The embryonic role of juvenile hormone in the firebrat, Thermobia domestica, reveals its function before its involvement in metamorphosis
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu preprinty, časopisecké články
Grantová podpora
R21 AI167849
NIAID NIH HHS - United States
PubMed
37873170
PubMed Central
PMC10592639
DOI
10.1101/2023.10.06.561279
PII: 2023.10.06.561279
Knihovny.cz E-zdroje
- Klíčová slova
- differentiation, ecdysone, juvenile hormone, metamorphosis, myoglianin, precocene,
- Publikační typ
- časopisecké články MeSH
- preprinty MeSH
To gain insights into how juvenile hormone (JH) came to regulate insect metamorphosis, we studied its function in the ametabolous firebrat, Thermobia domestica. Highest levels of JH occur during late embryogenesis, with only low levels thereafter. Loss-of-function and gain-of-function experiments show that JH acts on embryonic tissues to suppress morphogenesis and cell determination and to promote their terminal differentiation. Similar embryonic actions of JH on hemimetabolous insects with short germ band embryos indicate that JH's embryonic role preceded its derived function as the postembryonic regulator of metamorphosis. The postembryonic expansion of JH function likely followed the evolution of flight. Archaic flying insects were considered to lack metamorphosis because tiny, movable wings were evident on the thoraces of young juveniles and their positive allometric growth eventually allowed them to support flight in late juveniles. Like in Thermobia, we assume that these juveniles lacked JH. However, a postembryonic reappearance of JH during wing morphogenesis in the young juvenile likely redirected wing development to make a wing pad rather than a wing. Maintenance of JH then allowed wing pad growth and its disappearance in the mature juvenile then allowed wing differentiation. Subsequent modification of JH action for hemi- and holometabolous lifestyles are discussed.
Department of Biological Sciences and BSI Florida International University FL USA
Department of Biology University of Washington Seattle WA USA
Department of Zoology Faculty of Science University of South Bohemia Ceske Budejovice Czech Republic
Friday Harbor Laboratories University of Washington Friday Harbor WA USA
Zobrazit více v PubMed
Aboulafia-Baginsky N., Pener M. P., & Staal G. B. (1984). Chemical allatectomy of late Locusta embryos by synthetic precocene and its effect on hopper morphogenesis, J. Insect. Physiol. 30:839–852.
Anderson D. T. (1972a). Development of hemimetabolous insects. In: Counce S.J., and Waddington C.H., eds., Developmental Systems: Insects. Vol. 1. pp. 95–163. Academic Press, London.
Anderson D. T. (1972b). Development of holometabolous insects. In: Counce S.J., and Waddington C.H., eds., Developmental Systems: Insects. Vol. 1. pp. 164–242. Academic Press, London.
Angelini D. R., & Kaufman T. C. (2005). Insect appendages and comparative ontogenetics. Dev. Biol. 286:57–77. 10.1016/j.ydbio.2005.07.006 PubMed DOI
Awasaki T., Huang Y., O’Connor M. B., & Lee T. (2011). Glia instruct developmental neuronal remodeling through TGF-β signaling. Nature neurosci. 14:821–823. 10.1038/nn.2833 PubMed DOI PMC
Bai Y., Lv Y. N., Zeng M., Jia P. Y., Lu H. N., Zhu Y. B., Li S., Cui Y. Y., & Luan Y. X. (2020). Selection of Reference Genes for Normalization of Gene Expression in Thermobia domestica (Insecta: Zygentoma: Lepismatidae). Genes 12:21. 10.3390/genes12010021 PubMed DOI PMC
Baker F. C., Lanzrein B., Miller C. A., Tsai L. W., Jamieson G. C., & Schooley D. A. (1984). Detection of only JH III in several life-stages of Nauphoeta cinerea and Thermobia domestica. Life Sci. 35:1553–1560. 10.1016/0024-3205(84)90353-9 PubMed DOI
Barton L. J., Sanny J., Dawson E. P., Nouzova M., Noriega F. G., Stadtfeld M. & Lehmann R. (2021). Juvenile hormones direct primordial germ cell migration to the embryonic gonad. bioRxiv 2021.09.30.462471 PubMed PMC
Beck Y., Pecasse F., & Richards G. (2004). Krüppel-homolog is essential for the coordination of regulatory gene hierarchies in early Drosophila development. Dev. Biol. 268:64–75. 10.1016/j.ydbio.2003.12.017 PubMed DOI
Belles X. (2019). The innovation of the final moult and the origin of insect metamorphosis. Phil. Trans. R. Soc. London B 374:20180415. 10.1098/rstb.2018.0415 PubMed DOI PMC
Belles X. (2020a). Krüppel homolog 1 and E93: The doorkeeper and the key to insect metamorphosis. Arch. Insect Biochem. Physiol. 103:e21609. 10.1002/arch.21609 PubMed DOI
Belles X. (2020b) Insect Metamorphosis: From Natural History to Regulation of Development and Evolution. 352 pp. Academic Press, London.
Bergot B. J., Ratcliffe M., and Schooley D. A. (1981a). Method for the quantitative determination of the four known juvenile hormones in insect tissue using gas chromatography-mass spectrometry. J. Chromatog. 204:231–244.
Bergot B. J., Baker F. C., Cerf D. C., Jamieson G., & Schooley D. A. (1981b). Qualitative and quantitative aspects of juvenile hormone titers in developing embryos of several insect species: discovery of a new JH-like substance extracted from eggs of Manduca sexta. In: Pratt G. E. & Brooks G. T., eds., Juvenile Hormone Biochemistry. Action, Agonism, and Antagonism, pp. 33–45. Elsevier/North Holland, Amsterdam.
Bitsch C., Baehr J. & Bitsch J. (1985). Juvenile hormones in Thermobia domestica females: identification and quantification during biological cycles and after precocene application. Experientia 41:409–410.
Borst D.W., Laufer H., Landau M., Chang E.S., Hertz W.A., Baker F.C., & Schooley D.A. (1987). Methyl farnesoate and its role in crustacean reproduction and development. Insect Biochem. 17:1123–1127.
Bowers W. S., & Martinez-Pardo R. (1977). Antiallatotropins: inhibition of corpus allatum development. Science 197:1369–1371. 10.1126/science.197.4311.1369 PubMed DOI
Brand P., Robertson H. M., Lin W., Pothula R., Klingeman W. E., Jurat-Fuentes J. L., & Johnson B. R. (2018). The origin of the odorant receptor gene family in insects. eLife 7:e38340. 10.7554/eLife.38340 PubMed DOI PMC
Brüning E., Saxer A., & Lanzrein B. (1985). Methyl farnesoate and juvenile hormone III in normal and precocene treated embryos of the ovoviviparous cockroach Nauphoeta cinerea. Int. J. Invert. Reprod. Dev. 12:29–44.
Cavallin M., & Fournier B. (1981). Characteristics of development and variations in ecdysteroid levels in Clitumnus embryos deprived of their cephalic endocrine glands. J. Insect Physiol. 27:527–534.
Chafino S., Ureña E., Casanova J., Casacuberta E., Franch-Marro X., & Martín D. (2019). Upregulation of E93 gene expression acts as the trigger for metamorphosis independently of the threshold size in the beetle Tribolium castaneum. Cell Rep. 27:1039–1049. 10.1016/j.celrep.2019.03.094 PubMed DOI
Charles J. P., Iwema T., Epa V. C., Takaki K., Rynes J., & Jindra M. (2011). Ligand-binding properties of a juvenile hormone receptor, Methoprene-tolerant. Proc. Natl. Acad. Sci. USA 108:21128–21133. 10.1073/pnas.1116123109 PubMed DOI PMC
Cohen S. M. (1993). Imaginal disc development. In: Bate M. & Martinez-Arias A., eds. The Development of Drosophila melanogaster, vol. II, pp. 747–841. Cold Spring Harbor Laboratory Press, Plainview.
Cohen S. M., & Jürgens G. (1989). Proximal-distal pattern formation in Drosophila: cell autonomous requirement for Distal-less gene activity in limb development. EMBO J. 8:2045–2055. 10.1002/j.1460-2075.1989.tb03613.x PubMed DOI PMC
Daimon T., Uchibori M., Nakao H., Sezutsu H., & Shinoda T. (2015). Knockout silkworms reveal a dispensable role for juvenile hormones in holometabolous life cycle. Proc. Natl. Acad. Sci. USA 112:E4226–E4235. 10.1073/pnas.1506645112 PubMed DOI PMC
Dekanty A., & Milán M. (2011). The interplay between morphogens and tissue growth. EMBO Reports 12:1003–1010. 10.1038/embor.2011.172 PubMed DOI PMC
Dorn A. (1982). Precocene-induced effects and possible role of juvenile hormone during embryogenesis of the milkweed bug Oncopeltus fasciatus. Gen. Comp. Endocr. 46:42–52. 10.1016/0016-6480(82)90161-7 PubMed DOI
Enslee E. C., & Riddiford L. M. (1977). Morphological effects of juvenile hormone mimics on embryonic development in the bug, Pyrrhocoris apterus. Wilh. Roux’s Arch. Devel. Biol. 181:163–181. 10.1007/BF00848440 PubMed DOI
Erezyilmaz D. F., Riddiford L. M., & Truman J. W. (2004). Juvenile hormone acts at embryonic molts and induces the nymphal cuticle in the direct-developing cricket. Dev. Genes Evol. 214: 313–323. 10.1007/s00427-004-0408-2 PubMed DOI
Fain M. J., & Riddiford L. M. (1975). Juvenile hormone titers in the hemolymph during late larval development of the tobacco hornworm, Manduca sexta (L.). Biol. Bull. 149: 506–521. 10.2307/1540383 PubMed DOI
Fernandez-Nicolas A., & Belles X. (2017). Juvenile hormone signaling in short germ-band hemimetabolan embryos. Development 144:4637–4644. 10.1242/dev.152827 PubMed DOI
Fernandez-Nicolas A., Machaj G., Ventos-Alfonso A., Pagone V., Minemura T., Ohde T., Daimon T., Ylla G., & Belles X. (2023). Reduction of embryonic E93 expression as a hypothetical driver of the evolution of insect metamorphosis. Proc. Natl. Acad. Sci. USA 120:e2216640120. 10.1073/pnas.2216640120 PubMed DOI PMC
Fox C. W., & Czesak M. E. (2000). Evolutionary ecology of progeny size in arthropods. Annu. Rev. Entomol. 45:341–369. 10.1146/annurev.ento.45.1341 PubMed DOI
Friedrich M. (2006). Continuity versus split and reconstitution: exploring the molecular developmental corollaries of insect eye primordium evolution. Dev. Biol. 299:310–329. 10.1016/j.ydbio.2006.08.027 PubMed DOI
Goodman W. G. & Cusson M. (2012). The juvenile hormones. In: Gilbert L. I., ed., Insect Endocrinology, pp. 310–365. Elsevier, Amsterdam.
Goodman W.G., & Granger N.A. (2005). The juvenile hormones. In: Gilbert L. I., Iatrou K., & Gill S. S., eds., Comprehensive Molecular Insect Science. Vol. 3, p. 319–408. Elsevier Press, Amsterdam.
Hanley K., Kömüves L. G., Ng D. C., Schoonjans K., He S. S., Lau P., Bikle D. D., Williams M. L., Elias P. M., Auwerx J., & Feingold K. R. (2000). Farnesol stimulates differentiation in epidermal keratinocytes via PPARalpha. J. Biol. Chem. 275:11484–11491. 10.1074/jbc.275.15.11484 PubMed DOI
Harrington B.J, and Hageage G.J., (2003). Calcofluor white: a review of its uses and applications in clinical mycology and parasitology, Lab. Med. 34:361–367.
Haug J. T., Haug C., & Garwood R. J. (2016). Evolution of insect wings and development - new details from Palaeozoic nymphs. Biol. Rev. Camb. Phil. Soc. 91:53–69. 10.1111/brv.12159 PubMed DOI
He L. L., Shin S. H., Wang Z., Yuan I., Weschler R., Chiou A., Koyama T., Nijhout H. F., & Suzuki Y. (2020). Mechanism of threshold size assessment: Metamorphosis is triggered by the TGF-beta/Activin ligand Myoglianin. Insect Biochem. Mol. Biol. 126:103452. 10.1016/j.ibmb.2020.103452 PubMed DOI
He Q. & Zhang Y. (2022). Kr-h1, a cornerstone gene in insect life history. Front. Physiol. 13:905441. 10.3389/fphys.2022.905441 PubMed DOI PMC
Hemming B. S. (2003) Insect Development and Evolution. Cornell University Press, Ithaca. 464 pp. 10.7591/9781501720758 DOI
Hendzel M., Wei Y., Mancini M. et al. (1997) Mitosis-specific phosphorylation of histone H3 initiates primarily within pericentromeric heterochromatin during G2 and spreads in an ordered fashion coincident with mitotic chromosome condensation. Chromosoma 106:348–360. 10.1007/s004120050256 PubMed DOI
Hornby J. M., Jensen E. C., Lisec A. D., Tasto J. J., Jahnke B., Shoemaker R., Dussault P., & Nickerson K. W. (2001). Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol. Appl. Environ. Microbiol. 67:2982–2992. 10.1128/AEM.67.7.2982-2992.2001 PubMed DOI PMC
Imboden H., Lanzrein B., Delbecque J. P. & Lüscher M. (1978). Ecdysteroids and juvenile hormone during embryogenesis in the ovoviviparous cockroach Nauphoeta cinerea. Gen. Comp. Endocrin. 36:628–635. PubMed
Ishimaru Y., Tomonari S., Matsuoka Y., Watanabe T., Miyawaki K., Bando T., Tomioka K., Ohuchi H., Noji S., & Mito T. (2016). TGF-β signaling in insects regulates metamorphosis via juvenile hormone biosynthesis. Proc. Natl. Acad. Sci., U.S.A. 113:5634–5639. PubMed PMC
Jindra M. (2019). Where did the pupa come from? The timing of juvenile hormone signalling supports homology between stages of hemimetabolous and holometabolous insects. Phil. Trans. R. Soc. London B 374:20190064. 10.1098/rstb.2019.0064 PubMed DOI PMC
Jindra M., Palli S. R., & Riddiford L. M. (2013). The juvenile hormone signaling pathway in insect development. Ann. Rev. Entomol. 58:181–204. 10.1146/annurev-ento-120811-153700 PubMed DOI
Jindra M., Bellés X., & Shinoda T. (2015). Molecular basis of juvenile hormone signaling. Curr. Opin. Insect Sci. 11:39–46. 10.1016/j.cois.2015.08.004 PubMed DOI
Jura C. (1972). Development of apterygote insects. In: Counce S.J., and Waddington C.H., eds., Developmental Systems: Insects. Vol 1. pp. 49–94. Academic Press, London.
Kamsoi O., & Belles X. (2019). Myoglianin triggers the premetamorphosis stage in hemimetabolan insects. FASEB J. 33:3659–3669. 10.1096/fj.201801511R PubMed DOI
Kamsoi O., Ventos-Alfonso A., Casares F., Almudi I., & Belles X. (2021). Regulation of metamorphosis in neopteran insects is conserved in the paleopteran Cloeon dipterum (Ephemeroptera). Proc. Natl. Acad. Sci., U.S.A. 118:e2105272118. 10.1073/pnas.2105272118 PubMed DOI PMC
Kenyon K. L., Ranade S. S., Curtiss J., Mlodzik M., & Pignoni F. (2003). Coordinating proliferation and tissue specification to promote regional identity in the Drosophila head. Dev. Cell 5:403–414. 10.1016/s1534-5807(03)00243-0 PubMed DOI
Klag J. (1978). Differentiation of ectodermal cells and cuticle formation during embryogenesis of the firebrat, Thermobia domestica (Packard) (Thysanura). Acta Biol. Cracov Ser. Zool. 21:45–55.
Konopová B., & Zrzavý J. (2005). Ultrastructure, development, and homology of insect embryonic cuticles. J. Morphol. 264:339–362. 10.1002/jmor.10338 PubMed DOI
Konopová B., Smykal V., & Jindra M. (2011). Common and distinct roles of juvenile hormone signaling genes in metamorphosis of holometabolous and hemimetabolous insects. PloS One 6:e28728. 10.1371/journal.pone.0028728 PubMed DOI PMC
Kukalová-Peck J. 1978. Origin and evolution of insect wings and their relation to metamorphosis, as documented by the fossil record. J. Morphol. 156:53–125. 10.1002/jmor.105156010414. PubMed DOI
Lagueux M., Hetru C., Goltzene F., Kappler C. & Hoffmann J. A. (1979). Ecdysone titre and metabolism in relation to cuticulogenesis in embryos of Locusta migratoria. J. Insect Physiol. 25:709–723. 10.1016/0022-1910(77)90116-0 DOI
Lanzrein B., Gentinetta V., Abegglen H., Baker F.C., Miller C.A., and Schooley D.A. (1985). Titers of ecdysone, 20-hydroxyecdysone and juvenile hormone III throughout the life cycle of a hemimetabolous insect, the ovoviviparous cockroach Nauphoeta cinerea. Experientia 41:913–917.
Laufer H. & Biggers W. J. (2001). Unifying concepts learned from methyl farnesoate for invertebrate reproduction and post-embryonic development. Amer. Zool. 41:442–457.
Laufer H., Biggers W. J., & Ahl J. S. (1998). Stimulation of ovarian maturation in the crayfish Procambarus clarkii by methyl farnesoate. Gen. Comp. Endocrin. 111:113–118. 10.1006/gcen.1998.7109 PubMed DOI
Lee J. H., Kim C., Kim S. H., Sethi G., & Ahn K. S. (2015). Farnesol inhibits tumor growth and enhances the anticancer effects of bortezomib in multiple myeloma xenograft mouse model through the modulation of STAT3 signaling pathway. Cancer Lett. 360:280–293. 10.1016/j.canlet.2015.02.024 PubMed DOI
Liu P., Fu X., & Zhu J. (2018). Juvenile hormone-regulated alternative splicing of the taiman gene primes the ecdysteroid response in adult mosquitoes. Proc. Natl. Acad. Sci. USA 115: E7738–E7747. https://doi.org/pnas.1808146115 PubMed PMC
Lozano J., Kayukawa T., Shinoda T., & Belles X. (2014). A role for Taiman in insect metamorphosis. PLoS genetics 10:e1004769. 10.1371/journal.pgen.1004769 PubMed DOI PMC
Maestro J. L., Pascual N., Treiblmayr K., Lozano J., & Bellés X. (2010). Juvenile hormone and allatostatins in the German cockroach embryo. Insect Biochem Molec Biol. 40:660–665. 10.1016/j.ibmb.2010.06.006 PubMed DOI
Mercer W. F. (1900). The development of wings in the Lepidoptera. J. New York Ent. Soc., 8:1–20.
Margam V. M., Gelman D. B., & Palli S. R. (2006). Ecdysteroid titers and developmental expression of ecdysteroid-regulated genes during metamorphosis of the yellow fever mosquito, Aedes aegypti (Diptera: Culicidae). J. Insect Physiol. 52: 558–568. 10.1016/j.jinsphys.2006.02.003 PubMed DOI
Minakuchi C., Tanaka M., Miura K., & Tanaka T. (2011). Developmental profile and hormonal regulation of the transcription factors broad and Krüppel homolog 1 in hemimetabolous thrips. Insect Biochem. Molec. Biol. 41:125–134. 10.1016/j.ibmb.2010.11.004 PubMed DOI
Montell D. J. (2001). Command and control: regulatory pathways controlling invasive behavior of the border cells. Mech. Dev. 105:19–25. 10.1016/s0925-4773(01)00393-8 PubMed DOI
Naruse S., Washidu Y., Miura K., Shinoda T., & Minakuchi C. (2020). Methoprene-tolerant is essential for embryonic development of the red flour beetle Tribolium castaneum. J. Insect Physiol. 121:104017. 10.1016/j.jinsphys.2020.104017 PubMed DOI
Neville A. J. (1975). Biology of Arthropod Cuticle. 448 pp. Springer-Verlag, New York.
Nijhout H.F. (1994). Insect Hormones. 280 pp. Princeton University Press, Princeton.
Nijhout H. F., & Kremen C. (1998). Control of pupal commitment in the imaginal disks of Precis coenia (Lepidoptera: Nymphalidae). J. Insect Physiol. 44:287–296. 10.1016/s0022-1910(97)00121-2 PubMed DOI
Nijhout H.F., & Wheeler D.E. (1982). Juvenile hormone and the physiological basis of insect polymorphisms. Quart. Rev. Biol. 57:109–133.
Nijhout H.F., and Williams C.M. (1974) Control of moulting and metamorphosis in the tobacco hornworm, Manduca sexta (L.): cessation of juvenile hormone secretion as a trigger for pupation. J. Exp. Biol. 61:493–501. 10.1242/jeb.6L2.493 PubMed DOI
Novák V. J. (1969). Morphogenetic analysis of the effects of juvenile hormone analogues and other morphogenetically active substances on embryos of Schistocerca gregaria (Forskål). J. Embryol. Exp. Morphol. 21:1–21. PubMed
Oh K. B., Miyazawa H., Naito T., & Matsuoka H. (2001). Purification and characterization of an autoregulatory substance capable of regulating the morphological transition in Candida albicans. Proc. Natl. Acad. Sci. USA 98:4664–4668. 10.1073/pnas.071404698 PubMed DOI PMC
Panfilio KA. (2008). Extraembryonic development in insects and the acrobatics of blastokinesis. Dev Biol. 313:471–91. 10.1016/j.ydbio.2007.11.004. PubMed DOI
Panganiban G., & Rubenstein J. L. (2002). Developmental functions of the Distal-less/Dlx homeobox genes. Development 129:4371–4386. 10.1242/dev.129.19.4371 PubMed DOI
Porcheron P., Morinière M., Grassi J., & Pradelles P. (1989). Development of an enzyme immunoassay for ecdysteroids using acetylcholinesterase as label. Insect Biochem. 19:117–122.
Rafel N., & Milán M. (2008). Notch signalling coordinates tissue growth and wing fate specification in Drosophila. Development 135:3995–4001. 10.1242/dev.027789 PubMed DOI
Ramirez C. E., Nouzova M., Michalkova V., Fernandez-Lima F., & Noriega F.G. (2020). Common structural features facilitate the simultaneous identification and quantification of the five most common juvenile hormones by liquid chromatography-tandem mass spectrometry. Insect Biochem. Mol. Biol. 116:103287. 10.1016/j.ibmb.2019.103287 PubMed DOI PMC
Regier J. C., Shultz J. W., & Kambic R. E. (2005). Pancrustacean phylogeny: hexapods are terrestrial crustaceans and maxillopods are not monophyletic. Proc. R. Soc. B 272:395–401. 10.1098/rspb.2004.2917 PubMed DOI PMC
Rohdendorf E.B., & Sehnal F. (1973). Inhibition of reproduction and embryogenesis in the firebrat, Thermobia domestica, by juvenile hormone analogues. J. Insect Physiol. 19: 37–56.
Riddiford L. M. (1976). Hormonal control of insect epidermal cell commitment in vitro. Nature 259:115–117. 10.1038/259115a0 PubMed DOI
Riddiford L. M. (2020). Rhodnius, Golden Oil, and Met: A history of juvenile hormone research. Front. Cell Dev. Biol. 8:679. 10.3389/fcell.2020.00679 PubMed DOI PMC
Riddiford L. M., & Williams C. M. (1967). The effects of juvenile hormone analogues on the embryonic development of silkworms. Proc. Natl. Acad. Sci., U.S.A. 57:595–601. 10.1073/pnas.573.595 PubMed DOI PMC
Riddiford L. M., Truman J. W., Mirth C. K., & Shen Y. C. (2010). A role for juvenile hormone in the prepupal development of Drosophila melanogaster. Development (Cambridge, England), 137:1117–1126. 10.1242/dev.037218 PubMed DOI PMC
Schaeper N. D., Wimmer E. A., & Prpic N. M. (2013). Appendage patterning in the primitively wingless hexapods Thermobia domestica (Zygentoma: Lepismatidae) and Folsomia candida (Collembola: Isotomidae). Dev. Genes Evol. 223:341–350. 10.1007/s00427-013-0449-5 PubMed DOI
Schmittgen T. & Livak K. (2008). Analyzing real-time PCR by the comparative C(T) method. Nat. Protoc. 3:1101–1108. 10.1038/nprot.2008.73 PubMed DOI
Schwank G., & Basler K. (2010). Regulation of organ growth by morphogen gradients. Cold Spring Harbor Perspec. Biol. 2:a001669. 10.1101/cshperspect.a001669 PubMed DOI PMC
Smykal V., Daimon T., Kayukawa T., Takaki K., Shinoda T., & Jindra M. (2014). Importance of juvenile hormone signaling arises with competence of insect larvae to metamorphose. Dev. Biol. 390:221–230. 10.1016/j.ydbio.2014.03.006 PubMed DOI
So W. L., Kai Z., Qu Z., Bendena W. G., & Hui J. H. L. (2022). Rethinking sesquiterpenoids: A widespread hormone in animals. Int. J. Mol. Sci. 23:5998. 10.3390/ijms23115998 PubMed DOI PMC
Tanaka K., & Truman J. W. (2007). Molecular patterning mechanism underlying metamorphosis of the thoracic leg in Manduca sexta. Dev. Biol. 305:539–550. 10.1016/j.ydbio.2007.02.042 PubMed DOI
Temin G., Zander M., & Roussel J-P. (1986). Physico-chemical (GC-MS) measurements of juvenile hormone III titers during embryogenesis of Locusta migratoria. Int. J. Invert. Reprod. Dev. 9:105–112.
Truman J. W., Hiruma K., Allee J. P., Macwhinnie S. G., Champlin D. T., & Riddiford L. M. (2006). Juvenile hormone is required to couple imaginal disc formation with nutrition in insects. Science 312:1385–1388. 10.1126/science.1123652 PubMed DOI
Truman J. W., & Riddiford L. M. (1999). The origins of insect metamorphosis. Nature 401:447–452. 10.1038/46737 PubMed DOI
Truman J. W., & Riddiford L. M. (2002). Endocrine insights into the evolution of metamorphosis in insects. Annu. Rev. Entomol. 47:467–500. 10.1146/annurev.ento.47.091201.145230 PubMed DOI
Truman J. W., & Riddiford L. M. (2019). The evolution of insect metamorphosis: a developmental and endocrine view. Phil. Trans. R. Soc. London B 374:20190070. 10.1098/rstb.2019.0070 PubMed DOI PMC
Untergasser A., Cutcutache I., Koressaar T., Ye J., Faircloth B. C., Remm M., & Rozen S. G. (2012). Primer3--new capabilities and interfaces. Nucl. A. Res. 40:e115. PubMed PMC
Upadhyay A., Moss-Taylor L., Kim M. J., Ghosh A. C., & O’Connor M. B. (2017). TGF-β family signaling in Drosophila. Cold Spr. Harb. Perspect. Biol. 9:a022152. 10.1101/cshperspect.a022152 PubMed DOI PMC
Upadhyay A., Peterson A. J., Kim M. J., & O’Connor M. B. (2020). Muscle-derived Myoglianin regulates Drosophila imaginal disc growth. eLife 9:e51710. 10.7554/eLife.51710 PubMed DOI PMC
Vea I. M., Tanaka S., Shiotsuki T., Jouraku A., Tanaka T., & Minakuchi C. (2016). Differential juvenile hormone variations in scale insect extreme sexual dimorphism. PloS One, 11:e0149459. 10.1371/journal.pone.0149459 PubMed DOI PMC
von Reumont B. M., Jenner R. A., Wills M. A., Dell’ampio E., Pass G., Ebersberger I., Meyer B., Koenemann S., Iliffe T. M., Stamatakis A., Niehuis O., Meusemann K., & Misof B. (2012). Pancrustacean phylogeny in the light of new phylogenomic data: support for Remipedia as the possible sister group of Hexapoda. Mol. Biol. Evol. 29:1031–1045. 10.1093/molbev/msr270 PubMed DOI
Vincent J. F. (1980). Insect cuticle: a paradigm for natural composites. Symp. Soc. Exp. Biol. 34:183–210. PubMed
Watson J. H. A. (1967). The growth and activity of the corpora allata in the larval firebrat, Thermobia domestica (Packard) (Thysanura, Lepismatidae). Biol. Bull. 132:277–291. PubMed
Williams C. M. (1961). The juvenile hormone. II. Its role in the endocrine control of molting, pupation and adult development in the Cecropia silkworm. Biol. Bull. 121:572–585.
Yanagi S. & Tuda M. (2012). Female size constrains egg size via the influence of reproductive organ size and resource storage in the seed beetle Callosobruchus chinensis. J. Insect Physiol. 58:1432–1437. 10.1016/j.jinsphys.2012.08.007 PubMed DOI