What's in a name? How organelles of endosymbiotic origin can be distinguished from endosymbionts

. 2019 Jan 21 ; 6 (2) : 123-133. [epub] 20190121

Status PubMed-not-MEDLINE Jazyk angličtina Země Rakousko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30740457

Mitochondria and plastids evolved from free-living bacteria, but are now considered integral parts of the eukaryotic species in which they live. Therefore, they are implicitly called by the same eukaryotic species name. Historically, mitochondria and plastids were known as "organelles", even before their bacterial origin became fully established. However, since organelle evolution by endosymbiosis has become an established theory in biology, more and more endosymbiotic systems have been discovered that show various levels of host/symbiont integration. In this context, the distinction between "host/symbiont" and "eukaryote/organelle" systems is currently unclear. The criteria that are commonly considered are genetic integration (via gene transfer from the endosymbiont to the nucleus), cellular integration (synchronization of the cell cycles), and metabolic integration (the mutual dependency of the metabolisms). Here, I suggest that these criteria should be evaluated according to the resulting coupling of genetic recombination between individuals and congruence of effective population sizes, which determines if independent speciation is possible for either of the partners. I would like to call this aspect of integration "sexual symbiont integration". If the partners lose their independence in speciation, I think that they should be considered one species. The partner who maintains its genetic recombination mechanisms and life cycle should then be the name giving "host"; the other one would be the organelle. Distinguishing between organelles and symbionts according to their sexual symbiont integration is independent of any particular mechanism or structural property of the endosymbiont/host system under investigation.

Zobrazit více v PubMed

Oborník M. In the beginning was the word: How terminology drives our understanding of endosymbiotic organelles. Microbial Cell. 2019 in press. PubMed PMC

Archibald John M. Endosymbiosis and Eukaryotic Cell Evolution. Curr Biol. 2015;25(19):R911–R921. doi: 10.1016/j.cub.2015.07.055. PubMed DOI

Sapp J. Oxford University Press; New York: 1994. Evolution by Association: A History of Symbiosis.

Martin WF, Garg S, Zimorski V. Endosymbiotic theories for eukaryote origin. Philos Trans R Soc Lond B Biol Sci. 2015;370(1678):20140330. doi: 10.1098/rstb.2014.0330. PubMed DOI PMC

Ernster L, Schatz G. Mitochondria: a historical review. J Cell Biol. 1981;91(3):227s–255s. doi: 10.1083/jcb.91.3.227s. PubMed DOI PMC

Archibald J. Oxford University Press; Oxford: 2014. One Plus One Equals One: Symbiosis and the Evolution of Complex Life.

Sagan L. On the origin of mitosing cells. J Theor Biol. 1967;14(3):225–274. doi: 10.1016/0022-5193(67)90079-3. PubMed DOI

Dyall SD, Brown MT, Johnson PJ. Ancient Invasions: From Endosymbionts to Organelles. Science. 2004;304(5668):253–257. doi: 10.1126/science.1094884. PubMed DOI

Roger AJ, Muñoz-Gómez SA, Kamikawa R. The Origin and Diversification of Mitochondria. Curr Biol. 2017;27(21):R1177–R1192. doi: 10.1016/j.cub.2017.09.015. PubMed DOI

Kleinig H, Maier U. Gustav Fischer Verlag, Stuttgart Jena Lübeck Ulm; 1999. Zellbiologie: Begründet von Hans Kleinig und Peter Sitte.

Keeling PJ, McCutcheon JP, Doolittle WF. Symbiosis becoming permanent: Survival of the luckiest. Proc Natl Acad Sci U S A. 2015;112(33):10101–10103. doi: 10.1073/pnas.1513346112. PubMed DOI PMC

Gavelis GS, Gile GH. How did cyanobacteria first embark on the path to becoming plastids?: lessons from protist symbioses. FEMS Microbiol Lett. 2018;365(19):fny209. doi: 10.1093/femsle/fny209. PubMed DOI

Dorrell RG, Howe CJ. What makes a chloroplast? Reconstructing the establishment of photosynthetic symbioses. J Cell Sci. 2012;125(8):1865–1875. doi: 10.1242/jcs.102285. PubMed DOI

Reyes-Prieto M, Latorre A, Moya A. Scanty microbes, the ‘symbionelle’ concept. Environ Microbiol. 2014;16(2):335–338. doi: 10.1111/1462-2920.12220. PubMed DOI

Nakabachi A, Ishida K, Hongoh Y, Ohkuma M, Miyagishima S-y. Aphid gene of bacterial origin encodes a protein transported to an obligate endosymbiont. Curr Biol. 2014;24(14):R640–R641. doi: 10.1016/j.cub.2014.06.038. PubMed DOI

Husnik F, McCutcheon JP. Functional horizontal gene transfer from bacteria to eukaryotes. Nat Rev Microbiol. 2017;16:67–79. doi: 10.1038/nrmicro.2017.137. PubMed DOI

Moran NA, McCutcheon JP, Nakabachi A. Genomics and Evolution of Heritable Bacterial Symbionts. Annu Rev Genet. 2008;42(1):165–190. doi: 10.1146/annurev.genet.41.110306.130119. PubMed DOI

Nowack ECM, Weber APM. Genomics-Informed Insights into Endosymbiotic Organelle Evolution in Photosynthetic Eukaryotes. Annu Rev Plant Biol. 2018;69(1):51–84. doi: 10.1146/annurev-arplant-042817-040209. PubMed DOI

Prechtl J, Kneip C, Lockhart P, Wenderoth K, Maier U-G. Intracellular Spheroid Bodies of Rhopalodia gibba Have Nitrogen-Fixing Apparatus of Cyanobacterial Origin. Mol Biol Evol. 2004;21(8):1477–1481. doi: 10.1093/molbev/msh086. PubMed DOI

Nakayama T, Ishida K-i. Another acquisition of a primary photosynthetic organelle is underway in Paulinella chromatophora. Curr Biol. 2009;19(7):R284–R285. doi: 10.1016/j.cub.2009.02.043. PubMed DOI

Nowack ECM. Paulinella chromatophora – rethinking the transition from endosymbiont to organelle. Acta Societatis Botanicorum Poloniae. 2014;83(4):387–397. doi: 10.5586/asbp.2014.049. DOI

Nowack ECM, Grossman AR. Trafficking of protein into the recently established photosynthetic organelles of Paulinella chromatophora. Proc Natl Acad Sci U S A. 2012;109(14):5340–5345. doi: 10.1073/pnas.1118800109. PubMed DOI PMC

Baker AC. Flexibility and Specificity in Coral-Algal Symbiosis: Diversity, Ecology, and Biogeography of Symbiodinium. Annual Review of Ecology, Evolution, and Systematics. 2003;34(1):661–689. doi: 10.1146/annurev.ecolsys.34.011802.132417. DOI

Dorrell RG, Howe CJ. Integration of plastids with their hosts: Lessons learned from dinoflagellates. Proc Natl Acad Sci U S A. 2015;112(33):10247–10254. doi: 10.1073/pnas.1421380112. PubMed DOI PMC

Hehenberger E, Imanian B, Burki F, Keeling PJ. Evidence for the Retention of Two Evolutionary Distinct Plastids in Dinoflagellates with Diatom Endosymbionts. Genome Biol Evol. 2014;6(9):2321–2334. doi: 10.1093/gbe/evu182. PubMed DOI PMC

Marin B, M., Nowack EC, Melkonian M. A Plastid in the Making: Evidence for a Second Primary Endosymbiosis. Protist. 2005;156(4):425–432. doi: 10.1016/j.protis.2005.09.001. PubMed DOI

Rodríguez-Ezpeleta N, Philippe H. Plastid Origin: Replaying the Tape. Curr Biol. 2006;16(2):R53–R56. doi: 10.1016/j.cub.2006.01.006. PubMed DOI

Archibald JM. Endosymbiosis: Double-Take on Plastid Origins. Curr Biol. 2006;16(17):R690–R692. doi: 10.1016/j.cub.2006.08.006. PubMed DOI

Theissen U, Martin W. The difference between organelles and endosymbionts. Curr Biol. 2006;16(24):R1016–R1017. doi: 10.1016/j.cub.2006.11.020. PubMed DOI

Bhattacharya D, Archibald JM. Response to Theissen and Martin. Curr Biol. 2006;16(24):R1017–R1018. doi: 10.1016/j.cub.2006.11.021. DOI

Cavalier-Smith T, Lee JJ. Protozoa as Hosts for Endosymbioses and the Conversion of Symbionts into Organelles. J Protozoology. 1985;32(3):376–379. doi: 10.1111/j.1550-7408.1985.tb04031.x. DOI

Sitte P. Phylogenetische Aspekte der Zellevolution. Biologische Rundschau. 1990;28(1):1–18.

Sitte P. “Intertaxonic combination”: introducing and defining a new term in symbiogenesis.. In: Sato S, Ishida M, Ishikawa H, editors. Proceedings of the Fifth International Colloquium on Endocytobiology and Symbiosis; Kyoto. June 23-27, 1992; Tübingen: Tübingen University Press; 1993. pp. 557–558.

Sitte P. Symbiogenetic Evolution of Complex Cells and Complex Plastids. Eur J Protistol. 1993;29(2):131–143. doi: 10.1016/s0932-4739(11)80266-x. PubMed DOI

Nowack ECM, Melkonian M, Glöckner G. Chromatophore Genome Sequence of Paulinella Sheds Light on Acquisition of Photosynthesis by Eukaryotes. Curr Biol. 2008;18(6):410–418. doi: 10.1016/j.cub.2008.02.051. PubMed DOI

Keeling PJ, Archibald JM. Organelle Evolution: What's in a Name? Curr Biol. 2008;18(8):R345–R347. doi: 10.1016/j.cub.2008.02.065. PubMed DOI

McCutcheon John P, Keeling Patrick J. Endosymbiosis: Protein Targeting Further Erodes the Organelle/Symbiont Distinction. Curr Biol. 2014;24(14):R654–R655. doi: 10.1016/j.cub.2014.05.073. PubMed DOI

Allen JF. The function of genomes in bioenergetic organelles. Philos Trans R Soc Lond B Biol Sci. 2003;358(1429):19–38. doi: 10.1098/rstb.2002.1191. PubMed DOI PMC

Rice DW, Alverson AJ, Richardson AO, Young GJ, Sanchez-Puerta MV, Munzinger J, Barry K, Boore JL, Zhang Y, dePamphilis CW, Knox EB, Palmer JD. Horizontal Transfer of Entire Genomes via Mitochondrial Fusion in the Angiosperm Amborella. Science. 2013;342(6165):1468–1473. doi: 10.1126/science.1246275. PubMed DOI

Hao W, Richardson AO, Zheng Y, Palmer JD. Gorgeous mosaic of mitochondrial genes created by horizontal transfer and gene conversion. Proc Natl Acad Sci U S A. 2010;107(50):21576–21581. doi: 10.1073/pnas.1016295107. PubMed DOI PMC

Martin WF. Too Much Eukaryote LGT. Bioessays. 2017;39(12):1700115. doi: 10.1002/bies.201700115. PubMed DOI

Leger MM, Eme L, Stairs CW, Roger AJ. Demystifying Eukaryote Lateral Gene Transfer (Response to Martin 2017 DOI: 10.1002/bies.201700115). BioEssays. 2018;40(5):1700242. doi: 10.1002/bies.201700242. PubMed DOI

Boto L. Are There Really Too Many Eukaryote LGTs? A Reply To William Martin. BioEssays. 2018;40(3):1800001. doi: 10.1002/bies.201800001. PubMed DOI

Tonk L, Sampayo EM, Weeks S, Magno-Canto M, Hoegh-Guldberg O. Host-Specific Interactions with Environmental Factors Shape the Distribution of Symbiodinium across the Great Barrier Reef. PLoS One. 2013;8(7):e68533. doi: 10.1371/journal.pone.0068533. PubMed DOI PMC

O'Malley MA. From endosymbiosis to holobionts: Evaluating a conceptual legacy. J Theor Biol. 2017;434:34–41. doi: 10.1016/j.jtbi.2017.03.008. PubMed DOI

Weis VM, Reynolds WS, deBoer MD, Krupp DA. Host-symbiont specificity during onset of symbiosis between the dinoflagellates Symbiodinium spp. and planula larvae of the scleractinian coral Fungia scutaria. Coral Reefs. 2001;20(3):301–308. doi: 10.1007/s003380100179. DOI

Coffroth MA, Lewis CF, Santos SR, Weaver JL. Environmental populations of symbiotic dinoflagellates in the genus Symbiodinium can initiate symbioses with reef cnidarians. Curr Biol. 2006;16(23):R985–R987. doi: 10.1016/j.cub.2006.10.049. PubMed DOI

Aranda M, Li Y, Liew YJ, Baumgarten S, Simakov O, Wilson MC, Piel J, Ashoor H, Bougouffa S, Bajic VB, Ryu T, Ravasi T, Bayer T, Micklem G, Kim H, Bhak J, LaJeunesse TC, Voolstra CR. Genomes of coral dinoflagellate symbionts highlight evolutionary adaptations conducive to a symbiotic lifestyle. Sci Rep. 2016;6:39734. doi: 10.1038/srep39734. PubMed DOI PMC

Lin S, Cheng S, Song B, Zhong X, Lin X, Li W, Li L, Zhang Y, Zhang H, Ji Z, Cai M, Zhuang Y, Shi X, Lin L, Wang L, Wang Z, Liu X, Yu S, Zeng P, Hao H, Zou Q, Chen C, Li Y, Wang Y, Xu C, Meng S, Xu X, Wang J, Yang H, Campbell DA, et al. The Symbiodinium kawagutii genome illuminates dinoflagellate gene expression and coral symbiosis. Science. 2015;350(6261):691–694. doi: 10.1126/science.aad0408. PubMed DOI

Voolstra CR, Li Y, Liew YJ, Baumgarten S, Zoccola D, Flot J-F, Tambutté S, Allemand D, Aranda M. Comparative analysis of the genomes of Stylophora pistillata and Acropora digitifera provides evidence for extensive differences between species of corals. Sci Rep. 2017;7(1):17583. doi: 10.1038/s41598-017-17484-x. PubMed DOI PMC

Ziegler M, Arif C, Burt JA, Dobretsov S, Roder C, LaJeunesse TC, Voolstra CR. Biogeography and molecular diversity of coral symbionts in the genus Symbiodinium around the Arabian Peninsula. J Biogeogr. 2017;44(3):674–686. doi: 10.1111/jbi.12913. PubMed DOI PMC

Karnkowska A, Vacek V, Zubáčová Z, Treitli SC, Petrželková R, Eme L, Novák L, Žárský V, Barlow LD, Herman EK, Soukal P, Hroudová M, Doležal P, Stairs CW, Roger AJ, Eliáš M, Dacks JB, Vlček Č, Hampl V. A Eukaryote without a Mitochondrial Organelle. Curr Biol. 2016;26(10):1274–1284. doi: 10.1016/j.cub.2016.03.053. PubMed DOI

Greiner S, Sobanski J, Bock R. Why are most organelle genomes transmitted maternally? BioEssays. 2015;37(1):80–94. doi: 10.1002/bies.201400110. PubMed DOI PMC

Hill GE. The mitonuclear compatibility species concept. The Auk. 2017;134(2):393–409. doi: 10.1642/auk-16-201.1. DOI

Sloan DB, Havird JC, Sharbrough J. The on-again, off-again relationship between mitochondrial genomes and species boundaries. Mol Ecol. 2017;26(8):2212–2236. doi: 10.1111/mec.13959. PubMed DOI PMC

Barreto FS, Watson ET, Lima TG, Willett CS, Edmands S, Li W, Burton RS. Genomic signatures of mitonuclear coevolution across populations of Tigriopus californicus. Nat Ecol Evol. 2018;2(8):1250–1257. doi: 10.1038/s41559-018-0588-1. PubMed DOI

Mastrantonio V, Porretta D, Urbanelli S, Crasta G, Nascetti G. Dynamics of mtDNA introgression during species range expansion: insights from an experimental longitudinal study. Sci Rep. 2016;6:30355. doi: 10.1038/srep30355. PubMed DOI PMC

Stegemann S, Keuthe M, Greiner S, Bock R. Horizontal transfer of chloroplast genomes between plant species. Proc Natl Acad Sci U S A. 2012;109(7):2434–2438. doi: 10.1073/pnas.1114076109. PubMed DOI PMC

Stegemann S, Bock R. Exchange of Genetic Material Between Cells in Plant Tissue Grafts. Science. 2009;324(5927):649–651. doi: 10.1126/science.1170397. PubMed DOI

Lauterborn R. Protozoenstudien II. Paulinella chromatophora nov. gen., nov. spec., ein beschalter Rhizopode des Süßwassers mit blaugrünen chromatophorenartigen Einschlüssen. Z Wiss Zool. 1895;59:537–544.

Mann C. Lynn Margulis: Science's Unruly Earth Mother. Science. 1991;252(5004):378–381. doi: 10.1126/science.252.5004.378. PubMed DOI

Doolittle WF. Darwinizing Gaia. J Theor Biol. 2017;434:11–19. doi: 10.1016/j.jtbi.2017.02.015. PubMed DOI

Matsuoka Y. Evolution of Polyploid Triticum Wheats under Cultivation: The Role of Domestication, Natural Hybridization and Allopolyploid Speciation in their Diversification. Plant Cell Physiol. 2011;52(5):750–764. doi: 10.1093/pcp/pcr018. PubMed DOI

Fields KA, Heinzen RA, Carabeo R. The Obligate Intracellular Lifestyle. Front Microbiol. 2011;2:99. doi: 10.3389/fmicb.2011.00099. PubMed DOI PMC

Young VB. The role of the microbiome in human health and disease: an introduction for clinicians. BMJ. 2017;356:j831. doi: 10.1136/bmj.j831. PubMed DOI

Rodríguez JM, Murphy K, Stanton C, Ross RP, Kober OI, Juge N, Avershina E, Rudi K, Narbad A, Jenmalm MC, Marchesi JR, Collado MC. The composition of the gut microbiota throughout life, with an emphasis on early life. Microb Ecol Health Dis. 2015;26:26050. doi: 10.3402/mehd.v26.26050. PubMed DOI PMC

Gupta S, Allen-Vercoe E, Petrof EO. Fecal microbiota transplantation: in perspective. Therap Adv Gastroenterol. 2016;9(2):229–239. doi: 10.1177/1756283X15607414. PubMed DOI PMC

DeBruyn JM, Hauther KA. Postmortem succession of gut microbial communities in deceased human subjects. PeerJ. 2017;5:e3437. doi: 10.7717/peerj.3437. PubMed DOI PMC

Schenk HEA. Some thoughts towards a discussion of terms and definitions in endocytobiology.. In: Sato S, Ishida M, Ishikawa H, editors. Proceedings of the Fifth International Colloquium on Endocytobiology and Symbiosis; Kyoto. June 23-27, 1992; Tübingen: Tübingen University Press; 1993. pp. 547–556.

Schenk HEA. Is endocytobiology an independent science? Endocytobiosis and Cell Research. 1993;10:229–240.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...