Photoparasitism as an Intermediate State in the Evolution of Apicomplexan Parasites
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
32680786
DOI
10.1016/j.pt.2020.06.002
PII: S1471-4922(20)30163-X
Knihovny.cz E-zdroje
- Klíčová slova
- Apicomplexa, evolution, mixotrophy, parasitism, photoparasitism, phototrophy,
- MeSH
- Apicomplexa klasifikace metabolismus fyziologie MeSH
- biologická evoluce * MeSH
- fototrofní procesy * MeSH
- lidé MeSH
- paraziti klasifikace metabolismus fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Despite the benefits of phototrophy, many algae have lost photosynthesis and have converted back to heterotrophy. Parasitism is a heterotrophic strategy, with apicomplexans being among the most devastating parasites for humans. The presence of a nonphotosynthetic plastid in apicomplexan parasites suggests their phototrophic ancestry. The discovery of related phototrophic chromerids has unlocked the possibility to study the transition between phototrophy and parasitism in the Apicomplexa. The chromerid Chromera velia can live as an intracellular parasite in coral larvae as well as a free-living phototroph, combining phototrophy and parasitism in what I call photoparasitism. Since early-branching apicomplexans live extracellularly, their evolution from an intracellular symbiont is unlikely. In this opinion article I discuss possible evolutionary trajectories from an extracellular photoparasite to an obligatory apicomplexan parasite.
Citace poskytuje Crossref.org
Circadian rhythms and circadian clock gene homologs of complex alga Chromera velia
Organellar Evolution: A Path from Benefit to Dependence
Editorial: Mixotrophic, Secondary Heterotrophic, and Parasitic Algae
Using Diatom and Apicomplexan Models to Study the Heme Pathway of Chromera velia