Direct chemical vapor deposition synthesis of large area single-layer brominated graphene
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35519551
PubMed Central
PMC9063914
DOI
10.1039/c9ra01152h
PII: c9ra01152h
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Graphene and its derivatives such as functionalized graphene are considered to hold significant promise in numerous applications. Within that context, halogen functionalization is exciting for radical and nucleophilic substitution reactions as well as for the grafting of organic moieties. Historically, the successful covalent doping of sp2 carbon with halogens, such as bromine, was demonstrated with carbon nanotubes. However, the direct synthesis of brominated graphene has thus far remained elusive. In this study we show how large area brominated graphene with C-Br bonds can be achieved directly (i.e. a single step) using hydrogen rich low pressure chemical vapor deposition. The direct synthesis of brominated graphene could lead to practical developments.
College of Chemistry and Molecular Engineering Peking University Beijing 100871 P R China
IFW Dresden 20 Helmholtz Strasse Dresden 01069 Germany
School of Natural Sciences National University of Sciences and Technology Islamabad 44000 Pakistan
Zobrazit více v PubMed
Novoselov K. S. Geim A. K. Morozov S. V. Jiang D. Katsnelson M. I. Grigorieva I. V. Dubonos S. V. Firsov A. A. Nature. 2005;438:197–200. doi: 10.1038/nature04233. PubMed DOI
Marsden A. J. Brommer P. Mudd J. J. Dyson M. A. Cook R. Asensio M. Avila J. Levy A. Sloan J. Quigley D. Bell G. R. Wilson N. R. Nano Res. 2015;8(8):2620–2635. doi: 10.1007/s12274-015-0768-0. DOI
Boukhvalov D. W. Katsnelson M. I. J. Phys.: Condens. Matter. 2009;21(34):344205. doi: 10.1088/0953-8984/21/34/344205. PubMed DOI
Dreyer D. R. Todd A. D. Bielawski C. W. Chem. Soc. Rev. 2014;43:5288–5301. doi: 10.1039/C4CS00060A. PubMed DOI
Lee R. S. Kim H. J. Fischer J. E. Thess A. Nature. 1997;388:255–257. doi: 10.1038/40822. DOI
Unger E. Graham A. Kreupl F. Liebau M. Hoenlein W. Curr. Appl. Phys. 2002;2:107–111. doi: 10.1016/S1567-1739(01)00072-4. DOI
Hof F. Hauke F. Hirsch A. Chem. Commun. 2014;50:6582–6584. doi: 10.1039/C4CC00719K. PubMed DOI
Hines D. Rummeli M. H. Adebimpe D. Akins D. L. Chem. Commun. 2014;50:11568–11571. doi: 10.1039/C4CC03702B. PubMed DOI
Wettmarshausen S. Kuhn G. Hidde G. Mittmann H. U. Friedrich J. F. Plasma Processes Polym. 2007;4:832–839. doi: 10.1002/ppap.200700019. DOI
Fan X. Liu L. Kuo J.-L. Shen Z. J. Phys. Chem. C. 2010;114:14939–14945. doi: 10.1021/jp1041537. DOI
Jung N. Kim N. Jockusch S. Turro N. J. Kim P. Brus L. Nano Lett. 2009;9:4133–4137. doi: 10.1021/nl902362q. PubMed DOI
Chu S. W. Baek S. J. Kim D. C. Seo S. Kim J. S. Park Y. W. Synth. Met. 2012;162:1689–1693. doi: 10.1016/j.synthmet.2012.06.008. DOI
Wu K. H. Wang D. W. Zeng Q. Li Y. Gentle I. R. Chin. J. Catal. 2014;35:884–890. doi: 10.1016/S1872-2067(14)60108-X. DOI
Jankovsky O. Simek P. Klimova K. Sedmidubsky D. Matejkova S. Pumera M. Sofer Z. Nanoscale. 2014;6:6065–6074. doi: 10.1039/C4NR01154F. PubMed DOI
Singh S. Mitra K. Shukla A. Singh R. Gundampati R. K. Misra N. Maiti P. Ray B. Anal. Chem. 2017;89:783–791. doi: 10.1021/acs.analchem.6b03535. PubMed DOI
Singh S. Singh M. Mitra K. Singh R. Gupta S. K. S. Tiwari I. Ray B. Electrochim. Acta. 2017;258:1435–1444. doi: 10.1016/j.electacta.2017.12.006. DOI
Friedrich J. F. Hidde G. Lippitz A. Unger W. E. S. Plasma Processes Polym. 2014;34:621–645. doi: 10.1007/s11090-013-9509-x. DOI
Poh H. L. Simek P. Sofer Z. Pumera M. Chem.–Eur. J. 2013;19:2655–2662. doi: 10.1002/chem.201202972. PubMed DOI
Zheng J. Liu H.-T. Wu B. Di C.-A. Guo Y.-L. Wu T. Yu G. Liu Y.-Q. Zhu D.-B. Sci. Rep. 2012;2:662. doi: 10.1038/srep00662. PubMed DOI PMC
Mansour A. E. Dey S. Amassian A. ACS Appl. Mater. Interfaces. 2015;7:17692–17699. doi: 10.1021/acsami.5b03274. PubMed DOI
Li X. Cai W. An J. Kim S. Nah J. Yang D. Piner R. Velamakanni A. Jung I. Tutuc E. Banerjee S. K. Colombo L. Ruoff R. S. Science. 2009;324:1312–1314. doi: 10.1126/science.1171245. PubMed DOI
Wang H. Zhou Y. Wu D. Liao L. Zhao S. Peng H. Liu Z. Small. 2013;9(8):1316–1320. doi: 10.1002/smll.201203021. PubMed DOI
Vlassiouk I. Regmi M. Fulvio P. Dai S. Datskos P. Eres G. Smirnov S. ACS Nano. 2011;5:6069–6076. doi: 10.1021/nn201978y. PubMed DOI
Seo J. Lee J. Jang A. R. Choi Y. Kim U. Shin H. S. Park H. Chem. Mater. 2017;29:4202–4208. doi: 10.1021/acs.chemmater.6b04432. DOI
Ta H. Q. Perello D. J. Duong D. L. Han G. H. Gorantla S. Nguyen V. L. Bachmatiuk A. Rotkin S. V. Lee Y. H. Rümmeli M. H. Nano Lett. 2016;16:6403–6410. doi: 10.1021/acs.nanolett.6b02826. PubMed DOI
Gorantla S. Bachmatiuk A. Hwang J. Alsalman H. A. Kwak J. Y. Seyller T. Eckert J. Spencere M. G. Rummeli M. H. Nanoscale. 2014;6:889–896. doi: 10.1039/C3NR04739C. PubMed DOI
Rümmeli M. H. Gorantla S. Bachmatiuk A. Phieler J. Geißler N. Ibrahim I. Pang J. Eckert J. Chem. Mater. 2013;25:4861–4866. doi: 10.1021/cm401669k. DOI
Childres I., Jauregui L. A., Park W., Cao H. and Chen Y. P., New Developments in Photon and Materials Research, Nova Science Publishers, Hauppauge NY, 2013
Bulusheva L. G. Okotrub A. V. Flahaut E. Asanov I. P. Gevko N. P. Koroteev V. O. Fedoseeva Yu. V. Yaya A. Ewels C. P. Chem. Mater. 2012;24:2708–2715. doi: 10.1021/cm3006309. DOI
Rummeli M. H. Bachmatiuk A. Scott A. Borrnert F. Warner J. H. Hoffman V. Lin J. H. Cuniberti G. Buchner B. ACS Nano. 2010;4:4206–4210. doi: 10.1021/nn100971s. PubMed DOI
Friedrich J. F. Wettmarshausen S. Hanelt S. Mach R. Mix R. Zeynalov E. B. Meyer-Plath A. Carbon. 2010;48:3884–3894. doi: 10.1016/j.carbon.2010.06.054. DOI
Auchter E. Marquez J. Yarbro S. L. Dervishi E. AIP Adv. 2017;7:125306. doi: 10.1063/1.4986780. DOI
Zhang Y. Li Z. Kim P. Zhang L. Zhou C. Anisotropic Hydrogen Etching of Chemical Vapor Deposited Graphene. ACS Nano. 2012;6(1):126–132. doi: 10.1021/nn202996r. PubMed DOI
Zhao L. Ta H. Q. Dianat A. Soni A. Fediai A. Yin W. Gemming T. Trzebicka B. Cuniberti G. Liu Z. Bachmatiuk A. Rummeli M. H. Nano Lett. 2017;17:4725–4732. doi: 10.1021/acs.nanolett.7b01406. PubMed DOI
Yu Q. Jauregui L. A. Wu W. Colby R. Tian J. Su Z. Cao H. Liu Z. Pandey D. Wei D. Chung T. F. Peng P. Guisinger N. P. Stach E. A. Bao J. Pei S. S. Chen Y. P. Nat. Mater. 2011;10:443–449. doi: 10.1038/nmat3010. PubMed DOI
Colomer J. F. Marega R. Traboulsi H. Meneghetti M. Tendeloo G. V. Bonifazi D. Chem. Mater. 2009;21:4747–4749. doi: 10.1021/cm902029m. DOI
Gao J. Bao F. Zhu Q. Tan Z. Chen T. Cai H. Zhao C. Cheng Q. Yanga Y. Ma R. Polym. Chem. 2013;4:1672–1679. doi: 10.1039/C2PY20920A. DOI
Hayez V. Franquet A. Hubin A. Terryn H. Surf. Interface Anal. 2004;36:876–879. doi: 10.1002/sia.1790. DOI
Kwak J. Jo Y. Park S. D. Kim N. Y. Kim S. Y. Shin H. J. Lee Z. Kim S. Y. Kwon S. Y. Nat. Commun. 2017;8:1–12. doi: 10.1038/s41467-016-0009-6. PubMed DOI PMC
Kidambi P. R. Bayer B. C. Blume R. Wang Z. J. Baehtz C. Weatherup R. S. Willinger M. G. Schloegl R. Hofmann S. Nano Lett. 2013;13:4769–4778. doi: 10.1021/nl4023572. PubMed DOI PMC
Papirer E. Lacroix R. Donnet J.-B. Nanse G. Fioux P. Carbon. 1994;32:1341. doi: 10.1016/0008-6223(94)90121-X. DOI
Au H. Rubio N. Shaffer M. S. P. Chem. Sci. 2018;9:209–217. doi: 10.1039/C7SC03455E. PubMed DOI PMC
Li Y. Chen H. Voo L. Y. Ji J. Zhang G. Zhang G. Zhang F. Fan X. J. Mater. Chem. 2012;22:15021–15024. doi: 10.1039/C2JM32307A. DOI
Zhang J. Li C. Peng Z. Liu Y. Zhang J. Liu Z. Li D. Sci. Rep. 2017;7:4886. doi: 10.1038/s41598-017-04958-1. PubMed DOI PMC
Coates J. and Meyers R. A., Encyclopedia of Analytical Chemistry, John Wiley & Sons Ltd., Chichester, 2000
Xiaorong Z. Yanan L. Chengan T. Hui Z. Lin X. Jianfang W. Mater. Res. Express. 2017;4:045601. doi: 10.1088/2053-1591/aa6883. DOI
Banhart F. Kotakoski J. Krasheninnikov A. V. ACS Nano. 2010;5:26–41. doi: 10.1021/nn102598m. PubMed DOI
Wehling T. O. Yuan S. Lichtenstein A. I. Geim A. K. Katsnelson M. I. Phys. Rev. Lett. 2010;105:056802. doi: 10.1103/PhysRevLett.105.056802. PubMed DOI