Common and distinct roles of juvenile hormone signaling genes in metamorphosis of holometabolous and hemimetabolous insects
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
22174880
PubMed Central
PMC3234286
DOI
10.1371/journal.pone.0028728
PII: PONE-D-11-20062
Knihovny.cz E-zdroje
- MeSH
- biologické modely MeSH
- hmyz účinky léků genetika růst a vývoj MeSH
- hmyzí geny genetika MeSH
- juvenilní hormony farmakologie MeSH
- konzervovaná sekvence genetika MeSH
- larva účinky léků genetika MeSH
- represorové proteiny genetika metabolismus MeSH
- signální transdukce účinky léků genetika MeSH
- stadia vývoje účinky léků genetika MeSH
- stárnutí účinky léků genetika MeSH
- vývojová regulace genové exprese účinky léků MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- juvenilní hormony MeSH
- represorové proteiny MeSH
Insect larvae metamorphose to winged and reproductive adults either directly (hemimetaboly) or through an intermediary pupal stage (holometaboly). In either case juvenile hormone (JH) prevents metamorphosis until a larva has attained an appropriate phase of development. In holometabolous insects, JH acts through its putative receptor Methoprene-tolerant (Met) to regulate Krüppel-homolog 1 (Kr-h1) and Broad-Complex (BR-C) genes. While Met and Kr-h1 prevent precocious metamorphosis in pre-final larval instars, BR-C specifies the pupal stage. How JH signaling operates in hemimetabolous insects is poorly understood. Here, we compare the function of Met, Kr-h1 and BR-C genes in the two types of insects. Using systemic RNAi in the hemimetabolous true bug, Pyrrhocoris apterus, we show that Met conveys the JH signal to prevent premature metamorphosis by maintaining high expression of Kr-h1. Knockdown of either Met or Kr-h1 (but not of BR-C) in penultimate-instar Pyrrhocoris larvae causes precocious development of adult color pattern, wings and genitalia. A natural fall of Kr-h1 expression in the last larval instar normally permits adult development, and treatment with an exogenous JH mimic methoprene at this time requires both Met and Kr-h1 to block the adult program and induce an extra larval instar. Met and Kr-h1 therefore serve as JH-dependent repressors of deleterious precocious metamorphic changes in both hemimetabolous and holometabolous juveniles, whereas BR-C has been recruited for a new role in specifying the holometabolous pupa. These results show that despite considerable evolutionary distance, insects with diverse developmental strategies employ a common-core JH signaling pathway to commit to adult morphogenesis.
Zobrazit více v PubMed
Sehnal F, Svacha P, Zrzavy J. Evolution of insect metamorphosis. In: Gilbert LI, Tata JR, Atkinson BG, editors. Metamorphosis. Postembryonic reprogramming of gene expression in amphibian and insect cells. San Diego: Academic Press; 1996. pp. 3–58.
Kristensen N. Phylogeny of endopterygote insects, the most successful lineage of living organisms. Eur J Entomol. 1999;96:237–253.
Gilbert LI, Granger NA, Roe RM. The juvenile hormones: historical facts and speculations on future research directions. Insect Biochem Mol Biol. 2000;30:617–644. PubMed
Nijhout H. Insect hormones. Princeton: Princeton University Press; 1994. 267
Riddiford L. Cellular and molecular actions of juvenile hormone. I. General considerations and premetamorphic actions. Adv Insect Physiol. 1994;24:213–274.
Fukuda S. The hormonal mechanism of larval molting and metamorphosis in the silkworm. J Fac Sci Tokyo Univ sec IV. 1944;6:477–532.
Wigglesworth V. The physiology of insect metamorphosis. Cambridge: Cambridge University Press; 1954. 152
Williams C. The juvenile hormone. II. Its role in the endocrine control of molting, pupation, and adult development in the Cecropia silkworm. Biol Bull. 1961;116:323–338.
Wigglesworth V. The physiology of ecdysis in Rhodnius prolixus (Hemiptera). II. Factors controlling moulting and “metamorphosis.”. Quart J Micr Sci. 1934;77:191–222.
Wigglesworth V. The function of the corpus allatum in the growth and reproduction of Rhodnius prolixus (Hemiptera). Quart J Micr Sci. 1936;79:91–121.
Wilson TG, Fabian J. A Drosophila melanogaster mutant resistant to a chemical analog of juvenile hormone. Dev Biol. 1986;118:190–201. PubMed
Ashok M, Turner C, Wilson TG. Insect juvenile hormone resistance gene homology with the bHLH-PAS family of transcriptional regulators. Proc Natl Acad Sci U S A. 1998;95:2761–2766. PubMed PMC
Konopova B, Jindra M. Juvenile hormone resistance gene Methoprene-tolerant controls entry into metamorphosis in the beetle Tribolium castaneum. Proc Natl Acad Sci U S A. 2007;104:10488–10493. doi: 10.1073/pnas.0703719104. PubMed DOI PMC
Minakuchi C, Namiki T, Yoshiyama M, Shinoda T. RNAi-mediated knockdown of juvenile hormone acid O-methyltransferase gene causes precocious metamorphosis in the red flour beetle Tribolium castaneum. FEBS J. 2008;275:2919–2931. doi: 10.1111/j.1742-4658.2008.06428.x. PubMed DOI
Parthasarathy R, Tan A, Palli SR. bHLH-PAS family transcription factor methoprene-tolerant plays a key role in JH action in preventing the premature development of adult structures during larval–pupal metamorphosis. Mech Dev. 2008;125:601–616. doi: 10.1016/j.mod.2008.03.004. PubMed DOI PMC
Konopova B, Jindra M. Broad-Complex acts downstream of Met in juvenile hormone signaling to coordinate primitive holometabolan metamorphosis. Development. 2008;135:559–568. doi: 10.1242/dev.016097. PubMed DOI
Minakuchi C, Namiki T, Shinoda T. Krüppel homolog 1, an early juvenile hormone-response gene downstream of Methoprene-tolerant, mediates its anti-metamorphic action in the red flour beetle Tribolium castaneum. Dev Biol. 2009;325:341–350. doi: 10.1016/j.ydbio.2008.10.016. PubMed DOI
Minakuchi C, Zhou X, Riddiford LM. Krüppel homolog 1 (Kr-h1) mediates juvenile hormone action during metamorphosis of Drosophila melanogaster. Mech Dev. 2008;125:91–105. doi: 10.1016/j.mod.2007.10.002. PubMed DOI PMC
Kiss I, Beaton AH, Tardiff J, Fristrom D, Fristrom JW. Interactions and developmental effects of mutations in the Broad-Complex of Drosophila melanogaster. Genetics. 1988;118:247–259. PubMed PMC
Zhou X, Riddiford LM. Broad specifies pupal development and mediates the “status quo” action of juvenile hormone on the pupal-adult transformation in Drosophila and Manduca. Development. 2002;129:2259–2269. PubMed
Uhlirova M, Foy BD, Beaty BJ, Olson KE, Riddiford LM, et al. Use of Sindbis virus-mediated RNA interference to demonstrate a conserved role of Broad-Complex in insect metamorphosis. Proc Natl Acad Sci U S A. 2003;100:15607–15612. doi: 10.1073/pnas.2136837100. PubMed DOI PMC
Suzuki Y, Truman JW, Riddiford LM. The role of Broad in the development of Tribolium castaneum: implications for the evolution of the holometabolous insect pupa. Development. 2008;135:569–577. doi: 10.1242/dev.015263. PubMed DOI
Parthasarathy R, Tan A, Bai H, Palli SR. Transcription factor broad suppresses precocious development of adult structures during larval–pupal metamorphosis in the red flour beetle, Tribolium castaneum. Mech Dev. 2008;125:299–313. doi: 10.1016/j.mod.2007.11.001. PubMed DOI PMC
Erezyilmaz DF, Rynerson MR, Truman JW, Riddiford LM. The role of the pupal determinant broad during embryonic development of a direct-developing insect. Dev. Genes Evol. 2010;219:535–544. doi: 10.1007/s00427-009-0315-7. PubMed DOI PMC
Piulachs M-D, Pagone V, Bellés X. Key roles of the Broad-Complex gene in insect embryogenesis. Insect Biochem Mol Biol. 2010;40:468–475. doi: 10.1016/j.ibmb.2010.04.006. PubMed DOI
Erezyilmaz DF, Riddiford LM, Truman JW. The pupal specifier broad directs progressive morphogenesis in a direct-developing insect. Proc Natl Acad Sci U S A. 2006;103:6925–6930. doi: 10.1073/pnas.0509983103. PubMed DOI PMC
Sláma K. Effect of hormones on growth and respiratory metabolism in the larvae of Pyrrhocoris apterus L. (Hemiptera). J Insect Physiol. 1965;11:113–122. PubMed
Sláma K, Williams CM. Juvenile hormone activity for the bug Pyrrhocoris apterus. Proc Natl Acad Sci U S A. 1965;54:411–414. PubMed PMC
Willis J, Rezaur R, Sehnal F. Juvenoids cause some insects to form composite cuticles. J Embryol Exp Morph. 1982;71:25–40. PubMed
Nijhout H. Definition of a juvenile hormone-sensitive period in Rhodnius prolixus. J Insect Physiol. 1983;29:669–677.
Novak V. Insect hormones. London: Methuen & Co. Ltd; 1966. 478
Truman JW, Riddiford LM. The origins of insect metamorphosis. Nature. 1999;401:447–452. doi: 10.1038/46737. PubMed DOI
Truman JW, Riddiford LM. Endocrine insights into the evolution of metamorphosis in insects. Annu Rev Entomol. 2002;47:467–500. doi: 10.1146/annurev.ento.47.091201.145230. PubMed DOI
Belles X. Origin and evolution of insect metamorphosis. Chichester: John Wiley & Sons, Ltd; 2011. doi: 10.1002/9780470015902.a0022854. DOI
Hinton H. The origin and function of the pupal stage. Proc R Ent Soc Lond. 1963;38:77–85.
Dolezel D, Zdechovanova L, Sauman I, Hodkova M. Endocrine-dependent expression of circadian clock genes in insects. Cell Mol Life Sci. 2008;65:964–969. doi: 10.1007/s00018-008-7506-7. PubMed DOI PMC
Steroid receptor coactivator TAIMAN is a new modulator of insect circadian clock
Evolution of proteins involved in the final steps of juvenile hormone synthesis
Role of Methoprene-tolerant in the regulation of oogenesis in Dipetalogaster maxima
Approaches and Tools to Study the Roles of Juvenile Hormones in Controlling Insect Biology