Functional analysis and localisation of a thyrotropin-releasing hormone-type neuropeptide (EFLa) in hemipteran insects
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32339620
PubMed Central
PMC7294237
DOI
10.1016/j.ibmb.2020.103376
PII: S0965-1748(20)30065-5
Knihovny.cz E-zdroje
- Klíčová slova
- Alternative splicing, CRISPR/Cas9, EFLamide, In silico peptide prediction, Null mutant, TRH,
- MeSH
- fylogeneze MeSH
- Heteroptera genetika metabolismus MeSH
- hmyzí proteiny chemie genetika metabolismus MeSH
- hormon uvolňující thyreotropin genetika metabolismus MeSH
- neuropeptidy chemie genetika metabolismus MeSH
- sekvence aminokyselin MeSH
- sekvenční seřazení MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- hmyzí proteiny MeSH
- hormon uvolňující thyreotropin MeSH
- neuropeptidy MeSH
EFLamide (EFLa) is a neuropeptide known for a long time from crustaceans, chelicerates and myriapods. Recently, EFLa-encoding genes were identified in the genomes of apterygote hexapods including basal insect species. In pterygote insects, however, evidence of EFLa was limited to partial sequences in the bed bug (Cimex), migratory locust and a few phasmid species. Here we present identification of a full length EFLa-encoding transcript in the linden bug, Pyrrhocoris apterus (Heteroptera). We created complete null mutants allowing unambiguous anatomical location of this peptide in the central nervous system. Only 2-3 EFLa-expressing cells are located very close to each other near to the surface of the lateral protocerebrum with dense neuronal arborization. Homozygous null EFLa mutants are fully viable and do not have any visible defect in development, reproduction, lifespan, diapause induction or circadian rhythmicity. Phylogenetic analysis revealed that EFLa-encoding transcripts are produced by alternative splicing of a gene that also produces Prohormone-4. However, this Proh-4/EFLa connection is found only in Hemiptera and Locusta, whereas EFLa-encoding transcripts in apterygote hexapods, chelicerates and crustaceans are clearly distinct from Proh-4 genes. The exact mechanism leading to the fused Proh-4/EFLa transcript is not yet determined, and might be a result of canonical cis-splicing, cis-splicing of adjacent genes (cis-SAG), or trans-splicing.
Zobrazit více v PubMed
Almagro Armenteros J.J., Tsirigos K.D., Sonderby C.K., Petersen T.N., Winther O., Brunak S., von Heijne G., Nielsen H. Signalp 5.0 improves signal peptide predictions using deep neural networks. Nat. Biotechnol. 2019;37:420–423. doi: 10.1038/s41587-019-0036-z. PubMed DOI
Bajgar A., Jindra M., Dolezel D. Autonomous regulation of the insect gut by circadian genes acting downstream of juvenile hormone signaling. Proc. Natl. Acad. Sci. U.S.A. 2013;110:4416–4421. doi: 10.1073/pnas.1217060110. PubMed DOI PMC
Bajgar A., Dolezel D., Hodkova M. Endocrine regulation of non-circadian behavior of circadian genes in insect gut. J. Insect Physiol. 2013;59:881–886. doi: 10.1016/j.jinsphys.2013.06.004. PubMed DOI
Bauknecht P., Jékely G. Large-scale combinatorial deorphanization of Platynereis neuropeptide GPCRs. Cell Rep. 2015;12:684–693. doi: 10.1016/j.celrep.2015.06.052. PubMed DOI
Conzelmann M., Williams E.A., Krug K., Franz-Wachtel M., Macek B., Jékely G. The neuropeptide complement of the marine annelid Platynereis dumerilii. BMC Genom. 2013;14:906. PubMed PMC
Derst C., Dircksen H., Meusemann K., Zhou X., Liu S., Predel R. Evolution of neuropeptides in non-pterygote hexapods. BMC Evol. Biol. 2016;16:51. doi: 10.1186/s12862-016-0621-4. PubMed DOI PMC
Dolezel D., Sauman I., Kostal V., Hodkova M. Photoperiodic and food signals control expression pattern of the clock gene, period, in the linden bug, Pyrrhocoris apterus. J. Biol. Rhythm. 2007;22:335–342. doi: 10.1177/0748730407303624. PubMed DOI
Dolezel D., Zdechovanova L., Sauman I., Hodkova M. Endocrine-dependent expression of circadian clock genes in insects. Cell. Mol. Life Sci. 2008;65:964–969. doi: 10.1007/s00018-008-7506-7. PubMed DOI PMC
Douglass J., Civelli O., Herbert E. Polyprotein gene expression: generation of diversity of neuroendocrine peptides. Annu. Rev. Biochem. 1984;53:665–715. PubMed
Eipper B.A., Stoffers D.A., Mains R.E. The biosynthesis of neuropeptides: peptide alpha-amidation. Annu. Rev. Neurosci. 1992;15:57–85. PubMed
Elphick M.R., Mirabeau O., Larhammar D. Evolution of neuropeptide signalling systems. J. Exp. Biol. 2018;221 doi: 10.1242/jeb.151092. jeb151092. PubMed DOI PMC
Hansen K.K., Stafflinger E., Schneider M., Hauser F., Cazzamali G., Williamson M., Kollmann M., Schachtner J., Grimmelikhuijzen C.J. Discovery of a novel insect neuropeptide signaling system closely related to the insect adipokinetic hormone and corazonin hormonal systems. J. Biol. Chem. 2010;285:10736–10747. PubMed PMC
Hummon A.B., Richmond T.A., Verleyen P., Baggerman G., Huybrechts J., Ewing M.A., Vierstraete E., Rodriguez-Zas S.L., Schoofs L., Robinson G.E., Sweedler J.V. From the genome to the proteome: uncovering peptides in the Apis brain. Science. 2006;314:647–649. doi: 10.1126/science.1124128. PubMed DOI
Ibrahim E.A.S., Hejníková M., Shaik H.A., Doležel D., Kodrík D. Adipokinetic hormone activities in insect body infected by entomopathogenic nematode. J. Insect Physiol. 2017;98:347–355. doi: 10.1016/j.jinsphys.2017.02.009. PubMed DOI
Jekely G. Global view of the evolution and diversity of metazoan neuropeptide signaling. Proc. Natl. Acad. Sci. U. S. A. 2013;110:8702–8707. doi: 10.1073/pnas.1221833110. PubMed DOI PMC
Johnson K.P., Dietrich C.H., Friedrich F., Beutel R.G., Wipfler B., Peters R.S., Allen J.M., Petersen M., Donath A., Walden K.K.O. Phylogenomics and the evolution of hemipteroid insects. Proc. Natl. Acad. Sci. U. S. A. 2018;115:12775–12780. PubMed PMC
Kaniewska M.M., Vaneckova H., Dolezel D., Kotwica-Rolinska J. Light and temperature synchronizes locomotor activity in the linden bug, Pyrrhocoris apterus. Front. Physiol. 2020 doi: 10.3389/fphys.2020.00242. (in press) PubMed DOI PMC
Kodrik D., Socha R., Simek P., Zemek R., Goldsworthy G.J. A new member of the AKH/RPCH family that stimulates locomotory activity in the firebug, Pyrrhocoris apterus (Heteroptera) Insect Biochem. Mol. Biol. 2000;30:489–498. doi: 10.1016/S0965-1748(00)00025-4. PubMed DOI
Kodrik D., Simek P., Lepsa L., Socha R. Identification of the cockroach neuropeptide Pea-CAH-II as a second adipokinetic hormone in the firebug Pyrrhocoris apterus. Peptides. 2002;23:585–587. doi: 10.1016/S0196-9781(01)00627-1. PubMed DOI
Kong Y., Zhou H., Yu Y., Chen L., Hao P., Li X. The evolutionary landscape of intergenic trans-splicing events in insects. Nat. Commun. 2015;6:8734. doi: 10.1038/ncomms9734. PubMed DOI PMC
Konopova B., Smykal V., Jindra M. Common and distinct roles of juvenile hormone signaling genes in metamorphosis of holometabolous and hemimetabolous insects. PloS One. 2011;6(12) doi: 10.1371/journal.pone.0028728. PubMed DOI PMC
Kotwica-Rolinska J., Pivarciova L., Vaneckova H., Dolezel D. The role of circadian clock genes in the photoperiodic timer of the linden bug, Pyrrhocoris apterus, during the nymphal stage. Physiol. Entomol. 2017;42:266–273. doi: 10.1111/phen.12197. DOI
Kotwica-Rolinska J., Chodakova L., Chvalova D., Kristofova L., Fenclova I., Provaznik J., Bertolutti M., Wu B.C., Dolezel D. CRISPR/Cas9 Genome editing introduction and optimization in the non-model insect Pyrrhocoris apterus. Front. Physiol. 2019;10:891. doi: 10.3389/fphys.2019.00891. PubMed DOI PMC
Liessem S., Ragionieri L., Neupert S., Buschges A., Predel R. Transcriptomic and neuropeptidomic analysis of the stick insect, Carausius morosus. J. Proteome Res. 2018;6:2192–2204. doi: 10.1021/acs.jproteome.8b00155. PubMed DOI
Mirabeau O., Joly J.S. Molecular evolution of peptidergic signaling systems in 418 bilaterians. Proc. Natl. Acad. Sci. U.S.A. 2013;110:E2028–E2037. doi: 10.1073/pnas.1219956110. PubMed DOI PMC
Misof B. Phylogenomics resolves the timing and pattern of insect evolution. Science. 2014;346:763–767. doi: 10.1126/science.1257570. PubMed DOI
Pivarciova L., Vaneckova H., Provaznik J., Wu B.C., Pivarci M., Peckova O., Bazalova O., Cada S., Kment P., Kotwica-Rolinska J., Dolezel D. Unexpected geographic variability of the free running period in the linden bug, Pyrrhocoris apterus. J. Biol. Rhythm. 2016;31:568–576. doi: 10.1177/0748730416671213. PubMed DOI
Predel R., Neupert S., Derst C., Reinhardt K., Wegener C. Neuropeptidomics of the bed bug Cimex lectularius. J. Proteome Res. 2018;17:440–454. doi: 10.1021/acs.jproteome.7b00630. PubMed DOI
Robertson H.M., Navik J.A., Walden K.K., Honegger H.W. The bursicon gene in mosquitoes: an unusual example of mRNA trans-splicing. Genetics. 2007;176:1351–1353. doi: 10.1534/genetics.107.070938. PubMed DOI PMC
Schmid B., Helfrich-Forster C., Yoshii T. A new ImageJ plug-in "ActogramJ" for chronobiological analyses. J. Biol. Rhythm. 2011;26:464–467. doi: 10.1177/0748730411414264. PubMed DOI
Slama K., Williams C.M. Paper factor as an inhibitor of embryonic development of european bug Pyrrhocoris apterus. Nature. 1966;210:329–330. doi: 10.1038/210329a0. PubMed DOI
Smykal V., Bajgar A., Provaznik J., Fexova S., Buricova M., Takaki K., Hodkova M., Jindra M., Dolezel D. Juvenile hormone signaling during reproduction and development of the linden bug, Pyrrhocoris apterus. Insect Biochem. Mol. Biol. 2014;45 doi: 10.1016/j.ibmb.2013.12.003. 69e76. PubMed DOI
Smýkal V., Pivarči M., Provazník J., Bazalová O., Jedlička P., Lukšan O., Horák A., Vaněčková H., Beneš V., Fiala I., Hanus R., Doležel D. Complex evolution of insect insulin receptors and homologous decoy receptors, and functional significance of their multiplicity. Mol. Biol. Evol. 2020 doi: 10.1093/molbev/msaa048. (in press) PubMed DOI PMC
Socha R. Pyrrhocoris apterus (Heteroptera) - an experimental model species - a review. Eur. J. Entomol. 1993;90:241–286.
Southey B.R., Amare A., Zimmerman T.A., Rodriguez-Zas S.L., Sweedler J.V. Neuropred: a tool to predict cleavage sites in neuropeptide precursors and provide the masses of the resulting peptides. Nucleic Acids Res. 2006;34:W267–W272. doi: 10.1093/nar/gkl161. PubMed DOI PMC
Tanaka Y., Suetsugu Y., Yamamoto K., Noda H., Shinoda T. Transcriptome analysis of 460 neuropeptides and G-protein coupled receptors (GPCRs) for neuropeptides in the brown planthopper Nilaparvata lugens. Peptides. 2014;53:125–133. doi: 10.1016/j.peptides.2013.07.027. PubMed DOI
Van Sinay E., Mirabeau O., Depuydt G., Van Hiel M.B., Peymen K., Watteyne J., Zels S., Schoofs L., Beets I. Evolutionarily conserved TRH neuropeptide pathway regulates growth in Caenorhabditis elegans. Proc. Natl. Acad. Sci. U.S.A. 2017;114:E4065–E4074. doi: 10.1073/pnas.1617392114. PubMed DOI PMC
Veenstra J.A. Mono- and dibasic proteolytic cleavage sites in insect neuroendocrine peptide precursors. Arch. Insect Biochem. Physiol. 2000;43:49–63. doi: 10.1002/(SICI)1520-6327(200002)43:2<49::AID-ARCH1>3.0.CO;2-M. PubMed DOI
Veenstra J.A. Neurohormones and neuropeptides encoded by the genome of Lottia gigantea, with reference to other mollusks and insects. Gen. Comp. Endocrinol. 2010;167:86–103. PubMed
Veenstra J.A. Neuropeptide evolution: neurohormones and neuropeptides predicted from the genomes of Capitella teleta and Helobdella robusta. Gen. Comp. Endocrinol. 2011;171:160–175. PubMed
Veenstra J.A. The contribution of the genomes of a termite and a locust to our understanding of insect neuropeptides and neurohormones. Front. Physiol. 2014;5:454. PubMed PMC
Veenstra J.A. Similarities between decapod and insect neuropeptidomes. PeerJ. 2016;4 doi: 10.7717/peerj.2043. PubMed DOI PMC
Veenstra J.A. Two Lys-vasopressin-like peptides, EFLamide, and other phasmid neuropeptides. Gen. Comp. Endocrinol. 2019;278:3–11. doi: 10.1016/j.ygcen.2018.04.027. PubMed DOI
Veenstra J.A., Šimo L. The TRH-ortholog EFLamide in the migratory locust. Insect Biochem. Mol. Biol. 2020;116 doi: 10.1016/j.ibmb.2019.103281. PubMed DOI
Veenstra J.A., Rombauts S., Grbić M. In silico cloning of genes encoding neuropeptides, neurohormones and their putative G-protein coupled receptors in a spider mite. Insect Biochem. Mol. Biol. 2012;42:277–295. doi: 10.1016/j.ibmb.2011.12.009. PubMed DOI
Wipfler B., Letsch H., Frandsen P.B., Kapli P., Mayer C., Bartel D., Buckley T.R., Donath A., Edgerly-Rooks J.S., Fujita M. Evolutionary history of Polyneoptera and its implications for our understanding of early winged insects. Proc. Natl. Acad. Sci. U. S. A. 2019;116:3024–3029. doi: 10.1073/pnas.1817794116. PubMed DOI PMC