The potential as a cancer therapeutic target of the recently reported hotspot binding region close to Lys508 of the β-catenin armadillo repeat domain was not exhaustively explored. In order to get more insight, we synthesized novel N-(heterocyclylphenyl)benzenesulfonamides 6-28. The new compounds significantly inhibited Wnt-dependent transcription as well as SW480 and HCT116 cancer cell proliferation. Compound 25 showed binding mode consistent with this hotspot binding region. Compound 25 inhibited the growth of SW480 and HCT116 cancer cells with IC50's of 2 and 0.12 μM, respectively, and was superior to the reference compounds 5 and 5-FU. 25 inhibited the growth of HCT-116 xenografted in BALB/Cnu/nu mice, reduced the expression of the proliferation marker Ki67, and significantly affected the expression of cancer-related genes. After incubation with human and mouse liver microsomes, 25 showed a higher metabolic stability than 5. Compound 25 aims to be a promising lead for the development of colorectal cancer anticancer therapies.
- MeSH
- beta Catenin * metabolism antagonists & inhibitors MeSH
- HCT116 Cells MeSH
- Microsomes, Liver metabolism MeSH
- Humans MeSH
- Mice, Inbred BALB C * MeSH
- Mice, Nude MeSH
- Mice MeSH
- Cell Line, Tumor MeSH
- Cell Proliferation * drug effects MeSH
- Antineoplastic Agents * pharmacology chemical synthesis chemistry MeSH
- Sulfonamides * pharmacology chemistry chemical synthesis MeSH
- Structure-Activity Relationship MeSH
- Xenograft Model Antitumor Assays MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
Lenvatinib is an orally effective tyrosine kinase inhibitor used to treat several types of tumors, including progressive, radioiodine-refractory differentiated thyroid cancer and advanced renal cell carcinoma. Although this drug is increasingly used in therapy, its metabolism and effects on the organism are still not described in detail. Using the rat as an experimental animal model, this study aimed to investigate the metabolism of lenvatinib by rat microsomal enzymes and cytochrome P450 (CYPs) enzymes recombinantly expressed in SupersomesTMin vitro and to assess the effect of lenvatinib on rat CYP expression in vivo. Two metabolites, O-desmethyl lenvatinib, and lenvatinib N-oxide, were produced by rat CYPs in vitro. CYP2A1 and 2C12 were found to be the most effective in forming O-desmethyl lenvatinib, while CYP3A2 was found to primarily form lenvatinib N-oxide. The administration of lenvatinib to rats caused changes in the expression of mRNA and protein, as well as the activity of various CYPs, particularly in an increase in CYP1A1. Thus, the administration of lenvatinib to rats has an impact on the level of CYPs.
- MeSH
- Quinolines * pharmacology MeSH
- Phenylurea Compounds * pharmacology MeSH
- Protein Kinase Inhibitors * pharmacology MeSH
- Tyrosine Kinase Inhibitors MeSH
- Microsomes, Liver drug effects MeSH
- Liver * drug effects metabolism MeSH
- Rats MeSH
- RNA, Messenger metabolism genetics MeSH
- Oxidation-Reduction * drug effects MeSH
- Rats, Sprague-Dawley MeSH
- Cytochrome P-450 Enzyme System * metabolism MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
Tacrine was the first drug used in the therapy of Alzheimer's disease (AD) and is one of the leading structures frequently pursued in the drug discovery of novel candidates for tackling AD. However, because tacrine has been withdrawn from the market due to its hepatotoxicity, ascribed to specific metabolites, concerns are high about the toxicity profile of newly developed compounds related to tacrine. From the point of view of drug safety, the formation of metabolites must be uncovered and analyzed. Bearing in mind that the main culprit of tacrine hepatotoxicity is its biotransformation to hydroxylated metabolites, human liver microsomes were used as a biotransformation model. Our study aims to clarify phase I metabolites of three potentially non-toxic tacrine derivatives (7-methoxytacrine, 6-chlorotacrine, 7-phenoxytacrine) and to semi-quantitatively determine the relative amount of individual metabolites as potential culprits of tacrine-based hepatotoxicity. For this purpose, a new selective UHPLC-Orbitrap method has been developed. Applying UHPLC-Orbitrap method, two as yet unpublished tacrine and 7-methoxytacrine monohydroxylated metabolites have been found and completely characterized, and the separation of ten dihydroxylated tacrine and 7-methoxytacrine metabolites was achieved for the first time. Moreover, the structures of several new metabolites of 7-phenoxytacrine and 6-chlorotacrine have been identified. In addition, the relative amount of these newly observed metabolites was determined. Based on the results and known facts about the toxicity of tacrine metabolites published so far, it appears that 7-phenoxytacrine and 6-chlorotacrine could be substantially less hepatotoxic compared to tacrine, and could potentially pave the way for metabolically safe molecules applicable in AD therapy.
- MeSH
- Alzheimer Disease * drug therapy metabolism MeSH
- Cholinesterase Inhibitors chemistry MeSH
- Microsomes, Liver metabolism MeSH
- Chemical and Drug Induced Liver Injury * metabolism MeSH
- Humans MeSH
- Tacrine MeSH
- Chromatography, High Pressure Liquid MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
This study examined the biotransformation of phytocannabinoids in human hepatocytes. The susceptibility of the tested compounds to transformations in hepatocytes exhibited the following hierarchy: cannabinol (CBN) > cannabigerol (CBG) > cannabichromene (CBC) > cannabidiol (CBD). Biotransformation included hydroxylation, oxidation to a carboxylic acid, dehydrogenation, hydrogenation, dehydration, loss/shortening of alkyl, glucuronidation and sulfation. CBN was primarily metabolized by oxidation of a methyl to a carboxylic acid group, while CBD, CBG and CBC were preferentially metabolized by direct glucuronidation. The study also screened for the activity of recombinant human cytochromes P450 (CYPs) and UDP-glucuronosyltransferases (UGTs), which could catalyze the hydroxylation and glucuronidation of the tested compounds, respectively. We found that CBD was hydroxylated mainly by CYPs 2C8, 2C19, 2D6; CBN by 1A2, 2C9, 2C19 and 2D6; and CBG by 2B6, 2C9, 2C19 and 2D6. CBC exhibited higher susceptibility to CYP-mediated transformation than the other tested compounds, mainly with CYPs 1A2, 2B6, 2C8, 2C19, 2D6 and 3A4 being involved. Further, CBD was primarily glucuronidated by UGTs 1A3, 1A7, 1A8, 1A9 and 2B7; CBN by 1A7, 1A8, 1A9 and 2B7; CBG by 1A3, 1A7, 1A8, 1A9, 2B4, 2B7 and 2B17; and the glucuronidation of CBC was catalyzed by UGTs 1A1, 1A8, 1A9 and 2B7.
- MeSH
- Biotransformation MeSH
- Glucuronosyltransferase metabolism MeSH
- Microsomes, Liver * metabolism MeSH
- Carboxylic Acids MeSH
- Humans MeSH
- Cytochrome P-450 Enzyme System * metabolism MeSH
- Uridine Diphosphate metabolism MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Receptor-interacting protein kinases 2 and 3 (RIPK2 and RIPK3) are considered attractive therapeutic enzyme targets for the treatment of a multitude of inflammatory diseases and cancers. In this study, we developed three interrelated series of novel quinazoline-based derivatives to investigate the effects of extensive modifications of positions 6 and 7 of the central core on the inhibitory activity and the selectivity against these RIPKs. The design of the derivatives was inspired by analyses of available literary knowledge on both RIPK2 and RIPK3 in complex with known quinazoline or quinoline inhibitors. Enzymatic investigations for bioactivity of the prepared molecules against purified RIPKs (RIPK1-4) shed light on multiple potent and selective RIPK2 and dual RIPK2/3 inhibitors. Furthermore, evaluations in living cells against the RIPK2-NOD1/2-mediated signaling pathways, identified as the potential primary targets, demonstrated nanomolar inhibition for a majority of the compounds. In addition, we have demonstrated overall good stability of various lead inhibitors in both human and mouse microsomes and plasma. Several of these compounds also were evaluated for selectivity across 58 human kinases other than RIPKs, exhibiting outstanding specificity profiles. We have thus clearly demonstrated that tuning appropriate substitutions at positions 6 and 7 of the developed quinazoline derivatives may lead to interesting potency and specificities against RIPK2 and RIPK3. This knowledge might therefore be employed for the targeted preparation of new, highly potent and selective tools against these RIPKs, which could be of utility in biological and clinical research.
- MeSH
- Quinazolines * pharmacology MeSH
- Humans MeSH
- Microsomes * MeSH
- Mice MeSH
- Receptor-Interacting Protein Serine-Threonine Kinase 2 MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
Lenvatinib, a small molecule tyrosine kinase inhibitor (TKI), exhibits good inhibitory effect in several types of carcinomas. Specifically, it is the most effective TKI used for treatment of thyroid cancer. To extend pharmacokinetics data on this anticancer agent, we aimed to identify the metabolites of lenvatinib formed during in vitro incubation of lenvatinib with human hepatic microsomes or recombinant cytochromes P450 (CYPs) by using high performance liquid chromatography and mass spectrometry. The role of CYPs in the oxidation of lenvatinib was initially investigated in hepatic microsomes using specific CYP inhibitors. CYP-catalytic activities in each microsomal sample were correlated with the amounts of lenvatinib metabolites formed by these samples. Further, human recombinant CYPs were employed in the metabolic studies. Based on our data, lenvatinib is metabolized to O-desmethyl lenvatinib, N-descyclopropyl lenvatinib and lenvatinib N-oxide. In the presence of cytochrome b5, recombinant CYP3A4 was the most efficient to form these metabolites. In addition, CYP1A1 significantly contributes to the lenvatinib metabolism. It was even more efficient in forming of O-desmethyl lenvatinib than CYP3A4 in the absence of cytochrome b5. The present study indicates that further research focused on drug-drug interactions, in particular on CYP3A4 and CYP1A1 modulators, is needed. This will pave new avenues towards TKIs-mediated personalized therapy.
- MeSH
- Quinolines metabolism MeSH
- Phenylurea Compounds metabolism MeSH
- Mass Spectrometry MeSH
- Cytochrome P-450 Enzyme Inhibitors pharmacology MeSH
- Protein Kinase Inhibitors metabolism MeSH
- Microsomes, Liver enzymology metabolism MeSH
- Rabbits MeSH
- Rats MeSH
- Drug Interactions MeSH
- Humans MeSH
- Mice, Inbred C57BL MeSH
- Mice MeSH
- Oxidation-Reduction MeSH
- Rats, Wistar MeSH
- Antineoplastic Agents metabolism MeSH
- Cytochrome P-450 Enzyme System drug effects metabolism MeSH
- Chromatography, High Pressure Liquid MeSH
- Animals MeSH
- Check Tag
- Rabbits MeSH
- Rats MeSH
- Humans MeSH
- Male MeSH
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
The anticoagulant drug warfarin is used treat atrial fibrillation. Several cases of drug-drug and drug-food interactions have been reported for warfarin.The aim of this study was to investigate the interaction between simultaneous administration of warfarin with the two ubiquitous flavonoids quercetin and curcumin.Using porcine primary hepatocytes we demonstrated that warfarin treatment increased the mRNA and protein expression of CYP3A(29), while no changes in CYP1A2 were observed. Co-treatment with quercetin and/or curcumin decreased the warfarin-induced CYP3A protein expression. Moreover, when quercetin and curcumin were co-administrated to warfarin-exposed hepatocytes the protein expression of CYP1A2 was decreased. In hepatic microsomes, curcumin inhibited the activity of both CYP1A2 and CYP3A, while warfarin had no effect. Both quercetin and curcumin decreased the CYP1A2 and CYP3A activity when co-administrated with warfarin.The results clearly demonstrated that quercetin and curcumin can cause food-drug interactions with warfarin, and that the cocktail effect of exposure to more compounds than one can further enhance these interactions.
- MeSH
- Cytochrome P-450 CYP1A2 * MeSH
- Cytochrome P-450 CYP3A MeSH
- Microsomes, Liver MeSH
- Curcumin * MeSH
- Swine MeSH
- Quercetin MeSH
- Cytochrome P-450 Enzyme System MeSH
- Warfarin MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
In today's modern society, it seems to be more and more challenging to cope with life stresses. The effect of psychological stress on emotional and physical health can be devastating, and increased stress is associated with increased rates of heart attack, hypertension, obesity, addiction, anxiety and depression. This review focuses on the possibility of an influence of psychological stress on the metabolism of selected antidepressants (TCAs, SSRIs, SNRIs, SARIs, NDRIs a MMAs) and anxiolytics (benzodiazepines and azapirone), as patients treated with antidepressants and/or anxiolytics can still suffer from psychological stress. Emphasis is placed on the drug metabolism mediated by the enzymes of Phase I, typically cytochromes P450 (CYPs), which are the major enzymes involved in drug metabolism, as the majority of psychoactive substances are metabolized by numerous CYPs (such as CYP1A2, CYP2B6, CYP2C19, CYP2C9, CYP2A6, CYP2D6, CYP3A4). As the data on the effect of stress on human enzymes are extremely rare, modulation of the efficacy and even regulation of the biotransformation pathways of drugs by psychological stress can be expected to play a significant role, as there is increasing evidence that stress can alter drug metabolism, hence there is a risk of less effective drug metabolism and increased side effects.
Sesquiterpene lactone helenalin is used as an antiphlogistic in European and Chinese folk medicine. The pharmacological activities of helenalin have been extensively investigated, yet insufficient information exists about its metabolic properties. The objectives of the present study were (1) to investigate the in vitro NADPH-dependent metabolism of helenalin (5 and 100 μM) using human and rat liver microsomes and liver cytosol, (2) to elucidate the role of human cytochrome P450 (CYP) enzymes in its oxidative metabolism, and (3) to study the inhibition of human CYPs by helenalin. Five oxidative metabolites were detected in NADPH-dependent human and rat liver microsomal incubations, while two reduced metabolites were detected only in NADPH-dependent human microsomal and cytosolic incubations. In human liver microsomes, the main oxidative metabolite was 14-hydroxyhelenalin, and in rat liver microsomes 9-hydroxyhelenalin. The overall oxidation of helenalin was several times more efficient in rat than in human liver microsomes. In humans, CYP3A4 and CYP3A5 followed by CYP2B6 were the main enzymes responsible for the hepatic metabolism of helenalin. The extrahepatic CYP2A13 oxidized helenalin most efficiently among CYP enzymes, possessing the Km value of 0.6 μM. Helenalin inhibited CYP3A4 (IC50 = 18.7 μM) and CYP3A5 (IC50 = 62.6 μM), and acted as a mechanism-based inhibitor of CYP2A13 (IC50 = 1.1 μM, KI = 6.7 μM, and kinact = 0.58 ln(%)/min). It may be concluded that the metabolism of helenalin differs between rats and humans, in the latter its oxidation is catalyzed by hepatic CYP2B6, CYP3A4, CYP3A5, and CYP3A7, and extrahepatic CYP2A13.
- MeSH
- Species Specificity MeSH
- Inhibitory Concentration 50 MeSH
- Cytochrome P-450 Enzyme Inhibitors administration & dosage metabolism pharmacology MeSH
- Microsomes, Liver metabolism MeSH
- Rats MeSH
- Humans MeSH
- NADP metabolism MeSH
- Rats, Wistar MeSH
- Sesquiterpenes, Guaiane administration & dosage metabolism pharmacology MeSH
- Cytochrome P-450 Enzyme System drug effects metabolism MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Humans MeSH
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
An evaluation of possible interactions with enzymes of drug metabolism (cytochromes P450, CYP) is an important part of studies on safety and, in general, on the properties of any drug or biologically active compound. The article is focused on the preliminary metabolic study of selected 2,6,9-trisubstituted purine kinase inhibitors with significant anticancer activities which we have developed. The compounds BP-21 and BP-117 represent strong CDK inhibitors and the compound BPA-302 was developed as selective FLT3-ITD kinase inhibitor. Here, emphasis is placed on interactions of these compounds with the nine most important forms of CYP to evaluate the possibility of inhibition of these enzymes. The possibility of their inhibitory effect was studied in vitro on selected human liver microsomal CYP enzymes. The most affected enzyme was CYP2C19. Its activity dropped to 22 % of its original value by BPA 302, to 13 % by BP-21 and to 6 % by BP-117 at the highest concentration tested (250 µmol·l(-1)). The results suggest that the metabolism of concomitantly administered drugs should not be significantly affected at lower doses. Molecular docking of BPA-302 indicated that it can bind to active site of both CYP2C19 and CYP2D6 enzymes above the heme cofactor corroborating the experimental data.
- MeSH
- Cytochrome P-450 Enzyme Inhibitors chemistry pharmacology MeSH
- Protein Kinase Inhibitors chemistry pharmacology MeSH
- Isoenzymes MeSH
- Microsomes, Liver drug effects enzymology MeSH
- Kinetics MeSH
- Protein Conformation MeSH
- Drug Interactions MeSH
- Humans MeSH
- Purines chemistry pharmacology MeSH
- Molecular Docking Simulation MeSH
- Cytochrome P-450 Enzyme System chemistry metabolism MeSH
- Structure-Activity Relationship MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH