Circadian rhythms and circadian clock gene homologs of complex alga Chromera velia
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article
PubMed
38143581
PubMed Central
PMC10739334
DOI
10.3389/fpls.2023.1226027
Knihovny.cz E-resources
- Keywords
- Chromera velia, apicomplexa, circadian clock, cryptochrome, zoospore formation,
- Publication type
- Journal Article MeSH
Most organisms on Earth are affected by periodic changes in their environment. The circadian clock is an endogenous device that synchronizes behavior, physiology, or biochemical processes to an approximately 24-hour cycle, allowing organisms to anticipate the periodic changes of day and night. Although circadian clocks are widespread in organisms, the actual molecular components differ remarkably among the clocks of plants, animals, fungi, and prokaryotes. Chromera velia is the closest known photosynthetic relative of apicomplexan parasites. Formation of its motile stage, zoospores, has been described as associated with the light part of the day. We examined the effects on the periodic release of the zoospores under different light conditions and investigated the influence of the spectral composition on zoosporogenesis. We performed a genomic search for homologs of known circadian clock genes. Our results demonstrate the presence of an almost 24-hour free-running cycle of zoosporogenesis. We also identified the blue light spectra as the essential compound for zoosporogenesis. Further, we developed a new and effective method for zoospore separation from the culture and estimated the average motility speed and lifespan of the C. velia zoospores. Our genomic search identified six cryptochrome-like genes, two genes possibly related to Arabidopsis thaliana CCA/LHY, whereas no homolog of an animal, cyanobacterial, or fungal circadian clock gene was found. Our results suggest that C. velia has a functional circadian clock, probably based mainly on a yet undefined mechanism.
See more in PubMed
Ahmad M., Cashmore A. R. (1993). HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor. Nature 366 (6451), 162–166. doi: 10.1038/366162a0 PubMed DOI
Annunziata R., Ritter A., Fortunato A. E., Manzotti A., Cheminant-Navarro S., Agier N., et al. . (2019). BHLH-PAS protein RITMO1 regulates diel biological rhythms in the marine diatom Phaeodactylum tricornutum . Proc. Natl. Acad. Sci. U.S.A. 116 (26), 13137-13142. doi: 10.1073/pnas.1819660116 PubMed DOI PMC
Armenteros J. J. A., Salvatore M., Emanuelsson O., Winther O., Von Heijne G., Elofsson A., et al. . (2019). Detecting sequence signals in targeting peptides using deep learning. Life Sci. Alliance 2 (9), e201900429. doi: 10.26508/lsa.201900429 PubMed DOI PMC
Bajgar A., Jindra M., Dolezel D. (2013). Autonomous regulation of the insect gut by circadian genes acting downstream of juvenile hormone signaling. Proc. Natl. Acad. Sci. U.S.A. 110, 4416–4421. doi: 10.1073/pnas.1217060110 PubMed DOI PMC
Baker C. L., Loros J. J., Dunlap J. C. (2012). The circadian clock of Neurospora crassa . FEMS Microbiol. Rev. 36 (1), 95-110. doi: 10.1111/j.1574-6976.2011.00288.x PubMed DOI PMC
Bazalová O., Doležel D. (2017). Daily Activity of the Housefly, Musca domestica, Is Influenced by Temperature Independent of 3′ UTR period Gene Splicing. G3 Genes|Genomes|Genetics 7, 2637–2649. doi: 10.1534/g3.117.042374 PubMed DOI PMC
Blum M., Chang H.-Y., Chuguransky S., Grego T., Kandasaamy S., Mitchell A., et al. . (2021). The InterPro protein families and domains database: 20 years on. Nucleic Acids Res. 49, D344–D354. doi: 10.1093/nar/gkaa977 PubMed DOI PMC
Borges-Pereira L., Dias B. K. M., Singh M. K., Garcia C. R. S. (2021). Malaria parasites and circadian rhythm: New insights into an old puzzle. Curr. Res. Microb. Sci. 2, 100017. doi: 10.1016/j.crmicr.2020.100017 PubMed DOI PMC
Brameier M., Krings A., MacCallum R. M. (2007). NucPred Predicting nuclear localization of proteins. Bioinformatics 23, 1159–1160. doi: 10.1093/bioinformatics/btm066 PubMed DOI
Capella-Gutiérrez S., Silla-Martínez J. M., Gabaldón T. (2009). trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973. doi: 10.1093/bioinformatics/btp348 PubMed DOI PMC
Cervela-Cardona L., Alary B., Mas P. (2021). The arabidopsis circadian clock and metabolic energy: A question of time. Front. Plant Sci. 12. doi: 10.3389/fpls.2021.804468 PubMed DOI PMC
Chaves I., Pokorny R., Byrdin M., Hoang N., Ritz T., Brettel K., et al. . (2011). The cryptochromes: Blue light photoreceptors in plants and animals. Annu. Rev. Plant Biol. 62, 335–364. doi: 10.1146/annurev-arplant-042110-103759 PubMed DOI
Copernicus N. (1543). De revolutionibus orbium coelestinum (Nuremberg: Petreius, Johannes; ).
Cordoba J., Perez E., Van Vlierberghe M., Bertrand A. R., Lupo V., Cardol P., et al. . (2021). De novo transcriptome meta-assembly of the mixotrophic freshwater microalga euglena gracilis. Genes (Basel) 12, 842. doi: 10.3390/genes12060842 PubMed DOI PMC
Crosthwaite S. K., Dunlap J. C., Loros J. J. (1997). Neurospora wc-1 and wc-2: Transcription, photoresponses, and the origins of circadian rhythmicity. Science 1979), 276. doi: 10.1126/science.276.5313.763 PubMed DOI
Cumbo V. R., Baird A. H., Moore R. B., Negri A. P., Neilan B. A., Salih A., et al. . (2013). Chromera velia is endosymbiotic in larvae of the reef corals Acropora digitifera and A. tenuis. Protist 164, 237–244. doi: 10.1016/j.protis.2012.08.003 PubMed DOI
Dana J. D. (1846). Zoophytes Atlas in United States Exploring Expedition (Philadelphia; ).
Doležel D. (2023). “Molecular mechanism of the circadian clock,” in Insect chronobiology, 1st edn. Eds. Numata H., Tomioka K. (Singapore: Springer; ). doi: 10.1007/978-981-99-0726-7_4 DOI
Duanmu D., Rockwell N. C., Lagarias J. C. (2017). Algal light sensing and photoacclimation in aquatic environments. Plant Cell Environ. 40, 2558–2570. doi: 10.1111/pce.12943 PubMed DOI PMC
Dunlap J. C. (1999). Molecular bases for circadian clocks. Cell 96, 271–290. doi: 10.1016/S0092-8674(00)80566-8 PubMed DOI
Edgar R. S., Green E. W., Zhao Y., Van Ooijen G., Olmedo M., Qin X., et al. . (2012). Peroxiredoxins are conserved markers of circadian rhythms. Nature 485 (7399), 459–464. doi: 10.1038/nature11088 PubMed DOI PMC
Farré E. M. (2020). The brown clock: circadian rhythms in stramenopiles. Physiol. Plant 169, 430–441. doi: 10.1111/PPL.13104 PubMed DOI
Füssy Z., Masařová P., Kručinská J., Esson H. J., Oborník M. (2017). Budding of the alveolate alga vitrella brassicaformis resembles sexual and asexual processes in apicomplexan parasites. Protist 168, 80–91. doi: 10.1016/j.protis.2016.12.001 PubMed DOI
Giebultowicz J. (2004). Chronobiology: biological timekeeping. Integr. Comp. Biol. 44, 266–266. doi: 10.1093/icb/44.3.266 PubMed DOI
Golden S. S., Canales S. R. (2003). Cyanobacterial circadian clocks — timing is everything. Nat. Rev. Microbiol. 1 (3), 191–199. doi: 10.1038/nrmicro774 PubMed DOI
Gruber A., Rocap G., Kroth P. G., Armbrust E. V., Mock T. (2015). Plastid proteome prediction for diatoms and other algae with secondary plastids of the red lineage. Plant J. 81, 519–528. doi: 10.1111/tpj.12734 PubMed DOI PMC
Guillard R. R., Ryther J. H. (1962). Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (cleve) Gran. Can. J. Microbiol. Apr; 8, 229–239. doi: 10.1139/m62-029 PubMed DOI
Guo Y., Yang Y., Huang Y., Shen H.B. (2020). Discovering nuclear targeting signal sequence through protein language learning and multivariate analysis. Anal. Biochem. 591, 113565. doi: 10.1016/j.ab.2019.113565 PubMed DOI
Hegemann P. (2008). Algal sensory photoreceptors. Annu. Rev. Plant Biol. 59, 167–189. doi: 10.1146/annurev.arplant.59.032607.092847 PubMed DOI
Hirooka S., Itabashi T., Ichinose T. M., Onuma R., Fujiwara T., Yamashita S., et al. . (2022). Life cycle and functional genomics of the unicellular red alga Galdieria for elucidating algal and plant evolution and industrial use. Proc. Nati. Aca. Sci. U.S.A. 119 (41), e2210665119. doi: 10.1073/pnas.2210665119 PubMed DOI PMC
Holm K., Källman T., Gyllenstrand N., Hedman H., Lagercrantz U. (2010). Does the core circadian clock in the moss Physcomitrella patens (Bryophyta) comprise a single loop? BMC Plant Biol. 10, 109. doi: 10.1186/1471-2229-10-109 PubMed DOI PMC
Huang T. C., Tu J., Chow T. J., Chen T. H. (1990). Circadian rhythm of the prokaryote Synechococcus sp. RF-1. Plant Physiol. 92 (2), 531–533. doi: 10.1104/pp.92.2.531 PubMed DOI PMC
Jadhav D. B., Sriramkumar Y., Roy S. (2022). The enigmatic clock of dinoflagellates, is it unique? Front. Microbiol. 13. doi: 10.3389/fmicb.2022.1004074 PubMed DOI PMC
Janouškovec J., Horák A., Barott K. L., Rohwer F. L., Keeling P. J. (2013). Environmental distribution of coral-associated relatives of apicomplexan parasites. ISME J. 7 (2), 444–447. doi: 10.1038/ismej.2012.129 PubMed DOI PMC
Johnson C. H., Zhao C., Xu Y., Mori T. (2017). Timing the day: What makes bacterial clocks tick? Nat. Rev. Microbiol. 15 (4), 232-242. doi: 10.1038/nrmicro.2016.196 PubMed DOI PMC
Kalyaanamoorthy S., Minh B. Q., Wong T. K. F., von Haeseler A., Jermiin L. S. (2017). ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589. doi: 10.1038/nmeth.4285 PubMed DOI PMC
Katoh K. (2002). MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059–3066. doi: 10.1093/nar/gkf436 PubMed DOI PMC
Kleine T., Lockhart P., Batschauer A. (2003). An Arabidopsis protein closely related to Synechocystis cryptochrome is targeted to organelles. Plant J. 35 (1), 93-103. doi: 10.1046/j.1365-313X.2003.01787.x PubMed DOI
Kobelková A., Bajgar A., Dolezel D. (2010). Functional Molecular Analysis of a Circadian Clock Gene timeless Promoter from the Drosophilid Fly Chymomyza costata . J. Biol. Rhythms 25, 399–409. doi: 10.1177/0748730410385283 PubMed DOI
Kondo T., Ishiura M. (2000). The circadian clock of cyanobacteria. BioEssays 22, 10–15. doi: 10.1002/(SICI)1521-1878(200001)22:1<10::AID-BIES4>3.0.CO;2-A PubMed DOI
Kořený L., Sobotk R., Janouškovec J., Keeling P. J., Oborník M. (2011). Tetrapyrrole synthesis of photosynthetic chromerids is likely homologous to the unusual pathway of apicomplexan parasites. Plant Cell 23, 3454–3462. doi: 10.1105/tpc.111.089102 PubMed DOI PMC
Kořený L., Zeeshan M., Barylyuk K., Tromer E. C., van Hooff J. J. E., Brady D., et al. . (2021). Molecular characterization of the conoid complex in Toxoplasma reveals its conservation in all apicomplexans, including Plasmodium species. PloS Biol. 19, e3001081. doi: 10.1371/journal.pbio.3001081 PubMed DOI PMC
Kosugi S., Hasebe M., Tomita M., Yanagawa H. (2009). Systematic identification of cell cycle-dependent yeast nucleocytoplasmic shuttling proteins by prediction of composite motifs. Proc. Nat. Aca. Sci. U.S.A. 106, 10171–10176. doi: 10.1073/pnas.0900604106 PubMed DOI PMC
Kotabová E., Jarešová J., Kaňa R., Sobotka R., Bína D., Prášil O. (2014). Novel type of red-shifted chlorophyll a antenna complex from Chromera velia. I. Physiological relevance and functional connection to photosystems. Biochim. Biophys. Acta (BBA) – Bioenergetics 1837, 734–743. doi: 10.1016/j.bbabio.2014.01.012 PubMed DOI
Kottke T., Oldemeyer S., Wenzel S., Zou Y., Mittag M. (2017). Cryptochrome photoreceptors in green algae: Unexpected versatility of mechanisms and functions. J. Plant Physiol. 217, 4-14. doi: 10.1016/j.jplph.2017.05.021 PubMed DOI
Kotwica-Rolinska J., Chodáková L., Smýkal V., Damulewicz M., Provazník J., Wu B. C.-H., et al. . (2022). Loss of timeless underlies an evolutionary transition within the circadian clock. Mol. Biol. Evol. 39 (1), msab346. doi: 10.1093/molbev/msab346 PubMed DOI PMC
Kuhlman S. J., Craig L. M., Duffy J. F. (2018). Introduction to chronobiology. Cold Spring Harb. Perspect. Biol. 10 (9), a033613. doi: 10.1101/cshperspect.a033613 PubMed DOI PMC
Lande-Diner L., Boyault C., Kim J. Y., Weitz C. J. (2013). A positive feedback loop links circadian clock factor CLOCK-BMAL1 to the basic transcriptional machinery. Proc. Natl. Acad. Sci. U.S.A. 110 (40), 16021–16026. doi: 10.1073/pnas.1305980110 PubMed DOI PMC
Lopez L., Fasano C., Perrella G., Facella P. (2021). Cryptochromes and the circadian clock: The story of a very complex relationship in a spinningworld. Genes (Basel) 12 (5), 672. doi: 10.3390/genes12050672 PubMed DOI PMC
Mathur V., del Campo J., Kolisko M., Keeling P. J. (2018). Global diversity and distribution of close relatives of apicomplexan parasites. Environ. Microbiol. 20 (5), 2824-2833. doi: 10.1111/1462-2920.14134 PubMed DOI
Mei Q., Dvornyk V. (2015). Evolutionary history of the photolyase/cryptochrome superfamily in eukaryotes. PloS One 10 (9), e0135940. doi: 10.1371/journal.pone.0135940 PubMed DOI PMC
Milos P., Morse D., Hastings J. W. (1990). Circadian control over synthesis of many Gonyaulax proteins is at a translational level. Naturwissenschaften 77 (2), 87–89. doi: 10.1007/BF01131782 PubMed DOI
Minh B. Q., Schmidt H. A., Chernomor O., Schrempf D., Woodhams M. D., von Haeseler A., et al. . (2020). IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534. doi: 10.1093/molbev/msaa015 PubMed DOI PMC
Miyagishima S. Y., Tanaka K. (2021). The unicellular red alga cyanidioschyzon merolae – the simplest model of a photosynthetic eukaryote. Plant Cell Physiol. 62 (6), 926-941. doi: 10.1093/pcp/pcab052 PubMed DOI PMC
Mohamed A. R., Cumbo V. R., Harii S., Shinzato C., Chan C. X., Ragan M. A., et al. . (2018). Deciphering the nature of the coral-Chromera association. ISME J. 12 (3), 776–790. doi: 10.1038/s41396-017-0005-9 PubMed DOI PMC
Mohawk J. A., Green C. B., Takahashi J. S. (2012). Central and peripheral circadian clocks in mammals. Annu. Rev. Neurosci. 35, 445–462. doi: 10.1146/annurev-neuro-060909-153128 PubMed DOI PMC
Moore R. B., Oborník M., Janouškovec J., Chrudimský T., Vancová M., Green D. H., et al. . (2008). A photosynthetic alveolate closely related to apicomplexan parasites. Nature 451, 959–963. doi: 10.1038/nature06871 PubMed DOI
Morse D., Milos P. M., Roux E., Hastings J. W. (1989). Circadian regulation of bioluminescence in Gonyaulax involves translational control. Proc. Nat. Aca. Sci. U.S.A. 86, 172–176. doi: 10.1073/pnas.86.1.172 PubMed DOI PMC
Nakamichi N. (2020). The transcriptional network in the Arabidopsis circadian clock system. Genes (Basel) 11 (11), 1284. doi: 10.3390/genes11111284 PubMed DOI PMC
Nguyen A. N., Pogoutse A., Provart N., Moses A. M. (2009). NLStradamus: a simple Hidden Markov Model for nuclear localization signal prediction. BMC Bioinf. 10, 202. doi: 10.1186/1471-2105-10-202 PubMed DOI PMC
Nohales M. A., Kay S. A. (2016). Molecular mechanisms at the core of the plant circadian oscillator. Nat. Struct. Mol. Biol. 23 (12), 1061-1069. doi: 10.1038/nsmb.3327 PubMed DOI PMC
Oborník M., Kručinská J., Esson H. J. (2016). Life cycles of chromerids resemble those of colpodellids and apicomplexan parasites. Perspect. Phycology 3, 21–27. doi: 10.1127/pip/2016/0038 DOI
Oborník M., Vancová M., Lai D. H., Janouškovec J., Keeling P. J., Lukeš J. (2011). Morphology and ultrastructure of multiple life cycle stages of the photosynthetic relative of apicomplexa, Chromera velia . Protist 162, 115–130. doi: 10.1016/j.protis.2010.02.004 PubMed DOI
Oborník M. (2020). Photoparasitism as an intermediate state in the evolution of apicomplexan parasites. Trends Parasitol. 36 (9), 727–734. doi: 10.1016/j.pt.2020.06.002 PubMed DOI
Okada R., Kondo S., Satbhai S. B., Yamaguchi N., Tsukuda M., Aoki S. (2009). Functional characterization of CCA1 / LHY homolog genes, PpCCA1a and PpCCA1b , in the moss Physcomitrella patens . Plant J. 60, 551–563. doi: 10.1111/j.1365-313X.2009.03979.x PubMed DOI
Petersen J., Rredhi A., Szyttenholm J., Mittag M. (2022). Evolution of circadian clocks along the green lineage. Plant Physiol. 190 (2), 924-937. doi: 10.1093/plphys/kiac141 PubMed DOI PMC
Petersen J., Rredhi A., Szyttenholm J., Oldemeyer S., Kottke T., Mittag M. (2021). The world of algae reveals a broad variety of cryptochrome properties and functions. Front. Plant Sci. 12. doi: 10.3389/fpls.2021.766509 PubMed DOI PMC
Poliner E., Cummings C., Newton L., Farré E. M. (2019). Identification of circadian rhythms in Nannochloropsis species using bioluminescence reporter lines. Plant J. 99 (1), 112-127. doi: 10.1111/tpj.14314 PubMed DOI
Portman N., Foster C., Walker G., Šlapeta J. (2014). Evidence of intraflagellar transport and apical complex formation in a free-living relative of the apicomplexa. Eukaryot Cell 13, 10–20. doi: 10.1128/EC.00155-13 PubMed DOI PMC
Ragni M., D’Alcalà M. R. (2007). Circadian variability in the photobiology of Phaeodactylum tricornutum: Pigment content. J. Plankton Res. 29, 141–156. doi: 10.1093/plankt/fbm002 DOI
Reitzel A. M., Behrendt L., Tarrant A. M. (2010). Light entrained rhythmic gene expression in the sea anemone nematostella vectensis: the evolution of the animal circadian clock. PloS One 5, e12805. doi: 10.1371/journal.pone.0012805 PubMed DOI PMC
Rijo-Ferreira F., Acosta-Rodriguez V. A., Abel J. H., Kornblum I., Bento I., Kilaru G., et al. . (2020). The malaria parasite has an intrinsic clock. Science 368 (6492), 746-753. doi: 10.1126/science.aba2658 PubMed DOI PMC
Rijo-Ferreira F., Takahashi J. S. (2020). Sleeping sickness: A tale of two clocks. Front. Cell Infect. Microbiol. 10. doi: 10.3389/fcimb.2020.525097 PubMed DOI PMC
Roenneberg T., Morse D. (1993). Two circadian oscillators in one cell. Nature 362 (6418), 362-364. doi: 10.1038/362362a0 PubMed DOI
Roy S., Beauchemin M., Dagenais-Bellefeuille S., Letourneau L., Cappadocia M., Morse D. (2014). The Lingulodinium circadian system lacks rhythmic changes in transcript abundance. BMC Biol. 12, 107. doi: 10.1186/s12915-014-0107-z PubMed DOI PMC
Rredhi A., Petersen J., Schubert M., Li W., Oldemeyer S., Li W., et al. . (2021). DASH cryptochrome 1, a UV-A receptor, balances the photosynthetic machinery of Chlamydomonas reinhardtii . New Phytol. 232 (2), 610-624. doi: 10.1111/nph.17603 PubMed DOI
Schmid R., Dring M. J. (1992). Circadian rhythm and fast responses to blue light of photosynthesis in Ectocarpus (Phaeophyta, Ectocarpales) - I. Characterization of the rhythm and the blue-light response. Planta 187 (1), 53–59. doi: 10.1007/BF00201623 PubMed DOI
Schmid R., Forster R., Dring M. J. (1992). Circadian rhythm and fast responses to blue light of photosynthesis in Ectocarpus (Phaeophyta, Ectocarpales) - II. Light and CO2 dependence of photosynthesis. Planta 187, 60–66. doi: 10.1007/BF00201624 PubMed DOI
Smýkal V., Chodáková L., Hejníková M., Briediková K., Wu B. C., Vaněčková H., et al. . (2023). Steroid receptor coactivator TAIMAN is a new modulator of insect circadian clock. PLoS Genet 19 (9), e1010924. doi: 10.1371/journal.pgen.1010924 PubMed DOI PMC
Swan J. A., Golden S. S., LiWang A., Partch C. L. (2018). Structure, function, and mechanism of the core circadian clock in cyanobacteria. J. Biol. Chem. 293 (14), 5026-5034. doi: 10.1074/jbc.TM117.001433 PubMed DOI PMC
Vazač J., Füssy Z., Hladová I., Killi S., Oborník M. (2018). Ploidy and number of chromosomes in the alveolate alga chromera velia . Protist 169, 53–63. doi: 10.1016/j.protis.2017.12.001 PubMed DOI
Woo Y. H., Ansari H., Otto T. D., Linger C. M. K., Kolisko M. K., Michálek J., et al. . (2015). Chromerid genomes reveal the evolutionary path from photosynthetic algae to obligate intracellular parasites. Elife 4, e06974–Undefined. doi: 10.7554/eLife.06974 PubMed DOI PMC
Xu P., Xiang Y., Zhu H., Xu H., Zhang Z., Zhang C., et al. . (2009). Wheat cryptochromes: Subcellular localization and involvement in photomorphogenesis and osmotic stress responses. Plant Physiol. 149 (2), 760–774. doi: 10.1104/pp.108.132217 PubMed DOI PMC
Yamada N., Sym S. D., Horiguchi T. (2017). Identification of highly divergent diatom-derived chloroplasts in dinoflagellates, including a description of Durinskia kwazulunatalensis sp. nov. (Peridiniales, Dinophyceae). Mol. Biol. Evol. 34, 1335–1351. doi: 10.1093/molbev/msx054 PubMed DOI
Zhang S., Wu Y., Lin L., Wang D. (2022). Molecular insights into the circadian clock in marine diatoms. Acta Oceanologica Sin. 41, 87–98. doi: 10.1007/s13131-021-1962-4 DOI