Climatic Variation of Supercooling Point in the Linden Bug Pyrrhocoris apterus (Heteroptera: Pyrrhocoridae)
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
726049
European Research Council - International
PubMed
30347706
PubMed Central
PMC6316201
DOI
10.3390/insects9040144
PII: insects9040144
Knihovny.cz E-zdroje
- Klíčová slova
- cold tolerance, diapause, overwintering, supercooling point,
- Publikační typ
- časopisecké články MeSH
Cold tolerance is often one of the key components of insect fitness, but the association between climatic conditions and supercooling capacity is poorly understood. We tested 16 lines originating from geographically different populations of the linden bug Pyrrhocoris apterus for their cold tolerance, determined as the supercooling point (SCP). The supercooling point was generally well explained by the climatic conditions of the population's origin, as the best predictor-winter minimum temperature-explained 85% of the average SCP variation between populations. The supercooling capacity of P. apterus is strongly correlated with climatic conditions, which support the usage of SCP as an appropriate metric of cold tolerance in this species.
Zobrazit více v PubMed
Leather S.R., Walters K.F.A., Bale J.S. The Ecology of Insect Overwintering. Cambridge University Press; Cambridge, UK: 1993. p. 255.
Robinet C., Roques A. Direct impacts of recent climate warming on insect populations. Integr. Zool. 2010;5:132–142. doi: 10.1111/j.1749-4877.2010.00196.x. PubMed DOI
Bale J.S., Hayward S.A.L. Insect overwintering in a changing climate. J. Exp. Biol. 2010;213:980–994. doi: 10.1242/jeb.037911. PubMed DOI
Clark M.S., Worland M.R. How insects survive the cold: Molecular mechanisms—A review. J. Comp. Physiol. B. 2008;178:917–933. doi: 10.1007/s00360-008-0286-4. PubMed DOI
Storey K.B., Storey J.M. Insect cold hardiness: Metabolic, gene, and protein adaptation. Can. J. Zool. 2012;90:456–475. doi: 10.1139/z2012-011. DOI
Denlinger D.L., Lee R.E. Low Temperature Biology of Insects. Cambridge University Press; Cambridge, UK: 2010. p. 390.
Sinclair B.J., Alvarado L.E.C., Ferguson L.V. An invitation to measure insect cold tolerance: Methods, approaches, and workflow. J. Therm. Biol. 2015;53:180–197. doi: 10.1016/j.jtherbio.2015.11.003. PubMed DOI
Sinclair B.J., Chown S.L. Climatic variability and hemispheric differences in insect cold tolerance: Support from southern Africa. Funct. Ecol. 2005;19:214–221. doi: 10.1111/j.1365-2435.2005.00962.x. DOI
Ditrich T. Supercooling point is an individually fixed metric of cold tolerance in Pyrrhocoris apterus. J. Therm. Biol. 2018;74:208–213. doi: 10.1016/j.jtherbio.2018.04.004. PubMed DOI
Košťál V., Šimek P. Overwintering strategy in Pyrrhocoris apterus (Heteroptera): The relations between life-cycle, chill tolerance and physiological adjustments. J. Insect Physiol. 2000;46:1321–1329. doi: 10.1016/S0022-1910(00)00056-1. PubMed DOI
Nedvěd O., Hodková M., Brunnhofer V., Hodek I. Simultaneous measurement of low-temperature survival and supercooling in a sample of insects. Cryoletters. 1995;16:108–113.
Hodková M., Hodek I. Temperature regulation of supercooling and gut nucleation in relation to diapause of Pyrrhocoris apterus (Heteroptera) Cryobiology. 1997;34:70–79. doi: 10.1006/cryo.1996.1985. PubMed DOI
Addo-Bediako A., Chown S.L., Gaston K.J. Thermal tolerance, climatic variability and latitude. Proc. R. Soc. Lond. B Biol. Sci. 2000;267:739–745. doi: 10.1098/rspb.2000.1065. PubMed DOI PMC
Kimura M.T. Cold and heat tolerance of drosophilid flies with reference to their latitudinal distributions. Oecologia. 2004;140:442–449. doi: 10.1007/s00442-004-1605-4. PubMed DOI
Kellermann V., Loeschcke V., Hoffmann A.A., Kristensen T.N., Flojgaard C., David J.R., Svenning J.C., Overgaard J. Phylogenetic constraints in key functional traits behind species’ climate niches: Patterns of desiccation and cold resistance across 95 drosophila species. Evolution. 2012;66:3377–3389. doi: 10.1111/j.1558-5646.2012.01685.x. PubMed DOI
Andersen J.L., Manenti T., Sørensen J.G., MacMillan H.A., Loeschcke V., Overgaard J., Woods A. How to assess Drosophila cold tolerance: Chill coma temperature and lower lethal temperature are the best predictors of cold distribution limits. Funct. Ecol. 2015;29:55–65. doi: 10.1111/1365-2435.12310. DOI
Sunday J.M., Bates A.E., Dulvy N.K. Global analysis of thermal tolerance and latitude in ectotherms. Proc. R. Soc. Lond. B Biol. Sci. 2011;278:1823–1830. doi: 10.1098/rspb.2010.1295. PubMed DOI PMC
David J.R., Gibert P., Moreteau B., Gilchrist G.W., Huey R.B. The fly that came in from the cold: Geographic variation of recovery time from low-temperature exposure in Drosophila subobscura. Funct. Ecol. 2003;17:425–430. doi: 10.1046/j.1365-2435.2003.00750.x. DOI
Sinclair B.J., Williams C.M., Terblanche J.S. Variation in thermal performance among insect populations. Physiol. Biochem. Zool. 2012;85:594–606. doi: 10.1086/665388. PubMed DOI
Crozier L. Winter warming facilitates range expansion: Cold tolerance of the butterfly Atalopedes campestris. Oecologia. 2003;135:648–656. doi: 10.1007/s00442-003-1219-2. PubMed DOI
Kalushkov P., Nedvěd O. Cold hardiness of Pyrrhocoris apterus (Heteroptera: Pyrrhocoridae) from central and southern europe. Eur. J. Entomol. 2000;97:149–153. doi: 10.14411/eje.2000.027. DOI
Xie H.C., Li D.S., Zhang H.G., Mason C.E., Wang Z.Y., Lu X., Cai W.Z., He K.L. Seasonal and geographical variation in diapause and cold hardiness of the asian corn borer, Ostrinia furnacalis. Insect Sci. 2015;22:578–586. doi: 10.1111/1744-7917.12137. PubMed DOI
Castaneda L.E., Lardies M.A., Bozinovic F. Interpopulational variation in recovery time from chill coma along a geographic gradient: A study in the common woodlouse, Porcellio laevis. J. Insect Physiol. 2005;51:1346–1351. doi: 10.1016/j.jinsphys.2005.08.005. PubMed DOI
Socha R. Pyrrhocoris apterus (Heteroptera)—An experimental model species: A review. Eur. J. Entomol. 1993;90:241–286.
Renault D., Salin C., Vannier G., Vernon P. Survival at low temperatures in insects: What is the ecological significance of the supercooling point? Cryoletters. 2002;23:217–228. PubMed
Pivarciova L., Vaněčková H., Provaznik J., Wu B.C.H., Pivarci M., Pecková O., Bazalová O., Cada S., Kment P., Kotwica-Rolinska J., et al. Unexpected geographic variability of the free running period in the linden bug Pyrrhocoris apterus. J. Biol. Rhythm. 2016;31:568–576. doi: 10.1177/0748730416671213. PubMed DOI
Parmesan C., Root T.L., Willig M.R. Impacts of extreme weather and climate on terrestrial biota. Bull. Am. Meteorol. Soc. 2000;81:443–450. doi: 10.1175/1520-0477(2000)081<0443:IOEWAC>2.3.CO;2. DOI
Bale J.S. Insect cold hardiness: A matter of life and death. Eur. J. Entomol. 1996;93:369–382.
Numata H., Saulich A.H., Volkovich T.A. Photoperiodic responses of the linden bug, Pyrrhocoris apterus, under conditions of constant-temperature and under thermoperiodic conditions. Zool. Sci. 1993;10:521–527.
Saunders D.S. A diapause induction termination asymmetry in the photoperiodic responses of the linden bug, Pyrrhocoris apterus and an effect of near-critical photoperiods on development. J. Insect Physiol. 1983;29:399–405. doi: 10.1016/0022-1910(83)90067-7. DOI
Šlachta M., Vambera J., Zahradníčková H., Košťál V. Entering diapause is a prerequisite for successful cold-acclimation in adult Graphosoma lineatum (Heteroptera: Pentatomidae) J. Insect Physiol. 2002;48:1031–1039. doi: 10.1016/S0022-1910(02)00191-9. PubMed DOI
Denlinger D.L. Relationship between cold hardiness and diapause. In: Lee R.E., Denlinger D.L., editors. Insects at Low Temperature. Springer; Boston, MA, USA: 1991. pp. 174–198.