242. [epub] 20200402

New Drosophila Circadian Clock Mutants Affecting Temperature Compensation Induced by Targeted Mutagenesis of Timeless

. 2019 ; 10 () : 1442. [epub] 20191203

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...