Role of Methoprene-tolerant in the regulation of oogenesis in Dipetalogaster maxima
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, N.I.H., Extramural
Grantová podpora
R21 AI153689
NIAID NIH HHS - United States
R21 AI167849
NIAID NIH HHS - United States
PubMed
35988007
PubMed Central
PMC9392760
DOI
10.1038/s41598-022-18384-5
PII: 10.1038/s41598-022-18384-5
Knihovny.cz E-zdroje
- MeSH
- juvenilní hormony metabolismus MeSH
- methopren * metabolismus MeSH
- oogeneze genetika MeSH
- Triatominae * MeSH
- vitelogeniny MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- juvenilní hormony MeSH
- methopren * MeSH
- vitelogeniny MeSH
Juvenile hormone (JH) signalling, via its receptor Methoprene-tolerant (Met), controls metamorphosis and reproduction in insects. Met belongs to a superfamily of transcription factors containing the basic Helix Loop Helix (bHLH) and Per Arnt Sim (PAS) domains. Since its discovery in 1986, Met has been characterized in several insect species. However, in spite of the importance as vectors of Chagas disease, our knowledge on the role of Met in JH signalling in Triatominae is limited. In this study, we cloned and sequenced the Dipetalogaster maxima Met transcript (DmaxMet). Molecular modelling was used to build the structure of Met and identify the JH binding site. To further understand the role of the JH receptor during oogenesis, transcript levels were evaluated in two main target organs of JH, fat body and ovary. Functional studies using Met RNAi revealed significant decreases of transcripts for vitellogenin (Vg) and lipophorin (Lp), as well as their receptors. Lp and Vg protein amounts in fat body, as well as Vg in hemolymph were also decreased, and ovarian development was impaired. Overall, these studies provide additional molecular insights on the roles of JH signalling in oogenesis in Triatominae; and therefore are relevant for the epidemiology of Chagas´ disease.
Centro de Investigaciones en Bioquímica Clínica e Inmunología Córdoba Argentina
Department of Biology University of Toronto Mississauga Mississauga ON L5L 1C6 Canada
Department of Parasitology University of South Bohemia Ceske Budejovice Czech Republic
Institute of Parasitology Biology Centre CAS Ceske Budejovice Czech Republic
Zobrazit více v PubMed
Rivera-Perez, C., Clifton, M. E., Noriega, F. G. & Jindra, M. Juvenile hormone regulation and action, in Advances in Invertebrate (Neuro) Endocrinology (eds. Saleuddin, S, Lange, A.B, Orchard, I) Vol. 2, 1–76 (Apple Academic Press 2020).
Wigglesworth VB. The physiology of ecdysis in Rhodnius prolixus (Hemiptera). II. Factors controlling moulting and ‘metamorphosis’. Q. J. Microsc. Sci. 1934;77:191–222.
Wigglesworth VB. The function of corpus allatum in the growth and reproduction of R. prolixus (Hemiptera) Q. J. Microsc. Sci. 1936;79:91–121.
Wigglesworth VB. The determination of characters at metamorphosis in Rhodnius prolixus (Hemiptera) J. Experim. Biol. 1940;17:201–223. doi: 10.1242/jeb.17.2.201. DOI
Tobe SS, Bendena WG. The regulation of juvenile hormone production in arthropods. Functional and evolutionary perspectives. Ann. N. Y. Acad. Sci. 1999;897:300–310. doi: 10.1111/j.1749-6632.1999.tb07901.x. PubMed DOI
Ashok M, Turner C, Wilson TG. Insect juvenile hormone resistance gene homology with the bHLH-PAS family of transcriptional regulators. Proc. Natl. Acad. Sci. USA. 1998;95:2761–2766. doi: 10.1073/pnas.95.6.2761. PubMed DOI PMC
Charles JP, et al. Ligand-binding properties of a juvenile hormone receptor methoprene-tolerant. Proc. Natl. Acad. Sci. USA. 2011;108:21128–21133. doi: 10.1073/pnas.1116123109. PubMed DOI PMC
Jindra M, et al. Purification of an insect juvenile hormone receptor complex enables insights into its post-translational phosphorylation. J. Biol. Chem. 2021;297(6):101387. doi: 10.1016/j.jbc.2021.101387. PubMed DOI PMC
Bittova L, et al. Exquisite ligand stereoselectivity of a Drosophila juvenile hormone receptor contrasts with its broad agonist repertoire. J. Biol. Chem. 2019;294:410–423. doi: 10.1074/jbc.RA118.005992. PubMed DOI PMC
Li M, Mead EA, Zhu J. Heterodimer of two bHLH-PAS proteins mediates juvenile hormone-induced gene expression. Proc Natl. Acad. Sci. USA. 2011;108:638–643. doi: 10.1073/pnas.1013914108. PubMed DOI PMC
Kayukawa T, et al. Transcriptional regulation of juvenile hormone-mediated induction of Krüppel homolog 1, a repressor of insect metamorphosis. Proc. Natl. Acad. Sci. USA. 2012;109:11729–11734. doi: 10.1073/pnas.1204951109. PubMed DOI PMC
Ramirez CE, Nouzova M, Michalkova V, Fernandez-Lima F, Noriega FG. Common structural features facilitate the simultaneous identification and quantification of the five most common juvenile hormones by liquid chromatography-tandem mass spectrometry. Insect Biochem. Mol. Biol. 2020;116:103287. doi: 10.1016/j.ibmb.2019.103287. PubMed DOI PMC
Villalobos-Sambucaro MJ, et al. The juvenile hormone described in Rhodnius prolixus by Wigglesworth is juvenile hormone III skipped bisepoxide. Sci. Rep. 2020 doi: 10.1038/s41598-020-59495-1. PubMed DOI PMC
Aguirre SA, Frede S, Rubiolo ER, Canavoso LE. Vitellogenesis in the hematophagous Dipetalogaster maxima (Hemiptera: Reduviidae), a vector of Chagas’ disease. J. Insect Physiol. 2008;54:393–402. doi: 10.1016/j.jinsphys.2007.10.012. PubMed DOI
Aguirre SA, et al. Biochemical changes in the transition from vitellogenesis to follicular atresia in the hematophagous dipetalogaster maxima (Hemiptera: Reduviidae) Insect Biochem. Mol. Biol. 2011;41:832–841. doi: 10.1016/j.ibmb.2011.06.005. PubMed DOI
Leyria J, Fruttero LL, Aguirre SA, Canavoso LE. Ovarian nutritional resources during the reproductive cycle of the hematophagous Dipetalogaster maxima (Hemiptera: Reduviidae): Focus on lipid metabolism. Arch. Insect Biochem. Physiol. 2014;87:148–163. doi: 10.1002/arch.21186. PubMed DOI
Leyria J, Fruttero LL, Nazar M, Canavoso LE. The role of DmCatD, a cathepsin D-like peptidase, and acid phosphatase in the process of follicular atresia in Dipetalogaster maxima (Hemiptera: Reduviidae), a vector of chagas’ disease. PLoS ONE. 2015;10(6):e0130144. doi: 10.1371/journal.pone.0130144. PubMed DOI PMC
Leyria J, et al. DmCatD, a cathepsin D-like peptidase of the hematophagous insect Dipetalogaster maxima (Hemiptera: Reduviidae): Purification, bioinformatic analyses and the significance of its interaction with lipophorin in the internalization by developing oocytes. J. Insect Physiol. 2018;105:28–39. doi: 10.1016/j.jinsphys.2018.01.002. PubMed DOI PMC
Ramos FO, et al. Juvenile hormone mediates lipid storage in the oocytes of Dipetalogaster maxima. Insect Biochem. Mol. Biol. 2021;133:103499. doi: 10.1016/j.ibmb.2020.103499. PubMed DOI
Jindra M, Tumova S, Milacek M, Bittova L. A decade with the juvenile hormone receptor. Adv. Insect Physiol. 2021;60:37–8521. doi: 10.1016/bs.aiip.2021.03.001. DOI
Villalobos-Sambucaro MJ, et al. Genomic and functional characterization of a methoprene-tolerant gene in the kissing-bug Rhodnius prolixus. Gen. Comp. Endocrinol. 2015;216:1–8. doi: 10.1016/j.ygcen.2015.04.018. PubMed DOI
Yang J, Zhang Y. Protein structure and function prediction using I-TASSER. Curr. Protoc. Bioinform. 2015;52:5–8. doi: 10.1002/0471250953.bi0508s52. PubMed DOI PMC
Scheuermann TH, et al. Artificial ligand binding within the HIF2α PAS-B domain of the HIF2 transcription factor. Proc. Natl. Acad. Sci. USA. 2009;106:450–455. doi: 10.1073/pnas.0808092106. PubMed DOI PMC
Davey K. The interaction of feeding and mating in the hormonal control of egg production in Rhodnius prolixus. J. Insect. Physiol. 2007;53:208–215. doi: 10.1016/j.jinsphys.2006.10.002. PubMed DOI
Wang Z, Davey KG. The role of juvenile hormone in vitellogenin production in Rhodnius prolixus. J. Insect Physiol. 1993;39:471–476. doi: 10.1016/0022-1910(93)90078-6. DOI
Scheff DS, Campbell JF, Arthur FH, Zhu KY. Effects of aerosol insecticide application location on the patterns of residual efficacy against Tribolium confusum (Coleoptera: Tenebrionidae) larvae. J. Econ. Entomol. 2020;113:2007–2015. doi: 10.1093/jee/toaa103. PubMed DOI
Wilson TG, Fabian J. A Drosophila melanogaster mutant resistant to a chemical analog of juvenile hormone. Dev. Biol. 1986;118:190–201. doi: 10.1016/0012-1606(86)90087-4. PubMed DOI
Konopova B, Smykal V, Jindra M. Common and distinct roles of juvenile hormone signaling genes in metamorphosis of holometabolous and hemimetabolous insects. PLoS ONE. 2011;6(12):e28728. doi: 10.1371/journal.pone.0028728. PubMed DOI PMC
Li M, et al. A steroid receptor coactivator acts as the DNA-binding partner of the methoprene-tolerant protein in regulating juvenile hormone response genes. Mol. Cell. Endocrinol. 2014;394:47–58. doi: 10.1016/j.mce.2014.06.021. PubMed DOI PMC
Jindra M, Uhlirova M, Charles JP, Smykal V, Hill RJ. Genetic evidence for function of the bHLH-PAS protein Gce/Met as a juvenile hormone receptor. PLoS Genet. 2015;11(7):e1005394. doi: 10.1371/journal.pgen.1005394. PubMed DOI PMC
Kotaki T, Shinada T, Kaihara K, Ohfune Y, Numata H. Structure determination of a new juvenile hormone from a Heteropteran insect. Org. Lett. 2009;11:5234–5237. doi: 10.1021/ol902161x. PubMed DOI PMC
Wu Z, Yang L, He Q, Zhou S. Regulatory mechanisms of vitellogenesis in insects. Front. Cell Dev. Biol. 2021;8:593613. doi: 10.3389/fcell.2020.593613. PubMed DOI PMC
Roy S, Saha TT, Zou Z, Raikhel AS. Regulatory pathways controlling female insect reproduction. Annu. Rev. Entomol. 2018;63:489–511. doi: 10.1146/annurev-ento-020117-043258. PubMed DOI
Downer RGH, Chino H. Turnover of protein and diacylglycerol components of lipophorin in insect haemolymph. Insect. Biochem. 1985;15:627–630. doi: 10.1016/0020-1790(85)90124-6. DOI
Chen ME, Lewis DK, Keeley LL, Pietrantonio PV. cDNA cloning and transcriptional regulation of the vitellogenin receptor from the imported fire ant, Solenopsis invicta Buren (Hymenoptera: Formicidae) Insect Mol. Biol. 2004;13:195–204. doi: 10.1111/j.0962-1075.2004.00477.x. PubMed DOI
Clifton ME, Noriega FG. The fate of follicles after a blood meal is dependent on previtellogenic nutrition and juvenile hormone in Aedes aegypti. J. Insect. Physiol. 2012;58:1007–1019. doi: 10.1016/j.jinsphys.2012.05.005. PubMed DOI PMC
Ciudad L, Bellés X, Piulachs MD. Structural and RNAi characterization of the German cockroach lipophorin receptor, and the evolutionary relationships of lipoprotein receptors. BMC Mol. Biol. 2007;8:53. doi: 10.1186/1471-2199-8-53. PubMed DOI PMC
Marchal E, et al. Methoprene-tolerant (met) knockdown in the adult female cockroach, Diploptera punctata completely inhibits ovarian development. PLoS ONE. 2014;9(9):e106737. doi: 10.1371/journal.pone.0106737. PubMed DOI PMC
Tufail M, Takeda M. Insect vitellogenin/lipophorin receptors: Molecular structures, role in oogenesis, and regulatory mechanisms. J. Insect. Physiol. 2009;55:88–104. doi: 10.1016/j.jinsphys.2008.11.007. PubMed DOI
Bradford M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976;72:248–254. doi: 10.1016/0003-2697(76)90527-3. PubMed DOI
Pettersen EF, et al. UCSF Chimera-a visualization system for exploratory research and analysis. J. Comput. Chem. 2004;25:1605–1612. doi: 10.1002/jcc.20084. PubMed DOI
de Magalhães CS, Barbosa HJC, Dardenne LE. Selection-insertion schemes in genetic algorithms for the flexible ligand docking problem. Comput. Sci. 2004;3102:368–379. doi: 10.1007/978-3-540-24854-5_38. DOI
de Magalhães CS, Almeida DM, Barbosa HJC, Dardenne LE. A dynamic niching genetic algorithm strategy for docking highly flexible ligands. Inf. Sci. 2014;289:206–224. doi: 10.1016/j.ins.2014.08.002. DOI
Katoh K, Rozewicki J, Yamada KD. MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinform. 2019;20:1160–1166. doi: 10.1093/bib/bbx108. PubMed DOI PMC
Sela I, Ashkenazy H, Katoh K, Pupko T. GUIDANCE2: Accurate detection of unreliable alignment regions accounting for the uncertainty of multiple parameters. Nucleic Acids Res. 2015;43:W7–W14. doi: 10.1093/nar/gkv318. PubMed DOI PMC
Guindon S, et al. New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Syst. Biol. 2010;59:307–321. doi: 10.1093/sysbio/syq010. PubMed DOI
Müller T, Vingron MJ. Modeling amino acid replacement. J. Comput. Biol. 2000;7:761–776. doi: 10.1089/10665270050514918. PubMed DOI
Le SQ, Gascuel O. An improved general amino acid replacement matrix. Mol. Biol. Evol. 2008;25:1307–1320. doi: 10.1093/molbev/msn067. PubMed DOI
Lefort V, Longueville JE, Gascuel O. SMS: Smart model selection in PhyML. Mol. Biol. Evol. 2017;34:2422–2424. doi: 10.1093/molbev/msx149. PubMed DOI PMC
Anisimova M, Gascuel O. Approximate likelihood-ratio test for branches: a fast, accurate, and powerful alternative. Syst. Biol. 2006;55:539–552. doi: 10.1080/10635150600755453. PubMed DOI
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI
Majerowicz D, et al. Looking for reference genes for real-time quantitative PCR experiments in Rhodnius prolixus (Hemiptera: Reduviidae) Insect Mol. Biol. 2011;20:713–722. doi: 10.1111/j.1365-2583.2011.01101.x. PubMed DOI
Leyria J, Orchard I, Lange AB. Transcriptomic analysis of regulatory pathways involved in female reproductive physiology of Rhodnius prolixus under different nutritional states. Sci. Rep. 2020 doi: 10.1038/s41598-020-67932-4. PubMed DOI PMC
Fruttero LL, Rubiolo ER, Canavoso LE. Biochemical and cellular characterization of lipophorin-midgut interaction in the hematophagous Panstrongylus megistus (Hemiptera: Reduviidae) Insect Biochem. Mol. Biol. 2009;39:322–331. doi: 10.1016/j.ibmb.2009.01.009. PubMed DOI