Direct chemical vapor deposition synthesis of large area single-layer brominated graphene

. 2019 Apr 30 ; 9 (24) : 13527-13532. [epub] 20190501

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35519551

Graphene and its derivatives such as functionalized graphene are considered to hold significant promise in numerous applications. Within that context, halogen functionalization is exciting for radical and nucleophilic substitution reactions as well as for the grafting of organic moieties. Historically, the successful covalent doping of sp2 carbon with halogens, such as bromine, was demonstrated with carbon nanotubes. However, the direct synthesis of brominated graphene has thus far remained elusive. In this study we show how large area brominated graphene with C-Br bonds can be achieved directly (i.e. a single step) using hydrogen rich low pressure chemical vapor deposition. The direct synthesis of brominated graphene could lead to practical developments.

Erratum v

PubMed

Zobrazit více v PubMed

Novoselov K. S. Geim A. K. Morozov S. V. Jiang D. Katsnelson M. I. Grigorieva I. V. Dubonos S. V. Firsov A. A. Nature. 2005;438:197–200. doi: 10.1038/nature04233. PubMed DOI

Marsden A. J. Brommer P. Mudd J. J. Dyson M. A. Cook R. Asensio M. Avila J. Levy A. Sloan J. Quigley D. Bell G. R. Wilson N. R. Nano Res. 2015;8(8):2620–2635. doi: 10.1007/s12274-015-0768-0. DOI

Boukhvalov D. W. Katsnelson M. I. J. Phys.: Condens. Matter. 2009;21(34):344205. doi: 10.1088/0953-8984/21/34/344205. PubMed DOI

Dreyer D. R. Todd A. D. Bielawski C. W. Chem. Soc. Rev. 2014;43:5288–5301. doi: 10.1039/C4CS00060A. PubMed DOI

Lee R. S. Kim H. J. Fischer J. E. Thess A. Nature. 1997;388:255–257. doi: 10.1038/40822. DOI

Unger E. Graham A. Kreupl F. Liebau M. Hoenlein W. Curr. Appl. Phys. 2002;2:107–111. doi: 10.1016/S1567-1739(01)00072-4. DOI

Hof F. Hauke F. Hirsch A. Chem. Commun. 2014;50:6582–6584. doi: 10.1039/C4CC00719K. PubMed DOI

Hines D. Rummeli M. H. Adebimpe D. Akins D. L. Chem. Commun. 2014;50:11568–11571. doi: 10.1039/C4CC03702B. PubMed DOI

Wettmarshausen S. Kuhn G. Hidde G. Mittmann H. U. Friedrich J. F. Plasma Processes Polym. 2007;4:832–839. doi: 10.1002/ppap.200700019. DOI

Fan X. Liu L. Kuo J.-L. Shen Z. J. Phys. Chem. C. 2010;114:14939–14945. doi: 10.1021/jp1041537. DOI

Jung N. Kim N. Jockusch S. Turro N. J. Kim P. Brus L. Nano Lett. 2009;9:4133–4137. doi: 10.1021/nl902362q. PubMed DOI

Chu S. W. Baek S. J. Kim D. C. Seo S. Kim J. S. Park Y. W. Synth. Met. 2012;162:1689–1693. doi: 10.1016/j.synthmet.2012.06.008. DOI

Wu K. H. Wang D. W. Zeng Q. Li Y. Gentle I. R. Chin. J. Catal. 2014;35:884–890. doi: 10.1016/S1872-2067(14)60108-X. DOI

Jankovsky O. Simek P. Klimova K. Sedmidubsky D. Matejkova S. Pumera M. Sofer Z. Nanoscale. 2014;6:6065–6074. doi: 10.1039/C4NR01154F. PubMed DOI

Singh S. Mitra K. Shukla A. Singh R. Gundampati R. K. Misra N. Maiti P. Ray B. Anal. Chem. 2017;89:783–791. doi: 10.1021/acs.analchem.6b03535. PubMed DOI

Singh S. Singh M. Mitra K. Singh R. Gupta S. K. S. Tiwari I. Ray B. Electrochim. Acta. 2017;258:1435–1444. doi: 10.1016/j.electacta.2017.12.006. DOI

Friedrich J. F. Hidde G. Lippitz A. Unger W. E. S. Plasma Processes Polym. 2014;34:621–645. doi: 10.1007/s11090-013-9509-x. DOI

Poh H. L. Simek P. Sofer Z. Pumera M. Chem.–Eur. J. 2013;19:2655–2662. doi: 10.1002/chem.201202972. PubMed DOI

Zheng J. Liu H.-T. Wu B. Di C.-A. Guo Y.-L. Wu T. Yu G. Liu Y.-Q. Zhu D.-B. Sci. Rep. 2012;2:662. doi: 10.1038/srep00662. PubMed DOI PMC

Mansour A. E. Dey S. Amassian A. ACS Appl. Mater. Interfaces. 2015;7:17692–17699. doi: 10.1021/acsami.5b03274. PubMed DOI

Li X. Cai W. An J. Kim S. Nah J. Yang D. Piner R. Velamakanni A. Jung I. Tutuc E. Banerjee S. K. Colombo L. Ruoff R. S. Science. 2009;324:1312–1314. doi: 10.1126/science.1171245. PubMed DOI

Wang H. Zhou Y. Wu D. Liao L. Zhao S. Peng H. Liu Z. Small. 2013;9(8):1316–1320. doi: 10.1002/smll.201203021. PubMed DOI

Vlassiouk I. Regmi M. Fulvio P. Dai S. Datskos P. Eres G. Smirnov S. ACS Nano. 2011;5:6069–6076. doi: 10.1021/nn201978y. PubMed DOI

Seo J. Lee J. Jang A. R. Choi Y. Kim U. Shin H. S. Park H. Chem. Mater. 2017;29:4202–4208. doi: 10.1021/acs.chemmater.6b04432. DOI

Ta H. Q. Perello D. J. Duong D. L. Han G. H. Gorantla S. Nguyen V. L. Bachmatiuk A. Rotkin S. V. Lee Y. H. Rümmeli M. H. Nano Lett. 2016;16:6403–6410. doi: 10.1021/acs.nanolett.6b02826. PubMed DOI

Gorantla S. Bachmatiuk A. Hwang J. Alsalman H. A. Kwak J. Y. Seyller T. Eckert J. Spencere M. G. Rummeli M. H. Nanoscale. 2014;6:889–896. doi: 10.1039/C3NR04739C. PubMed DOI

Rümmeli M. H. Gorantla S. Bachmatiuk A. Phieler J. Geißler N. Ibrahim I. Pang J. Eckert J. Chem. Mater. 2013;25:4861–4866. doi: 10.1021/cm401669k. DOI

Childres I., Jauregui L. A., Park W., Cao H. and Chen Y. P., New Developments in Photon and Materials Research, Nova Science Publishers, Hauppauge NY, 2013

Bulusheva L. G. Okotrub A. V. Flahaut E. Asanov I. P. Gevko N. P. Koroteev V. O. Fedoseeva Yu. V. Yaya A. Ewels C. P. Chem. Mater. 2012;24:2708–2715. doi: 10.1021/cm3006309. DOI

Rummeli M. H. Bachmatiuk A. Scott A. Borrnert F. Warner J. H. Hoffman V. Lin J. H. Cuniberti G. Buchner B. ACS Nano. 2010;4:4206–4210. doi: 10.1021/nn100971s. PubMed DOI

Friedrich J. F. Wettmarshausen S. Hanelt S. Mach R. Mix R. Zeynalov E. B. Meyer-Plath A. Carbon. 2010;48:3884–3894. doi: 10.1016/j.carbon.2010.06.054. DOI

Auchter E. Marquez J. Yarbro S. L. Dervishi E. AIP Adv. 2017;7:125306. doi: 10.1063/1.4986780. DOI

Zhang Y. Li Z. Kim P. Zhang L. Zhou C. Anisotropic Hydrogen Etching of Chemical Vapor Deposited Graphene. ACS Nano. 2012;6(1):126–132. doi: 10.1021/nn202996r. PubMed DOI

Zhao L. Ta H. Q. Dianat A. Soni A. Fediai A. Yin W. Gemming T. Trzebicka B. Cuniberti G. Liu Z. Bachmatiuk A. Rummeli M. H. Nano Lett. 2017;17:4725–4732. doi: 10.1021/acs.nanolett.7b01406. PubMed DOI

Yu Q. Jauregui L. A. Wu W. Colby R. Tian J. Su Z. Cao H. Liu Z. Pandey D. Wei D. Chung T. F. Peng P. Guisinger N. P. Stach E. A. Bao J. Pei S. S. Chen Y. P. Nat. Mater. 2011;10:443–449. doi: 10.1038/nmat3010. PubMed DOI

Colomer J. F. Marega R. Traboulsi H. Meneghetti M. Tendeloo G. V. Bonifazi D. Chem. Mater. 2009;21:4747–4749. doi: 10.1021/cm902029m. DOI

Gao J. Bao F. Zhu Q. Tan Z. Chen T. Cai H. Zhao C. Cheng Q. Yanga Y. Ma R. Polym. Chem. 2013;4:1672–1679. doi: 10.1039/C2PY20920A. DOI

Hayez V. Franquet A. Hubin A. Terryn H. Surf. Interface Anal. 2004;36:876–879. doi: 10.1002/sia.1790. DOI

Kwak J. Jo Y. Park S. D. Kim N. Y. Kim S. Y. Shin H. J. Lee Z. Kim S. Y. Kwon S. Y. Nat. Commun. 2017;8:1–12. doi: 10.1038/s41467-016-0009-6. PubMed DOI PMC

Kidambi P. R. Bayer B. C. Blume R. Wang Z. J. Baehtz C. Weatherup R. S. Willinger M. G. Schloegl R. Hofmann S. Nano Lett. 2013;13:4769–4778. doi: 10.1021/nl4023572. PubMed DOI PMC

Papirer E. Lacroix R. Donnet J.-B. Nanse G. Fioux P. Carbon. 1994;32:1341. doi: 10.1016/0008-6223(94)90121-X. DOI

Au H. Rubio N. Shaffer M. S. P. Chem. Sci. 2018;9:209–217. doi: 10.1039/C7SC03455E. PubMed DOI PMC

Li Y. Chen H. Voo L. Y. Ji J. Zhang G. Zhang G. Zhang F. Fan X. J. Mater. Chem. 2012;22:15021–15024. doi: 10.1039/C2JM32307A. DOI

Zhang J. Li C. Peng Z. Liu Y. Zhang J. Liu Z. Li D. Sci. Rep. 2017;7:4886. doi: 10.1038/s41598-017-04958-1. PubMed DOI PMC

Coates J. and Meyers R. A., Encyclopedia of Analytical Chemistry, John Wiley & Sons Ltd., Chichester, 2000

Xiaorong Z. Yanan L. Chengan T. Hui Z. Lin X. Jianfang W. Mater. Res. Express. 2017;4:045601. doi: 10.1088/2053-1591/aa6883. DOI

Banhart F. Kotakoski J. Krasheninnikov A. V. ACS Nano. 2010;5:26–41. doi: 10.1021/nn102598m. PubMed DOI

Wehling T. O. Yuan S. Lichtenstein A. I. Geim A. K. Katsnelson M. I. Phys. Rev. Lett. 2010;105:056802. doi: 10.1103/PhysRevLett.105.056802. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...