Organellar Evolution: A Path from Benefit to Dependence
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
21-03224S
Czech Science Foundation
CZ.02.1.01 /0.0/0.0/16_019/0000759
European Regional Development Fund
PubMed
35056571
PubMed Central
PMC8781833
DOI
10.3390/microorganisms10010122
PII: microorganisms10010122
Knihovny.cz E-zdroje
- Klíčová slova
- benefit, endosymbiosis, essential function, mitochondrion, organelle, plastid,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Eukaryotic organelles supposedly evolved from their bacterial ancestors because of their benefits to host cells. However, organelles are quite often retained, even when the beneficial metabolic pathway is lost, due to something other than the original beneficial function. The organellar function essential for cell survival is, in the end, the result of organellar evolution, particularly losses of redundant metabolic pathways present in both the host and endosymbiont, followed by a gradual distribution of metabolic functions between the organelle and host. Such biological division of metabolic labor leads to mutual dependence of the endosymbiont and host. Changing environmental conditions, such as the gradual shift of an organism from aerobic to anaerobic conditions or light to dark, can make the original benefit useless. Therefore, it can be challenging to deduce the original beneficial function, if there is any, underlying organellar acquisition. However, it is also possible that the organelle is retained because it simply resists being eliminated or digested untill it becomes indispensable.
Zobrazit více v PubMed
Gould S.B., Waller R.F., McFadden G.I. Plastid evolution. Annu. Rev. Plant. Biol. 2008;59:491–517. doi: 10.1146/annurev.arplant.59.032607.092915. PubMed DOI
Keeling P.J. The number, speed, and impact of plastid endosymbioses in eukaryotic evolution. Ann. Rev. Plant. Biol. 2013;64:583–607. doi: 10.1146/annurev-arplant-050312-120144. PubMed DOI
Archibald J.M. Endosymbiosis and eukaryotic cell evolution. Curr. Biol. 2015;25:R911–R921. doi: 10.1016/j.cub.2015.07.055. PubMed DOI
Gruber A. What’s a name? Why organelles of endosymbiotic origin are implicitly called by their eukaryotic species name and how they can be distinguished from endosymbionts. Microb. Cell. 2019;6:123–133. doi: 10.15698/mic2019.02.668. PubMed DOI PMC
Pallen M.J. Time to recognize that mitochondria are bacteria? Trends Microbiol. 2011;19:58–61. doi: 10.1016/j.tim.2010.11.001. PubMed DOI
Oborník M. In the beginning was the word: How terminology drives our understanding of endosymbiotic organelles. Microb. Cell. 2019;6:134–141. doi: 10.15698/mic2019.02.669. PubMed DOI PMC
Oborník M. Endosymbiotic evolution of algae, secondary heterotrophy and parasitism. Biomolecules. 2019;9:266. doi: 10.3390/biom9070266. PubMed DOI PMC
Martin W., Rujan T., Richly E., Hansen A., Cornelsen S., Lins T., Leister D., Stoebe B., Hasegawa M., Penny D. Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc. Natl. Acad. Sci. USA. 2002;99:12246–12251. doi: 10.1073/pnas.182432999. PubMed DOI PMC
Timmis J.N., Ayliffe M.A., Huang C.Y., Martin W. Endosymbiotic gene transfer: Organelle genomes forge eukaryotic chromosomes. Nat. Rev. Genet. 2004;5:123–135. doi: 10.1038/nrg1271. PubMed DOI
Keeling P.J., McCutcheon J.P. Endosymbiosis: The feeling is not mutual. J. Theor. Biol. 2017;434:75–79. doi: 10.1016/j.jtbi.2017.06.008. PubMed DOI PMC
Oborník M. Photoparasitism as an intermediate state in the evolution of apicomplexan parasites. Trends Parasitol. 2020;36:727–734. doi: 10.1016/j.pt.2020.06.002. PubMed DOI
Hampl V., Čepička I., Eliáš M. Was the mitochondrion necessary to start eukaryogenesis? Trends Microbiol. 2018;27:96–104. doi: 10.1016/j.tim.2018.10.005. PubMed DOI
Martin W.F., Garg S., Zimorski V. Endosymbiotic theories for eukaryote origin. Philos. Trans. R. Soc. B. 2015;370:20140330. doi: 10.1098/rstb.2014.0330. PubMed DOI PMC
Muñoz-Gómez S.A., Wideman J.G., Roger A.J., Slamovits C.H. The origin of mitochondrial cristae from alphaproteobacteria. Mol. Evol. Biol. 2017;34:943–956. doi: 10.1093/molbev/msw298. PubMed DOI
Raymond J. The role of horizontal gene transfer in photosynthesis, oxygen production, and oxygen tolerance. Methods Mol. Biol. 2009;532:323–338. PubMed
Koblížek M., Moulisová V., Muroňová M., Oborník M. Horizontal transfers of two types of puf operons among phototrophic members of the Roseobacter clade. Folia Microbiol. 2015;60:37–43. doi: 10.1007/s12223-014-0337-z. PubMed DOI
Fischer W.W., Hemp J., Johnson J.E. Evolution of oxygenic photosynthesis. Annu. Rev. Earth Planet Sci. 2016;44:647–683. doi: 10.1146/annurev-earth-060313-054810. DOI
Cavalier-Smith T. Principles of protein and lipid targeting in secondary symbiogenesis: Euglenoid, dinoflagellate, and sporozoan plastid origins and the eukaryote family tree. J. Euk. Microbiol. 1999;46:347–366. doi: 10.1111/j.1550-7408.1999.tb04614.x. PubMed DOI
Cavalier-Smith T. The phagotrophic origin of eukaryotes and phylogenetic classification of protozoa. Int. J. Syst. Evol. Microbiol. 2002;52:297–354. doi: 10.1099/00207713-52-2-297. PubMed DOI
Delaye L., Valadez-Cano C., Perez-Zamorano B. How really ancient is Paulinella chromatophora? PLoS Curr. Tree Life. 2016;8 doi: 10.1371/currents.tol.e68a099364bb1a1e129a17b4e06b0c6b. PubMed DOI PMC
Stephens T.G., Gabr A., Calatrava V., Grossman A.R., Bhattacharya D. Why is primary endosymbiosis so rare? New Phytol. 2021;231:1693–1699. doi: 10.1111/nph.17478. PubMed DOI PMC
Kies L. Electron microscopical investigations on Paulinella chromatophora Lauterborn, a thecamoeba containing blue-green endosymbionts (cyanelles) Protoplasma. 1974;80:69–89. doi: 10.1007/BF01666352. PubMed DOI
Kies L., Kremer B.P. Function of cyanelles in the thecamoeba Paulinella chromatophora. Naturwissenschaften. 1979;66:578–579. doi: 10.1007/BF00368819. DOI
Marin B., Nowack E.C., Melkonian M. A plastid in the making: Evidence for a second primary endosymbiosis. Protist. 2005;156:425–432. doi: 10.1016/j.protis.2005.09.001. PubMed DOI
Bodył A., Stiller J.W., Mackiewicz P. Chromalveolate plastids: Direct sescent or multiple endosymbioses? Trend. Ecol. Evol. 2009;24:119–121. doi: 10.1016/j.tree.2008.11.003. PubMed DOI
Stiller J.W., Schreiber J., Yue J., Guo H., Ding Q., Huang J. The evolution of photosynthesis in chromist algae through serial endosymbioses. Nat. Commun. 2014;5:5764. doi: 10.1038/ncomms6764. PubMed DOI PMC
Petersen J., Ludewig A.K., Michael V., Bunk B., Jarek M., Baurain D., Brinkman H. Chromera velia, endosymbioses and the rhodoplex hypothesis—plastid evolution in cryptophytes, alveolates, stramenopiles, and haptophytes (CASH lineages) Genome Biol. Evol. 2014;6:666–684. doi: 10.1093/gbe/evu043. PubMed DOI PMC
Dorrell R.G., Bowler C. Secondary plastids of stramenopiles. Adv. Bot. Res. 2017;84:57–103.
Strassert J.F.H., Irisarri I., Williams T.A., Burki F. A molecular timescale of eukaryote evolution with implications for the origin of red algal-derived plastids. Nat. Commun. 2021;12:1879. doi: 10.1038/s41467-021-22044-z. PubMed DOI PMC
Oborník M. The birth of red complex plastids: One, three, or four times? Trends Parasitol. 2018;34:923–925. doi: 10.1016/j.pt.2018.09.001. PubMed DOI
Hadariová L., Vesteg M., Hampl V., Krajčoviš J. Reductive evolution of chloroplasts in non-photosynthetic plants, algae and protists. Curr. Genet. 2018;64:365–387. doi: 10.1007/s00294-017-0761-0. PubMed DOI
Sato S., Nakamura Y., Kaneko T., Asamizu E., Tabata S. Complete structure of the chloroplast genome of Arabidopsis thaliana. DNA Res. 1999;29:283–290. doi: 10.1093/dnares/6.5.283. PubMed DOI
Tajima N., Sato S., Maruyama F., Kurokawa K., Ohta H., Tabata S., Sekine K., Moriyama T., Sato N. Analysis of the complete plastid genome of the unicellular red alga Porphyridium purpureum. J. Plant Res. 2014;127:389–397. doi: 10.1007/s10265-014-0627-1. PubMed DOI
De Koning A.P., Keeling P.J. The complete plastid genome sequence of the parasitic green alga Helicosporidium sp. is highly reduced and structured. BMC Biol. 2006;4:12. doi: 10.1186/1741-7007-4-12. PubMed DOI PMC
Smith D.R., Lee R.W. A Plastid without a Genome: Evidence from the Nonphotosynthetic Green Algal Genus Polytomella. Plant Physiol. 2014;164:1812–1819. doi: 10.1104/pp.113.233718. PubMed DOI PMC
Nowack E.C.M., Melkonian M., Glockner G. Chromatophore genome sequence of Paulinella sheds light on acquisition of photosynthesis by eukaryotes. Curr. Biol. 2008;18:410–418. doi: 10.1016/j.cub.2008.02.051. PubMed DOI
Hallick R.B., Hong L., Drager R.G., Favreau M.R., Monfort A., Orsat B., Spielmann A., Stutz E. Complete sequence of Euglena gracilis chloroplast DNA. Nucleic Acids Res. 1993;21:3537–3544. doi: 10.1093/nar/21.15.3537. PubMed DOI PMC
Gockel G., Hachtel W. Complete gene map of the plastid genome of the nonphotosynthetic euglenoid flagellate Astasia longa. Protist. 2000;151:347–351. doi: 10.1078/S1434-4610(04)70033-4. PubMed DOI
Zhang Z., Green B.R., Cavalier-Smith T. Single gene circles in dinoflagellate chloroplast genomes. Nature. 1999;400:155–159. doi: 10.1038/22099. PubMed DOI
Gornik S.G., Cassin A.M., MacRae J.I., Ramprasad A., Rchiad Z., McConville M.J., Bacic A., McFadden G.I., Pain A., Waller R.F. Endosymbiosis undone by stepwise elimination of the plastid in a parasitic dinoflagellate. Proc. Natl. Acad. Sci. USA. 2015;112:5767–5772. doi: 10.1073/pnas.1423400112. PubMed DOI PMC
Oudot-Le Secq M.-P., Grimwood J., Shapiro H., Armbrust E.V., Bowler C., Green B.R. Chloroplast genomes of the diatoms Phaeodactylum tricornutum and Thalassiosira pseudonana: Comparison with other plastid genomes of the red lineage. Mol. Genet. Genom. 2007;277:427–439. doi: 10.1007/s00438-006-0199-4. PubMed DOI
Janouškovec J., Horák A., Oborník M., Lukeš J., Keeling P.J. A common red algal origin of the apicomplexan, dinoflagellate, and heterokont plastids. Proc. Natl. Acad. Sci. USA. 2010;107:10949–10950. doi: 10.1073/pnas.1003335107. PubMed DOI PMC
Zhu G., Marchewka M.J., Keithly J.S. Cryptosoridium parvum appears to lack a plastid genome. Microbiology. 2000;146:315–321. doi: 10.1099/00221287-146-2-315. PubMed DOI
Suzuki S., Endoh R., Manabe R., Ohkuma M., Hirakawa Y. Multiple losses of photosynthesis and convergent reductive genome evolution in the colourless green algae Prototheca. Sci. Rep. 2018;8:940. doi: 10.1038/s41598-017-18378-8. PubMed DOI PMC
Khorobrykh S., Havurinne V., Mattila H., Tyystjärvi E. Oxygen and ROSS in photosynthesis. Plants. 2020;9:91. doi: 10.3390/plants9010091. PubMed DOI PMC
Füssy Z., Záhonová K., Tomčala A., Krajčovič J., Yurchenko V., Oborník M., Eliáš M. The cryptic plastid of Euglena longa defines a new type of nonphotosynthetic plastid organelle. mSphere. 2020;5:e00675-20. doi: 10.1128/mSphere.00675-20. PubMed DOI PMC
Salomaki E.D., Kolisko M. There is treasure everywhere: Reductive plastid evolution in Apicomplexa in light of their close relatives. Biomolecules. 2019;9:378. doi: 10.3390/biom9080378. PubMed DOI PMC
Waller R.F., Kořený L. Plastid complexity in dinoflagellates: A picture of gains, losses, replacements and revisions. Adv. Bot. Res. 2017;84:105–143.
Mathur V., Kolísko M., Hehenberger E., Irwin N.A.T., Leander B.S., Kristmundsson Á., Freeman M.A., Keeling P.J. Multiple independent origins of apicomplexan-like parasites. Curr. Biol. 2019;29:1–6. doi: 10.1016/j.cub.2019.07.019. PubMed DOI
Janouškovec J., Paskerova G.G., Miroliubova T.S., Mikhailov K.V., Birley T., Aleoshin V.V., Simdyanov T.G. Apicomplexan-like parasites are polyphyletic and widely but selectively dependent on cryptic plastid organelles. eLife. 2019;8:e49662. doi: 10.7554/eLife.49662. PubMed DOI PMC
Toso M.A., Omoto C.K. Gregarina niphandrodes may lack both a plastid genome and organelle. J. Eukaryot. Microbiol. 2007;54:66–72. doi: 10.1111/j.1550-7408.2006.00229.x. PubMed DOI
Gray W., Burger G., Derelle R., Klimeš V., Leger M.M., Sarrasin M., Vlček Č., Roger A.J., Eliáš M., Lang B.F. The draft nuclear genome sequence and predicted mitochondrial proteome of Andalucia godoi, a protist with the most gene-rich and bacteria-like mitochondrial genome. BMC Biol. 2020;18:22. doi: 10.1186/s12915-020-0741-6. PubMed DOI PMC
Lang B.F., Burger G., O’Kelly C.J., Cedergren R., Golding G.B., Lemieux C., Sankoff D., Turmel M., Gray M.W. An ancestral mitochondrial DNA resembling a eubacterial genome in miniature. Nature. 1997;387:493–497. doi: 10.1038/387493a0. PubMed DOI
Anderson S., Bankier A.T., Barrell B.G., de Bruijn M.H.L., Coulson A.R., Drouin J., Eperon I.C., Nierlich D.P., Roe B.A., Sanger F., et al. Sequence and organization of the human mitochondrial genome. Nature. 1981;290:457–465. doi: 10.1038/290457a0. PubMed DOI
Dong S., Zhao C., Chen F., Liu Y., Zhang S., Wu H., Zhang L., Liu Y. The complete mitochondrial genome of the early flowering plant Nymphaea colorata is highly repetitive with low recombination. BMC Genom. 2018;19:614. doi: 10.1186/s12864-018-4991-4. PubMed DOI PMC
De Graaf R.M., Ricard G., van Alen T.A., Duarte I., Dutilh B.E., Burgtorf C., Kuiper J.W.P., van der Staay G.W.M., Tielens A.G.M., Huynen M.A., et al. The Organellar Genome and Metabolic Potential of the Hydrogen-Producing Mitochondrion of Nyctotherus ovalis. Mol. Biol. Evol. 2011;28:2379–2391. doi: 10.1093/molbev/msr059. PubMed DOI PMC
Gardner M.J., Bates P.A., Ling I.T., Moore D.J., McCready S., Gunasekera M.B.R., Wilson R.J.M., Williamson D.H. Mitochondrial DNA of the human malarial parasite Plasmodium falciparum. Mol. Biochem. Prasitol. 1988;31:11–17. doi: 10.1016/0166-6851(88)90140-5. PubMed DOI
Flegontov P., Michálek J., Janouškovec J., Lai D.H., Jirků M., Hajdušková E., Tomčala A., Otto D.T., Keeling P.J., Pain A., et al. Divergent mitochondrial respiratory chains in phototrophic relatives of apicomplexan parasites. Mol. Biol. Evol. 2015;32:1115–1131. doi: 10.1093/molbev/msv021. PubMed DOI
John U., Lu Y., Wohlrab S., Groth M., Janouškovec J., Kohli G.S., Mark F.C., Bickmeyer U., Frahat S., Felder M., et al. A aerobic eukaryotic parasite with functional mitochondria that likely lacks a mitochondrial genome. Sci. Adv. 2019;5:1110. doi: 10.1126/sciadv.aav1110. PubMed DOI PMC
Roger A.J., Muñoz-Gómez S.A., Kamikawa R. The origin and diversification of mitochondria. Curr. Biol. 2017;27:R1177–R1192. doi: 10.1016/j.cub.2017.09.015. PubMed DOI
Karnkowska A., Vacek V., Zubacova Z., Treitli S.C., Petrzelková R., Eme L., Novaqk L., Zarsky V., Barlow L.D., Herman E.K. A eukaryote without a mitochondrial organelle. Curr. Biol. 2016;26:1274–1284. doi: 10.1016/j.cub.2016.03.053. PubMed DOI
Burger G., Gray M.W., Forget L., Lang B.F. Strikingly bacteria-like and gene-rich mitochondrial genomes throughout jakobid protists. Genom. Biol. Evol. 2013;5:418–438. doi: 10.1093/gbe/evt008. PubMed DOI PMC
Oborník M., Lukeš J. The organellar genomes of Chromera and Vitrella, the phototrophic relatives of apicomplexan parasites. Ann. Rev. Microbiol. 2015;69:129–144. doi: 10.1146/annurev-micro-091014-104449. PubMed DOI
Müller M., Mentel M., van Hellemond J.J., Henze K., Woehle C., Gould S.B., Yu R.Y., van der Giezen M., Tielens A.G., Martin W.F. Biochemistry and evolution of anaerobic energy metabolism in eukaryotes. Microbiol. Mol. Biol. Rev. 2012;76:444–495. doi: 10.1128/MMBR.05024-11. PubMed DOI PMC
Calvo S.E., Mootha V.K. The mitochondrial proteome and human disease. Annu. Rev. Genom. Hum. Genet. 2010;11:25–44. doi: 10.1146/annurev-genom-082509-141720. PubMed DOI PMC
Panigrahi A.K., Ogata Y., Zíková A., Anupama A., Dalley R.A., Acestor N., Myler P.J., Stuart K.D. A comprehensive analysis of Trypanosoma brucei mitochondrial proteome. Proteomics. 2009;9:434–450. doi: 10.1002/pmic.200800477. PubMed DOI PMC
Gawryluk R.M.R., Chisholm K.A., Pinto D.M., Gray M.W. Compositional complexity of the mitochondrial proteome of a unicellular eukaryote (Acanthamoeba castellanii, supergroup Amoebozoa) rivals that of animals, fungi, and plants. J. Proteom. 2014;109:400–416. doi: 10.1016/j.jprot.2014.07.005. PubMed DOI
Cihlář J., Füssy Z., Horák A., Oborník M. Evolution of the tetrapyrole biosynthetic pathway in secondary algae: Conservation, redundancy and replacement. PLoS ONE. 2016;11:e0166338. doi: 10.1371/journal.pone.0166338. PubMed DOI PMC
Martin W., Müller M. The hydrogen hypothesis for the first eukaryote. Nature. 1998;392:37–41. doi: 10.1038/32096. PubMed DOI
Boxma B., de Graaf R., van der Staay G., van Alen T.A., Ricard G., Gabaldón T., van Hoek A.H.A.M., van der Staay S.Y.M., Koopman W.J.H., van Hellemond J.J., et al. An anaerobic mitochondrion that produces hydrogen. Nature. 2005;434:74–79. doi: 10.1038/nature03343. PubMed DOI
Cavalier-Smith T. Origin of mitochondria by intracellular enslavement of a photosynthetic purple bacterium. Proc. Biol. Sci. 2006;273:1943–1952. doi: 10.1098/rspb.2006.3531. PubMed DOI PMC
Lyons T.W., Reinhard C.T., Planavsky N.J. The rise of oxygen in Earth’s early ocean and atmosphere. Nature. 2014;506:307–315. doi: 10.1038/nature13068. PubMed DOI
Eme L., Sharpe S.C., Brown M.W., Roger A.J. On the age of eukaryotes: Evaluating evidence from fossils and molecular clocks. Cold Spring Harb. Perspect. Biol. 2014;6:a016139. doi: 10.1101/cshperspect.a016139. PubMed DOI PMC
Vellai T., Takacs K., Vida G. A new aspect to the origin and evolution of eukaryotes. J. Mol. Evol. 1998;46:499–507. doi: 10.1007/PL00006331. PubMed DOI
Kurland C.G., Andersson S.G. Origin and evolution of the mitochondrial proteome. Microbiol. Mol. Biol. Rev. 2000;64:786–820. doi: 10.1128/MMBR.64.4.786-820.2000. PubMed DOI PMC
Zimorski V., Mentel M., Tielens A.G.M., Martin W.F. Energy metabolism in nanerobic eukaryotes and Earth’s late oxygenation. Free Radic. Biol. Med. 2019;140:279–294. doi: 10.1016/j.freeradbiomed.2019.03.030. PubMed DOI PMC
Imlay J.A. How oxygen damages microbes: Oxygen tolerance and obligate anaerobiosis. Adv. Microb. Physiol. 2002;46:111–153. PubMed
Wang Z., Wu M. Phylogenomic reconstruction indicates mitochondrial ancestor was an energy parasite. PLoS ONE. 2014;9:e110685. doi: 10.1371/journal.pone.0110685. PubMed DOI PMC
Larkum A.W.D., Lockhart P.J., Howe C.J. Shopping for plastid. Trends Plant. Sci. 2007;12:189–195. doi: 10.1016/j.tplants.2007.03.011. PubMed DOI
Sagan L. On the origin of mitosing cells. J. Theor. Biol. 1967;14:225–274. doi: 10.1016/0022-5193(67)90079-3. PubMed DOI
Goksøyr J. Evolution of eukaryotic cells. Nature. 1967;214:1161. doi: 10.1038/2141161a0. PubMed DOI
Margulis L. Symbiosis in evolution. Sci. Am. 1971;225:48–57. doi: 10.1038/scientificamerican0871-48. PubMed DOI
Lane N. Serial endosymbiosis or singular event at the origin of eucaryotes? J. Theor. Biol. 2017;434:58–67. doi: 10.1016/j.jtbi.2017.04.031. PubMed DOI
Kelly D.P. Autotrophy: Concepts of lithotrophic bacteria and their organic metabolism. Annu. Rev. Microbiol. 1971;25:177–210. doi: 10.1146/annurev.mi.25.100171.001141. PubMed DOI
Bodył A. Did some red alga-derived plastids evolved via kleptoplastidy? A hypothesis. Biol. Rev. 2018;93:201–222. doi: 10.1111/brv.12340. PubMed DOI
Logacheva M.D., Schelkunov M.I., Shtratnikova V.Y., Matveeva M.V., Penin A.A. Comparative analysis of plastid genomes of non-photosynthetic Ericaceae and their photosynthetic relatives. Sci. Rep. 2016;6:30042. doi: 10.1038/srep30042. PubMed DOI PMC
Lavrov D.V., Pett W. Animal Mitochondrial DNA as We Do Not Know It: Mt-Genome Organization and Evolution in Nonbilaterian Lineages. Genom. Biol. Evol. 2016;8:2896–2913. doi: 10.1093/gbe/evw195. PubMed DOI PMC
Sobotka R., Esson H.J., Koník P., Trsková E., Moravcová L., Horák A., Dufková P., Oborník M. Extensive gain and loss of photosystem I subunits in chromerid algae, photosynthetic relatives of apicomplexans. Sci. Rep. 2017;7:13214. doi: 10.1038/s41598-017-13575-x. PubMed DOI PMC
Nonoyama T., Kazamia E., Nawaly H., Gao X., Tsuji Y., Matsuda Y., Bowler C., Tanaka T.G., Dorrell R. Metabolic Innovations Underpinning the Origin and Diversification of the Diatom hloroplast. Biomolecules. 2019;9:322. doi: 10.3390/biom9080322. PubMed DOI PMC
Füssy Z., Faitová T., Oborník M. Subcellular Compartments Interplay for Carbon and Nitrogen Allocation in Chromera velia and Vitrella brassicaformis. Genom. Biol. Evol. 2019;11:1765–1779. doi: 10.1093/gbe/evz123. PubMed DOI PMC
Gray M.W., Lukeš J., Archibald J.M., Keeling P.J., Doolittle W.F. Irremediable complexity? Science. 2000;330:920–921. doi: 10.1126/science.1198594. PubMed DOI
Cavalier-Smith T., Lee J.J. Protozoa as Hosts for Endosymbioses and the Conversion of Symbionts into Organelles. J. Protozool. 1985;32:376–379. doi: 10.1111/j.1550-7408.1985.tb04031.x. DOI
Keeling P.J., Archibald J.M. Organelle Evolution: What’s in a Name? Curr. Biol. 2008;18:R345–R347. doi: 10.1016/j.cub.2008.02.065. PubMed DOI
Reyes-Prieto M., Latorre A., Moya A. Scanty microbes, the ‘symbionelle’ concept. Environ. Microbiol. 2014;16:335–338. doi: 10.1111/1462-2920.12220. PubMed DOI
van de Velde W., Zehirov G., Szatmari A., Debreczeny M., Ishihara H., Kevei Z., Farkas A., Mikulass K., Nagy A., Tiricz H., et al. Plant peptides govern terminal differentiation of bacteria in symbiosis. Science. 2010;327:1122–1126. doi: 10.1126/science.1184057. PubMed DOI
Nowack E.C.M. Paulinella chromatophora – rethinking the transition from endosymbiont to organelle. Acta Soc. Bot. Pol. 2014;83:387–397. doi: 10.5586/asbp.2014.049. DOI
Husník F., Tashyreva D., Boscaro V., George E.E., Lukeš J., Keeling P.J. Bacterial and archaeal symbiosis with prostists. Curr. Biol. 2021;31:R1–R16. doi: 10.1016/j.cub.2021.05.049. PubMed DOI
Thompson A.W., Foster R.A., Krupke A., Carter B.J., Musat N., Vaulot D., Kuypers M.M.M., Zehr J.P. Unicellular cyanobacterium symbiotic with a single-celled eukaryotic alga. Science. 2012;337:1546–1550. doi: 10.1126/science.1222700. PubMed DOI
Nakayama T., Kamikawa R., Tanifuji G., Kashiyama Y., Ohkouchi N., Archibald J.M., Inagaki Y. Complete genome of a nonphotosynthetic cyanobacterium in a diatom reveals recent adaptations to an intracellular lifestyle. Proc. Natl. Acad. Sci. USA. 2014;111:11407–11412. doi: 10.1073/pnas.1405222111. PubMed DOI PMC
Nakabachi A., Ishida K., Hongoh Y., Ohkuma M., Miyagishima S.Y. Aphid gene of bacterial origin encodes a protein transported to an obligate endosymbiont. Curr. Biol. 2014;24:R640–R641. doi: 10.1016/j.cub.2014.06.038. PubMed DOI
Tomas R.N., Cox E.R. Observations on symbiosis of Peridinium Balticum and its intracellular alga.1. Ultrastructure. J. Phycol. 1973;9:304–323.
Jeffrey S.W., Vesk M. Further evidence for a membrane bound endosymbiont within the dinoflagellate Peridinium foliaceum. J. Phycol. 1976;12:450–455.
Imanian B., Pombert J.-F., Dorrell R.G., Burki F., Keeling P.J. Tertiary Endosymbiosis in Two Dinotoms Has Generated Little Change in the Mitochondrial Genomes of Their Dinoflagellate Hosts and Diatom Endosymbionts. PLoS ONE. 2012;7:e43763. doi: 10.1371/journal.pone.0043763. PubMed DOI PMC