Functional horizontal gene transfer from bacteria to eukaryotes
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S., přehledy
PubMed
29176581
DOI
10.1038/nrmicro.2017.137
PII: nrmicro.2017.137
Knihovny.cz E-zdroje
- MeSH
- Bacteria genetika MeSH
- biologická evoluce MeSH
- Eukaryota genetika MeSH
- fyziologická adaptace genetika MeSH
- přenos genů horizontální fyziologie MeSH
- regulace genové exprese MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Bacteria influence eukaryotic biology as parasitic, commensal or beneficial symbionts. Aside from these organismal interactions, bacteria have also been important sources of new genetic sequences through horizontal gene transfer (HGT) for eukaryotes. In this Review, we focus on gene transfers from bacteria to eukaryotes, discuss how horizontally transferred genes become functional and explore what functions are endowed upon a broad diversity of eukaryotes by genes derived from bacteria. We classify HGT events into two broad types: those that maintain pre-existing functions and those that provide the recipient with new functionality, including altered host nutrition, protection and adaptation to extreme environments.
Department of Botany University of British Columbia Vancouver British Columbia V6T 1Z4 Canada
Division of Biological Sciences University of Montana Missoula Montana 59812 USA
Zobrazit více v PubMed
J Nematol. 2009 Dec;41(4):281-90 PubMed
Nature. 2006 Mar 30;440(7084):623-30 PubMed
Nat Rev Genet. 2015 Aug;16(8):472-82 PubMed
Annu Rev Biochem. 2010;79:181-211 PubMed
PLoS One. 2012;7(11):e50875 PubMed
J Exp Biol. 2011 Jan 1;214(Pt 1):59-68 PubMed
Genome Biol Evol. 2012;4(4):466-85 PubMed
J Mol Microbiol Biotechnol. 2011 Apr;20(2):83-95 PubMed
Annu Rev Microbiol. 2001;55:709-42 PubMed
Front Cell Infect Microbiol. 2012 Mar 06;2:27 PubMed
BMC Res Notes. 2012 May 14;5:230 PubMed
Trends Biochem Sci. 2003 Apr;28(4):215-20 PubMed
Genome Biol. 2012 May 25;13(5):R39 PubMed
Trends Genet. 1998 Aug;14(8):307-11 PubMed
Nature. 2005 May 5;435(7038):43-57 PubMed
PLoS One. 2013 Nov 19;8(11):e79786 PubMed
Elife. 2014 Apr 24;3:e02365 PubMed
Proc Natl Acad Sci U S A. 2010 Oct 12;107(41):17651-6 PubMed
Front Microbiol. 2017 May 29;8:944 PubMed
Nature. 2016 Mar 3;531(7592):101-4 PubMed
Insect Mol Biol. 2013 Feb;22(1):72-87 PubMed
Science. 2008 May 30;320(5880):1210-3 PubMed
J Evol Biol. 2011 Mar;24(3):587-95 PubMed
Proc Natl Acad Sci U S A. 2009 Jul 21;106(29):12133-8 PubMed
Sci Rep. 2015 Jan 22;5:7949 PubMed
Cell Mol Life Sci. 2005 Jun;62(11):1182-97 PubMed
PLoS Pathog. 2015 May 28;11(5):e1004805 PubMed
Cold Spring Harb Perspect Biol. 2014 Mar 01;6(3): PubMed
Nat Rev Microbiol. 2017 Aug;15(8):492-501 PubMed
Proc Natl Acad Sci U S A. 2016 Oct 25;113(43):12214-12219 PubMed
BMC Genomics. 2014 Dec 12;15:1097 PubMed
Bioessays. 2014 Jan;36(1):9-20 PubMed
Proc Biol Sci. 2013 May 22;280(1763):20131021 PubMed
Nat Commun. 2012;3:1152 PubMed
J Biol Chem. 2008 May 30;283(22):15271-9 PubMed
Nat Rev Microbiol. 2005 Sep;3(9):679-87 PubMed
Annu Rev Genet. 2012;46:341-58 PubMed
Curr Biol. 2017 Feb 6;27(3):386-391 PubMed
Nature. 2015 Feb 5;518(7537):98-101 PubMed
Trends Ecol Evol. 2013 Aug;28(8):489-95 PubMed
Nature. 2009 Jan 22;457(7228):467-70 PubMed
BMC Biol. 2015 Nov 04;13:90 PubMed
Nat Rev Genet. 2003 Feb;4(2):121-32 PubMed
Proc Natl Acad Sci U S A. 2016 Dec 27;113(52):15036-15041 PubMed
Eukaryot Cell. 2002 Apr;1(2):181-90 PubMed
Proc Natl Acad Sci U S A. 2012 Mar 13;109(11):4197-202 PubMed
Science. 2007 Sep 21;317(5845):1753-6 PubMed
Nat Rev Genet. 2004 Feb;5(2):123-35 PubMed
Genome Biol. 2004;5(11):R88 PubMed
Eukaryot Cell. 2003 Oct;2(5):1069-75 PubMed
Proc Natl Acad Sci U S A. 2016 May 31;113(22):E3057 PubMed
Science. 2001 Jun 8;292(5523):1903-6 PubMed
PLoS One. 2010 Jun 09;5(6):e11029 PubMed
Syst Biol. 2002 Jun;51(3):492-508 PubMed
Cell. 2013 Jun 20;153(7):1567-78 PubMed
Mol Biol Evol. 2010 Mar;27(3):581-90 PubMed
Proc Natl Acad Sci U S A. 2008 Jul 29;105(30):10438-43 PubMed
Genome Biol Evol. 2015 Sep 15;7(9):2635-47 PubMed
Mol Biol Evol. 2008 Oct;25(10):2085-98 PubMed
Genome Biol Evol. 2016 Jun 27;8(6):1785-801 PubMed
Cold Spring Harb Perspect Biol. 2012 Sep 01;4(9):a011403 PubMed
Proc Natl Acad Sci U S A. 2015 Sep 8;112(36):E5029-37 PubMed
Proc Natl Acad Sci U S A. 2002 Aug 6;99(16):10742-7 PubMed
Philos Trans R Soc Lond B Biol Sci. 2015 Sep 26;370(1678):20140324 PubMed
Nature. 2015 May 14;521(7551):173-179 PubMed
PLoS Pathog. 2015 Oct 29;11(10):e1005156 PubMed
PLoS Negl Trop Dis. 2014 Apr 24;8(4):e2728 PubMed
Mol Biol Evol. 2014 Apr;31(4):857-71 PubMed
Proc Natl Acad Sci U S A. 2006 Apr 25;103(17):6753-8 PubMed
Nat Rev Microbiol. 2012 Dec;10(12):815-27 PubMed
Nature. 2013 Aug 22;500(7463):453-7 PubMed
Proc Natl Acad Sci U S A. 2011 Sep 13;108(37):15258-63 PubMed
Plant Cell. 2016 Jul;28(7):1521-32 PubMed
Mol Biol Evol. 2011 Jul;28(7):2087-99 PubMed
PLoS Genet. 2014 Jun 05;10(6):e1004397 PubMed
Curr Biol. 2015 Oct 5;25(19):R911-21 PubMed
Mol Genet Genomics. 2004 May;271(4):387-93 PubMed
PLoS Curr. 2016 Mar 15;8: PubMed
BMC Biol. 2016 Aug 01;14:62 PubMed
Gene. 2012 Sep 15;506(2):274-82 PubMed
Nat Rev Immunol. 2011 Nov 11;11(12):837-51 PubMed
Genome Biol Evol. 2015 Aug 08;7(8):2362-82 PubMed
BMC Genomics. 2006 Feb 10;7:22 PubMed
PLoS Genet. 2012;8(11):e1003035 PubMed
Cold Spring Harb Perspect Biol. 2014 Apr 01;6(4):a016188 PubMed
J Mol Biol. 2004 Aug 13;341(3):713-21 PubMed
Nature. 2001 Jun 21;411(6840):940-4 PubMed
BMC Biol. 2015 Oct 05;13:84 PubMed
Science. 2013 Mar 8;339(6124):1207-10 PubMed
Genome Biol. 2017 May 8;18(1):85 PubMed
Trends Genet. 2010 Jan;26(1):5-8 PubMed
Proc Natl Acad Sci U S A. 2015 Aug 18;112(33):10139-46 PubMed
BMC Genomics. 2014 Aug 29;15:738 PubMed
PLoS Pathog. 2016 Mar 03;12(3):e1005429 PubMed
Genome Biol. 2015 Mar 13;16:50 PubMed
Science. 2009 Apr 10;324(5924):268-72 PubMed
Nat Rev Genet. 2008 Aug;9(8):605-18 PubMed
Cell Host Microbe. 2014 Dec 10;16(6):701-3 PubMed
Curr Biol. 2016 May 23;26(10):1274-84 PubMed
PLoS One. 2012;7(5):e35968 PubMed
Nature. 2008 Nov 13;456(7219):239-44 PubMed
J Bacteriol. 2001 Nov;183(22):6714-6 PubMed
mBio. 2016 Jul 12;7(4): PubMed
Biochim Biophys Acta. 2013 Feb;1827(2):224-31 PubMed
F1000Res. 2016 Jul 25;5: PubMed
BMC Evol Biol. 2013 Sep 09;13:190 PubMed
Nature. 2017 Jan 26;541(7638):536-540 PubMed
Proc Natl Acad Sci U S A. 2013 May 7;110(19):7748-53 PubMed
Mol Biol Evol. 2000 Nov;17(11):1769-73 PubMed
Proc Biol Sci. 2014 Jan 08;281(1777):20132450 PubMed
Nature. 2001 Feb 15;409(6822):860-921 PubMed
Mol Biol Evol. 2004 Sep;21(9):1643-60 PubMed
Curr Opin Microbiol. 2003 Oct;6(5):498-505 PubMed
Curr Biol. 2013 Oct 7;23(19):R865-6 PubMed
Proc Natl Acad Sci U S A. 2006 Aug 1;103(31):11647-52 PubMed
Sci Rep. 2014 Jul 03;4:5562 PubMed
Microbiol Mol Biol Rev. 2000 Dec;64(4):786-820 PubMed
Nucleic Acids Res. 2012 Oct;40(18):9073-88 PubMed
Proc Natl Acad Sci U S A. 2015 Aug 18;112(33):10133-8 PubMed
PLoS Comput Biol. 2007 Nov;3(11):e219 PubMed
Proc Natl Acad Sci U S A. 2016 May 3;113(18):5053-8 PubMed
PLoS Biol. 2004 Sep;2(9):E273 PubMed
Proc Biol Sci. 2016 Dec 28;283(1845): PubMed
Proc Natl Acad Sci U S A. 2016 Apr 12;113(15):4116-21 PubMed
Nature. 2017 Jan 19;541(7637):353-358 PubMed
Plant J. 2008 Mar;53(6):924-34 PubMed
Nat Rev Microbiol. 2005 Sep;3(9):711-21 PubMed
Trends Plant Sci. 2013 Dec;18(12):680-7 PubMed
Trends Plant Sci. 2007 May;12(5):189-95 PubMed
PLoS Genet. 2016 Apr 14;12(4):e1005912 PubMed
Nature. 1999 Nov 4;402(6757):96-100 PubMed
BMC Evol Biol. 2006 Nov 23;6:101 PubMed
Nature. 2008 May 22;453(7194):553-6 PubMed
PLoS Genet. 2010 Feb 26;6(2):e1000827 PubMed
Nature. 2015 Aug 27;524(7566):427-32 PubMed
PLoS One. 2013;8(3):e59262 PubMed
PeerJ. 2015 Dec 07;3:e1479 PubMed
Trends Genet. 2011 Apr;27(4):157-63 PubMed
Proc Natl Acad Sci U S A. 2010 Dec 14;107(50):21576-81 PubMed
BMC Biol. 2014 Nov 12;12:87 PubMed
BMC Evol Biol. 2007 Nov 16;7:230 PubMed
PLoS Genet. 2013;9(10):e1003877 PubMed
Reconstructing the last common ancestor of all eukaryotes
Comparative Analysis of Three Trypanosomatid Catalases of Different Origin
The Mastigamoeba balamuthi Genome and the Nature of the Free-Living Ancestor of Entamoeba
What's in a name? How organelles of endosymbiotic origin can be distinguished from endosymbionts