Light and Temperature Synchronizes Locomotor Activity in the Linden Bug, Pyrrhocoris apterus

. 2020 ; 11 () : 242. [epub] 20200402

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32300305

Circadian clocks are synchronized with the external environment by light and temperature. The effect of these cues on behavior is well-characterized in Drosophila, however, little is known about synchronization in non-model insect species. Therefore, we explored entrainment of locomotor activity by light and temperature in the linden bug Pyrrhocoris apterus (Heteroptera), an insect species with a strong seasonal response (reproductive diapause), which is triggered by both photoperiod and thermoperiod. Our results show that either light or temperature cycles are strong factors entraining P. apterus locomotor activity. Pyrrhocoris is able to be partially synchronized by cycles with temperature amplitude as small as 3°C and more than 50% of bugs is synchronized by 5°C steps. If conflicting zeitgebers are provided, light is the stronger signal. Linden bugs lack light-sensitive (Drosophila-like) cryptochrome. Notably, a high percentage of bugs is rhythmic even in constant light (LL) at intensity ∼400 lux, a condition which induces 100% arrhythmicity in Drosophila. However, the rhythmicity of bugs is still reduced in LL conditions, whereas rhythmicity remains unaffected in constant dark (DD). Interestingly, a similar phenomenon is observed after temperature cycles entrainment. Bugs released to constant thermophase and DD display weak rhythmicity, whereas strong rhythmicity is observed in bugs released to constant cryophase and DD. Our study describes the daily and circadian behavior of the linden bug as a response to photoperiodic and thermoperiodic entraining cues. Although the molecular mechanism of the circadian clock entrainment in the linden bug is virtually unknown, our study contributes to the knowledge of the insect circadian clock features beyond Drosophila research.

Zobrazit více v PubMed

Aschoff J. (1984). Circadian timing. Ann. NY. Acad. Sci. 423 442–468. 10.1111/j.1749-6632.1984.tb23452.x PubMed DOI

Bajgar A., Dolezel D., Hodkova M. (2013a). Endocrine regulation of non-circadian behavior of circadian genes in insect gut. J. Insect Physiol. 59 881–886. 10.1016/j.jinsphys.2013.06.004 PubMed DOI

Bajgar A., Jindra M., Dolezel D. (2013b). Autonomous regulation of the insect gut by circadian genes acting downstream of juvenile hormone signaling. Proc. Natl. Acad. Sci. U.S.A. 110 4416–4421. 10.1073/pnas.1217060110 PubMed DOI PMC

Bazalova O., Dolezel D. (2017). Daily activity of the housefly, Musca domestica, is influenced by temperature independent of 3’ UTR period Gene Splicing. G3 (Bethesda) 7 2637–2649. 10.1534/g3.117.042374 PubMed DOI PMC

Boothroyd C. E., Wijnen H., Naef F., Saez L., Young M. W. (2007). Integration of light and temperature in the regulation of circadian gene expression in Drosophila. PLoS Genet. 3:e54. 10.1371/journal.pgen.0030054 PubMed DOI PMC

Brown L. A., Fisk A. S., Pothecary C. A., Peirson S. N. (2019). Telling the time with a broken clock: quantifying circadian disruption in animal models. Biology (Basel) 8:18. 10.3390/biology8010018 PubMed DOI PMC

Currie J., Goda T., Wijnen H. (2009). Selective entrainment of the Drosophila circadian clock to daily gradients in environmental temperature. BMC Biol. 7:49. 10.1186/1741-7007-7-49 PubMed DOI PMC

Ditrich T., Janda V., Vaneckova H., Dolezel D. (2018). Climatic variation of supercooling point in the the linden bug Pyrrhocoris apterus (Heteroptera: Pyrrhocoridae). Insects 9:144. 10.3390/insects9040144 PubMed DOI PMC

Dolezel D., Sauman I., Kost’al V., Hodkova M. (2007). Photoperiodic and food signals control expression pattern of the clock gene, period, in the linden bug, Pyrrhocoris apterus. J. Biol. Rhythms 22 335–342. 10.1177/0748730407303624 PubMed DOI

Dolezelova E., Dolezel D., Hall J. C. (2007). Rhythm defects caused by newly engineered null mutations in Drosophila’s cryptochrome gene. Genetics 177 329–345. 10.1534/genetics.107.076513 PubMed DOI PMC

Dunlap J. C., Loros J. J., DeCoursey P. J. (2004). Chronobiology: Biological Timekeeping. Sunderland, MA: Sinauer Associates.

Emery P., Stanewsky R., Helfrich-Forster C., Emery-Le M., Hall J. C., Rosbash M. (2000). Drosophila CRY is a deep brain circadian photoreceptor. Neuron 26 493–504. 10.1016/s0896-6273(00)81181-2 PubMed DOI

Glaser F. T., Stanewsky R. (2005). Temperature synchronization of the Drosophila circadian clock. Curr. Biol. 15 1352–1363. 10.1016/j.cub.2005.06.056 PubMed DOI

Hamblen M. J., White N. E., Emery P., Kaiser K., Hall J. C. (1998). Molecular and behavioral analysis of four period mutants in Drosophila melanogaster encompassing extreme short, novel long, and unorthodox arrhythmic types. Genetics 149 165–178. PubMed PMC

Hardin P. E. (2011). Molecular genetic analysis of circadian timekeeping in Drosophila. Adv. Genet. 74 141–173. 10.1016/B978-0-12-387690-4.00005-2 PubMed DOI PMC

Harper R. E., Dayan P., Albert J. T., Stanewsky R. (2016). Sensory conflict disrupts activity of the Drosophila circadian network. Cell Rep. 17 1711–1718. 10.1016/j.celrep.2016.10.029 PubMed DOI PMC

Helfrich-Förster C. (2019). Light input pathways to the circadian clock of insects with an emphasis on the fruit fly Drosophila melanogaster. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. [Epub ahead of print]. PubMed PMC

Hodkova M. (1976). Nervous inhibition of corpora allata by photoperoid in Pyrrhocoris apterus. Nature 263 521–523. 10.1038/263521a0 PubMed DOI

Hodkova M., Syrova Z., Dolezel D., Sauman I. (2003). Period gene expression in relation to seasonality and circadian rhythms in the linden bug, Pyrrhocoris apterus (Heteroptera). Eur. J. Entomol. 100 267–273. 10.14411/eje.2003.042 DOI

Kannan N. N., Tomiyama Y., Nose M., Tokuoka A., Tomioka K. (2019). Temperature entrainment of circadian locomotor and transcriptional rhythms in the cricket, Gryllus bimaculatus. Zoolog. Sci. 36 95–104. 10.2108/zs180148 PubMed DOI

Komada S., Kamae Y., Koyanagi M., Tatewaki K., Hassaneen E., Saifullah A., et al. (2015). Green-sensitive opsin is the photoreceptor for photic entrainment of an insect circadian clock. Zoolog. Lett. 1:11. 10.1186/s40851-015-0011-6 PubMed DOI PMC

Kostal V., Tollarova M., Dolezel D. (2008). Dynamism in physiology and gene transcription during reproductive diapause in a heteropteran bug, Pyrrhocoris apterus. J. Insect Physiol. 54 77–88. 10.1016/j.jinsphys.2007.08.004 PubMed DOI

Kotwica-Rolinska J., Chodakova L., Chvalova D., Kristofova L., Fenclova I., Provaznik J., et al. (2019). CRISPR/Cas9 genome editing introduction and optimization in the non-model insect Pyrrhocoris apterus. Front. Physiol. 10:891. 10.3389/fphys.2019.00891 PubMed DOI PMC

Kotwica-Rolinska J., Pivarciova L., Vaneckova H., Dolezel D. (2017). The role of circadian clock genes in the photoperiodic timer of the linden bug, Pyrrhocoris apterus, during the nymphal stage. Physiol. Entomol. 42 266–273. 10.1111/phen.12197 PubMed DOI

Kume K., Zylka M. J., Sriram S., Shearman L. P., Weaver D. R., Jin X., et al. (1999). mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop. Cell 98 193–205. 10.1016/s0092-8674(00)81014-4 PubMed DOI

Levine J. D., Funes P., Dowse H. B., Hall J. C. (2002). Resetting the circadian clock by social experience in Drosophila melanogaster. Science 298 2010–2012. 10.1126/science.1076008 PubMed DOI

Maguire S. E., Sehgal A. (2015). Heating and cooling the Drosophila melanogaster clock. Curr. Opin. Insect Sci. 7 71–75. 10.1016/j.cois.2014.12.007 PubMed DOI PMC

Majercak J., Sidote D., Hardin P. E., Edery I. (1999). How a circadian clock adapts to seasonal decreases in temperature and day length. Neuron 24 219–230. 10.1016/s0896-6273(00)80834-x PubMed DOI

Matsumoto A., Tomioka K., Chiba Y., Tanimura T. (1999). timrit lengthens circadian period in a temperature-dependent manner through suppression of PERIOD protein cycling and nuclear localization. Mol. Cell. Biol. 19 4343–4354. 10.1128/mcb.19.6.4343 PubMed DOI PMC

Menegazzi P., Yoshii T., Helfrich-Forster C. (2012). Laboratory versus nature: the two sides of the Drosophila circadian clock. J. Biol. Rhythms 27 433–442. 10.1177/0748730412463181 PubMed DOI

Miyasako Y., Umezaki Y., Tomioka K. (2007). Separate sets of cerebral clock neurons are responsible for light and temperature entrainment of Drosophila circadian locomotor rhythms. J. Biol. Rhythms 22 115–126. 10.1177/0748730407299344 PubMed DOI

Moore D., Rankin M. N. (1993). Light and temperature entrainment of a locomotor rhythm in honeybees. Physiol. Entomol. 18 271–278. 10.1111/j.1365-3032.1993.tb00599.x DOI

Numata H., Saulich A. H., Volkovich T. A. (1993). Photoperiodic responses of the linden bug, Pyrrhocoris apterus, under conditions of constant-temperature and under thermoperiodic conditions. Zoolog. Sci. 10 521–527.

Ozkaya O., Rosato E. (2012). The circadian clock of the fly: a neurogenetics journey through time. Adv. Genet. 77 79–123. 10.1016/B978-0-12-387687-4.00004-0 PubMed DOI

Pittendrigh C. S. (1960). Circadian rhythms and the circadian organization of living systems. Cold Spring Harb. Symp. Quant. Biol. 25 159–184. 10.1101/sqb.1960.025.01.015 PubMed DOI

Pivarciova L., Vaneckova H., Provaznik J., Wu B. C., Pivarci M., Peckova O., et al. (2016). Unexpected geographic variability of the free running period in the linden bug, Pyrrhocoris apterus. J. Biol. Rhythms 31 568–576. 10.1177/0748730416671213 PubMed DOI

Refinetti R., Lissen G. C., Halberg F. (2007). Procedures for numerical analysis of circadian rhythms. Biol. Rhythm Res. 38 275–325. 10.1080/09291010600903692 PubMed DOI PMC

Roessingh S., Rosing M., Marunova M., Ogueta M., George R., Lamaze A., et al. (2019). Temperature synchronization of the Drosophila circadian clock protein PERIOD is controlled by the TRPA channel PYREXIA. Commun. Biol. 2:246. 10.1038/s42003-019-0497-0 PubMed DOI PMC

Rothenfluh A., Abodeely M., Price J. L., Young M. W. (2000). Isolation and analysis of six timeless alleles that cause short- or long-period circadian rhythms in Drosophila. Genetics 156 665–675. PubMed PMC

Saunders D. S. (1983). A diapause induction termination asymmetry in the photoperiodic responses of the linden bug, Pyrrhocoris apterus and an effect of near-critical photoperiods on development. J. Insect Physiol. 29 399–405. 10.1016/0022-1910(83)90067-7 DOI

Saunders D. S. (1987). Insect photoperiodism: the linden bug, Pyrrhocoris apterus, a species that measures daylength rather than nightlength. Experientia 43 935–937. 10.1007/bf01951677 DOI

Saunders D. S. (1997). Insect circadian rhythms and photoperiodism. Invert. Neurosci. 3 155–164. 10.1007/bf02480370 PubMed DOI

Schmid B., Helfrich-Forster C., Yoshii T. (2011). A new imageJ plug-in “ActogramJ” for chronobiological analyses. J. Biol. Rhythms 26 464–467. 10.1177/0748730411414264 PubMed DOI

Sharma V. K., Chandrashekaran M. K. (2005). Zeitgebers (time cues) for biological clocks. Curr. Sci. 89 1136–1146.

Shaw B., Fountain M., Wijnen H. (2019). Control of daily locomotor activity patterns in Drosophila suzukii by the circadian clock, light, temperature and social interactions. J. Biol. Rhythms 734 463–481. 10.1177/0748730419869085 PubMed DOI

Singh S., Giesecke A., Damulewicz M., Fexová S., Mazzotta G. M., Stanewsky R., et al. (2019). New Drosophila circadian clock mutants affecting temperature compensation induced by targeted mutagenesis of timeless. Front. Physiol. 10:1442. 10.3389/fphys.2019.01442 PubMed DOI PMC

Smykal V., Bajgar A., Provaznik J., Fexova S., Buricova M., Takaki K., et al. (2014). Juvenile hormone signaling during reproduction and development of the linden bug, Pyrrhocoris apterus. Insect Biochem. Mol. Biol. 45 69–76. 10.1016/j.ibmb.2013.12.003 PubMed DOI

Stanewsky R., Kaneko M., Emery P., Beretta B., Wager-Smith K., Kay S. A., et al. (1998). The cry(b) mutation identifies cryptochrome as a circadian photoreceptor in Drosophila. Cell 95 681–692. 10.1016/S0092-8674(00)81638-4 PubMed DOI

Tataroglu O., Emery P. (2015). The molecular ticks of the Drosophila circadian clock. Curr. Opin. Insect Sci. 7 51–57. 10.1016/j.cois.2015.01.002 PubMed DOI PMC

Tokuoka A., Itoh T. Q., Hori S., Uryu O., Danbara Y., Nose M., et al. (2017). cryptochrome genes form an oscillatory loop independent of the per/tim loop in the circadian clockwork of the cricket Gryllus bimaculatus. Zoolog. Lett. 3:5. 10.1186/s40851-017-0066-7 PubMed DOI PMC

Tomioka K., Matsumoto A. (2010). A comparative view of insect circadian clock systems. Cell. Mol. Life Sci. 67 1397–1406. 10.1007/s00018-009-0232-y PubMed DOI PMC

Tomioka K., Yoshii T. (2006). Entrainment of Drosophila circadian rhythms by temperature cycles. Sleep Biol. Rhythms 4 240–247. 10.1111/j.1479-8425.2006.00227.x DOI

Urbanova V., Bazalova O., Vaneckova H., Dolezel D. (2016). Photoperiod regulates growth of male accessory glands through juvenile hormone signaling in the linden bug, Pyrrhocoris apterus. Insect Biochem. Mol. Biol. 70 184–190. 10.1016/j.ibmb.2016.01.003 PubMed DOI

Vanin S., Bhutani S., Montelli S., Menegazzi P., Green E. W., Pegoraro M., et al. (2012). Unexpected features of Drosophila circadian behavioural rhythms under natural conditions. Nature 484 371–375. 10.1038/nature10991 PubMed DOI

Wheeler D. A., Hamblencoyle M. J., Dushay M. S., Hall J. C. (1993). Behavior in light dark cycles of Drosophila mutants that are arrhythmic, blind, or both. J. Biol. Rhythms 8 67–94. 10.1177/074873049300800106 PubMed DOI

Wolfgang W., Simoni A., Gentile C., Stanewsky R. (2013). The Pyrexia transient receptor potential channel mediates circadian clock synchronization to low temperature cycles in Drosophila melanogaster. Proc. Biol. Sci. 280:20130959. 10.1098/rspb.2013.0959 PubMed DOI PMC

Yoshii T., Fujii K., Tomioka K. (2007). Induction of Drosophila behavioral and molecular circadian rhythms by temperature steps in constant light. J. Biol. Rhythms 22 103–114. 10.1177/0748730406298176 PubMed DOI

Yoshii T., Hermann C., Helfrich-Forster C. (2010). Cryptochrome-positive and -negative clock neurons in Drosophila entrain differentially to light and temperature. J. Biol. Rhythms 25 387–398. 10.1177/0748730410381962 PubMed DOI

Yoshii T., Sakamoto M., Tomioka K. (2002). A temperature-dependent timing mechanism is involved in the circadian system that drives locomotor rhythms in the fruit fly Drosophila melanogaster. Zoolog. Sci. 19 841–850. 10.2108/zsj.19.841 PubMed DOI

Yuan Q., Metterville D., Briscoe A. D., Reppert S. M. (2007). Insect cryptochromes: gene duplication and loss define diverse ways to construct insect circadian clocks. Mol. Biol. Evol. 24 948–955. 10.1093/molbev/msm011 PubMed DOI

Zielinski T., Moore A. M., Troup E., Halliday K. J., Millar A. J. (2014). Strengths and limitations of period estimation methods for circadian data. PLoS One 9:e96462. 10.1371/journal.pone.0096462 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...