Climatic Variation of Supercooling Point in the Linden Bug Pyrrhocoris apterus (Heteroptera: Pyrrhocoridae)

. 2018 Oct 19 ; 9 (4) : . [epub] 20181019

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30347706

Grantová podpora
726049 European Research Council - International

Cold tolerance is often one of the key components of insect fitness, but the association between climatic conditions and supercooling capacity is poorly understood. We tested 16 lines originating from geographically different populations of the linden bug Pyrrhocoris apterus for their cold tolerance, determined as the supercooling point (SCP). The supercooling point was generally well explained by the climatic conditions of the population's origin, as the best predictor-winter minimum temperature-explained 85% of the average SCP variation between populations. The supercooling capacity of P. apterus is strongly correlated with climatic conditions, which support the usage of SCP as an appropriate metric of cold tolerance in this species.

Zobrazit více v PubMed

Leather S.R., Walters K.F.A., Bale J.S. The Ecology of Insect Overwintering. Cambridge University Press; Cambridge, UK: 1993. p. 255.

Robinet C., Roques A. Direct impacts of recent climate warming on insect populations. Integr. Zool. 2010;5:132–142. doi: 10.1111/j.1749-4877.2010.00196.x. PubMed DOI

Bale J.S., Hayward S.A.L. Insect overwintering in a changing climate. J. Exp. Biol. 2010;213:980–994. doi: 10.1242/jeb.037911. PubMed DOI

Clark M.S., Worland M.R. How insects survive the cold: Molecular mechanisms—A review. J. Comp. Physiol. B. 2008;178:917–933. doi: 10.1007/s00360-008-0286-4. PubMed DOI

Storey K.B., Storey J.M. Insect cold hardiness: Metabolic, gene, and protein adaptation. Can. J. Zool. 2012;90:456–475. doi: 10.1139/z2012-011. DOI

Denlinger D.L., Lee R.E. Low Temperature Biology of Insects. Cambridge University Press; Cambridge, UK: 2010. p. 390.

Sinclair B.J., Alvarado L.E.C., Ferguson L.V. An invitation to measure insect cold tolerance: Methods, approaches, and workflow. J. Therm. Biol. 2015;53:180–197. doi: 10.1016/j.jtherbio.2015.11.003. PubMed DOI

Sinclair B.J., Chown S.L. Climatic variability and hemispheric differences in insect cold tolerance: Support from southern Africa. Funct. Ecol. 2005;19:214–221. doi: 10.1111/j.1365-2435.2005.00962.x. DOI

Ditrich T. Supercooling point is an individually fixed metric of cold tolerance in Pyrrhocoris apterus. J. Therm. Biol. 2018;74:208–213. doi: 10.1016/j.jtherbio.2018.04.004. PubMed DOI

Košťál V., Šimek P. Overwintering strategy in Pyrrhocoris apterus (Heteroptera): The relations between life-cycle, chill tolerance and physiological adjustments. J. Insect Physiol. 2000;46:1321–1329. doi: 10.1016/S0022-1910(00)00056-1. PubMed DOI

Nedvěd O., Hodková M., Brunnhofer V., Hodek I. Simultaneous measurement of low-temperature survival and supercooling in a sample of insects. Cryoletters. 1995;16:108–113.

Hodková M., Hodek I. Temperature regulation of supercooling and gut nucleation in relation to diapause of Pyrrhocoris apterus (Heteroptera) Cryobiology. 1997;34:70–79. doi: 10.1006/cryo.1996.1985. PubMed DOI

Addo-Bediako A., Chown S.L., Gaston K.J. Thermal tolerance, climatic variability and latitude. Proc. R. Soc. Lond. B Biol. Sci. 2000;267:739–745. doi: 10.1098/rspb.2000.1065. PubMed DOI PMC

Kimura M.T. Cold and heat tolerance of drosophilid flies with reference to their latitudinal distributions. Oecologia. 2004;140:442–449. doi: 10.1007/s00442-004-1605-4. PubMed DOI

Kellermann V., Loeschcke V., Hoffmann A.A., Kristensen T.N., Flojgaard C., David J.R., Svenning J.C., Overgaard J. Phylogenetic constraints in key functional traits behind species’ climate niches: Patterns of desiccation and cold resistance across 95 drosophila species. Evolution. 2012;66:3377–3389. doi: 10.1111/j.1558-5646.2012.01685.x. PubMed DOI

Andersen J.L., Manenti T., Sørensen J.G., MacMillan H.A., Loeschcke V., Overgaard J., Woods A. How to assess Drosophila cold tolerance: Chill coma temperature and lower lethal temperature are the best predictors of cold distribution limits. Funct. Ecol. 2015;29:55–65. doi: 10.1111/1365-2435.12310. DOI

Sunday J.M., Bates A.E., Dulvy N.K. Global analysis of thermal tolerance and latitude in ectotherms. Proc. R. Soc. Lond. B Biol. Sci. 2011;278:1823–1830. doi: 10.1098/rspb.2010.1295. PubMed DOI PMC

David J.R., Gibert P., Moreteau B., Gilchrist G.W., Huey R.B. The fly that came in from the cold: Geographic variation of recovery time from low-temperature exposure in Drosophila subobscura. Funct. Ecol. 2003;17:425–430. doi: 10.1046/j.1365-2435.2003.00750.x. DOI

Sinclair B.J., Williams C.M., Terblanche J.S. Variation in thermal performance among insect populations. Physiol. Biochem. Zool. 2012;85:594–606. doi: 10.1086/665388. PubMed DOI

Crozier L. Winter warming facilitates range expansion: Cold tolerance of the butterfly Atalopedes campestris. Oecologia. 2003;135:648–656. doi: 10.1007/s00442-003-1219-2. PubMed DOI

Kalushkov P., Nedvěd O. Cold hardiness of Pyrrhocoris apterus (Heteroptera: Pyrrhocoridae) from central and southern europe. Eur. J. Entomol. 2000;97:149–153. doi: 10.14411/eje.2000.027. DOI

Xie H.C., Li D.S., Zhang H.G., Mason C.E., Wang Z.Y., Lu X., Cai W.Z., He K.L. Seasonal and geographical variation in diapause and cold hardiness of the asian corn borer, Ostrinia furnacalis. Insect Sci. 2015;22:578–586. doi: 10.1111/1744-7917.12137. PubMed DOI

Castaneda L.E., Lardies M.A., Bozinovic F. Interpopulational variation in recovery time from chill coma along a geographic gradient: A study in the common woodlouse, Porcellio laevis. J. Insect Physiol. 2005;51:1346–1351. doi: 10.1016/j.jinsphys.2005.08.005. PubMed DOI

Socha R. Pyrrhocoris apterus (Heteroptera)—An experimental model species: A review. Eur. J. Entomol. 1993;90:241–286.

Renault D., Salin C., Vannier G., Vernon P. Survival at low temperatures in insects: What is the ecological significance of the supercooling point? Cryoletters. 2002;23:217–228. PubMed

Pivarciova L., Vaněčková H., Provaznik J., Wu B.C.H., Pivarci M., Pecková O., Bazalová O., Cada S., Kment P., Kotwica-Rolinska J., et al. Unexpected geographic variability of the free running period in the linden bug Pyrrhocoris apterus. J. Biol. Rhythm. 2016;31:568–576. doi: 10.1177/0748730416671213. PubMed DOI

Parmesan C., Root T.L., Willig M.R. Impacts of extreme weather and climate on terrestrial biota. Bull. Am. Meteorol. Soc. 2000;81:443–450. doi: 10.1175/1520-0477(2000)081<0443:IOEWAC>2.3.CO;2. DOI

Bale J.S. Insect cold hardiness: A matter of life and death. Eur. J. Entomol. 1996;93:369–382.

Numata H., Saulich A.H., Volkovich T.A. Photoperiodic responses of the linden bug, Pyrrhocoris apterus, under conditions of constant-temperature and under thermoperiodic conditions. Zool. Sci. 1993;10:521–527.

Saunders D.S. A diapause induction termination asymmetry in the photoperiodic responses of the linden bug, Pyrrhocoris apterus and an effect of near-critical photoperiods on development. J. Insect Physiol. 1983;29:399–405. doi: 10.1016/0022-1910(83)90067-7. DOI

Šlachta M., Vambera J., Zahradníčková H., Košťál V. Entering diapause is a prerequisite for successful cold-acclimation in adult Graphosoma lineatum (Heteroptera: Pentatomidae) J. Insect Physiol. 2002;48:1031–1039. doi: 10.1016/S0022-1910(02)00191-9. PubMed DOI

Denlinger D.L. Relationship between cold hardiness and diapause. In: Lee R.E., Denlinger D.L., editors. Insects at Low Temperature. Springer; Boston, MA, USA: 1991. pp. 174–198.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Light and Temperature Synchronizes Locomotor Activity in the Linden Bug, Pyrrhocoris apterus

. 2020 ; 11 () : 242. [epub] 20200402

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...