A two-dimensional protein map of Pleurotus ostreatus microsomes-proteome dynamics
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26122365
DOI
10.1007/s12223-015-0410-2
PII: 10.1007/s12223-015-0410-2
Knihovny.cz E-zdroje
- MeSH
- 2D gelová elektroforéza MeSH
- fungální proteiny analýza MeSH
- mikrozomy chemie MeSH
- Pleurotus chemie MeSH
- proteom analýza MeSH
- spektrometrie hmotnostní - ionizace laserem za účasti matrice MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fungální proteiny MeSH
- proteom MeSH
Recent studies documented that several processes in filamentous fungi are connected with microsomal enzyme activities. In this work, microsomal subproteomes of Pleurotus ostreatus were analyzed by two-dimensional (2-D) polyacrylamide gel electrophoresis and matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry analysis. To assess proteome dynamics, microsomal proteins were isolated from fungal cultures after 7 and 12 days of cultivation. Additionally, 10 mg/L of 17α-ethinylestradiol (EE2) was treated with the cultures during 2 days. Despite the EE2 degradation by the fungus reached 97 and 76.3 % in 7- and 12-day-old cultures, respectively, only a minor effect on the composition of microsomal proteins was observed. The changes in protein maps related to ageing prevailed over those induced by EE2. Epoxide hydrolase, known to metabolize EE2, was detected in 12-day-old cultures only which suggests differences in EE2 degradation pathways utilized by fungal cultures of different age. The majority (32 %) of identified microsomal proteins were parts of mitochondrial energy metabolism.
Zobrazit více v PubMed
Chem Res Toxicol. 2013 Apr 15;26(4):564-74 PubMed
Appl Microbiol Biotechnol. 2014 Jun;98(11):4949-61 PubMed
PLoS One. 2011;6(6):e20865 PubMed
Chem Biol Interact. 2001 Jan 30;130-132(1-3):499-525 PubMed
Food Chem. 2015 Feb 15;169:396-400 PubMed
Microb Cell Fact. 2012 Oct 30;11:142 PubMed
Appl Microbiol Biotechnol. 2013 Dec;97(24):10263-73 PubMed
Int J Med Mushrooms. 2014;16(3):273-91 PubMed
Bioresour Technol. 2010 May;101(9):3004-12 PubMed
Appl Environ Microbiol. 2010 Jul;76(13):4421-9 PubMed
Mol Microbiol. 2008 Jun;68(6):1348-65 PubMed
J Proteomics. 2013 Oct 8;91:358-74 PubMed
Electrophoresis. 2009 Jul;30(14):2431-41 PubMed
Chemosphere. 2009 May;75(6):745-50 PubMed
Appl Environ Microbiol. 1997 Jul;63(7):2495-501 PubMed
J Food Sci Technol. 2014 Aug;51(8):1483-91 PubMed
Biochemistry. 1998 Jul 21;37(29):10386-94 PubMed
Appl Microbiol Biotechnol. 2014 Sep;98(17):7457-69 PubMed
Appl Environ Microbiol. 2008 Dec;74(23):7252-7 PubMed
Int J Plant Genomics. 2012;2012:494572 PubMed
Mar Biotechnol (NY). 2014 Apr;16(2):156-60 PubMed
Int J Med Microbiol. 2011 Nov;301(7):602-11 PubMed
Biochimie. 2013 Oct;95(10):1855-64 PubMed
Biotechnol Lett. 2012 Oct;34(10):1863-7 PubMed
Biotechnol Biofuels. 2013 Aug 10;6(1):115 PubMed
Proteomics. 2013 May;13(9):1513-8 PubMed
Proteomics. 2002 Jun;2(6):713-22 PubMed
J Biol Chem. 1995 Dec 29;270(52):31338-44 PubMed
Z Naturforsch C. 2014 Mar-Apr;69(3-4):149-54 PubMed
FEMS Microbiol Lett. 2013 May;342(2):147-56 PubMed
Subcell Biochem. 2014;80:271-91 PubMed
Anal Biochem. 1984 Apr;138(1):141-3 PubMed
Environ Sci Technol. 2012 Dec 18;46(24):13377-85 PubMed