Editorial: Mixotrophic, Secondary Heterotrophic, and Parasitic Algae

. 2021 ; 12 () : 798555. [epub] 20211125

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu úvodníky

Perzistentní odkaz   https://www.medvik.cz/link/pmid34899815
Komentář

Editorial on the Research Topic Mixotrophic, Secondary Heterotrophic, and Parasitic Algae PubMed

Zobrazit více v PubMed

Archibald J. M. (2015). Endosymbiosis and eukaryotic cell evolution. Curr. Biol. 25, R911–R921. 10.1016/j.cub.2015.07.055 PubMed DOI

Dorrell R. G., Azuma T., Nomura M., de Kerdrel G. A., Paoli L., Yang S., et al. . (2019). Principles of plastid reductive evolution illuminated by nonphotosyntehtic chrysophytes. Proc. Natl. Acad. Sci. U.S.A. 116, 6914–6923. 10.1073/pnas.1819976116 PubMed DOI PMC

Dorrell R. G., Howe C. J. (2012). What makes a chloroplast? Reconstructing the establishment of photosynthetic symbioses. J. Cell. Sci. 125, 1865–1875. 10.1242/jcs.102285 PubMed DOI

Fleischmann A. S., Schlauer J., Smith S. A., Givnish T. J. (2018). “Evolution of carnivory in angiosperms,” in Carnivorous Plants: Physiology, Ecology, and Evolution, eds A. Ellison and L. Adamec (Oxford: Oxford University Press; ). 10.1093/oso/9780198779841.003.0003 DOI

Fukushima K., Fanf X., Alvarez-Ponce D., Cai H., Carretero-Paulet L., Chen C., et al. . (2017). Genome of the pitcher plant Cephalotus reveals genetic changes associtated with carnivory. Nat. Ecol. Evol. 1:0059. 10.1038/s41559-016-0059 PubMed DOI

Füssy Z., Záhonová K., Tomčala A., Krajčovič J., Yurchenko V., Oborník M., et al. . (2020). The cryptic plastid of Euglena longa defines a new type of nonphotosynthetic plastid organelle. mSphere 5, e00675–e00620. 10.1128/mSphere.00675-20 PubMed DOI PMC

Gornik S. G., Febrimarsa Cassin A. M., MacRae J. I., Ramprasad A., Rchiad Z. (2015). Endosymbiosis undone by stepwise elimination of the plastid in a parasitic dinoflagellate. Proc. Natl. Acad. Sci. U.S.A. 112, 5767–5772. 10.1073/pnas.1423400112 PubMed DOI PMC

Hadariová L., Vesteg M., Hampl V., Krajčoviš J. (2018). Reductive evolution of chloroplasts in non-photosynthetic plants, algae and protists. Curr. Genet. 64, 365–387. 10.1007/s00294-017-0761-0 PubMed DOI

Johnson M. D., Tengs T., Oldach D., Stoecker D. K. (2006). Sequestration, performance, and functional control of cryptophyte plastids in the ciliate Myrionecta rubra (Ciliophora). J. Phycol. 42, 1235–1246. 10.1111/j.1529-8817.2006.00275.x DOI

Keeling P. J. (2013). The number, speed, and impact of plastid endosymbioses in eukaryotic evolution. Ann. Rev. Plant. Biol. 64, 583–607. 10.1146/annurev-arplant-050312-120144 PubMed DOI

Lass-Flörl C., Mayr A. (2007). Human protothecosis. Clin. Microbiol. Rev. 20, 230–242. 10.1128/CMR.00032-06 PubMed DOI PMC

Lowrey J., Brooks M. S., McGinn P. J. (2015). Heterotrophic and mixotrophic cultivation of microalgae for biodiesel production in agricultural wastewaters and associated challenges-a critical review. J. App. Phycol. 27, 1485–1498. 10.1007/s10811-014-0459-3 DOI

Molina J., Hazzouri K. M., Nickrent D., Geisler M., Meyer R. S., Pentony M. M., et al. . (2014). Possible loss of the chloroplast genome in the parasitic flowering plant Rafflesia lagascae (Rafflesiaceae). Mol. Biol. Evol. 31, 763–803. 10.1093/molbev/msu051 PubMed DOI PMC

Oborník M. (2019). Endosymbiotic evolution of algae, secondary heterotrophy and parasitism. Biomolecules 9:266. 10.3390/biom9070266 PubMed DOI PMC

Oborník M. (2020). Photoparasitism as an intermediate state in the evolution of apicomplexan parasites. Trend. Parasitol. 36, 727–734. 10.1016/j.pt.2020.06.002 PubMed DOI

Palfalvi G., Hackl T., Terhoeven N., Shibata T. F., Nishiyama T., Ankenbrand M., et al. . (2020). Genomes of the venus flytrap and close relatives unveil the roots of plant carnivory. Curr. Biol. 30, 2312–2320.e5. 10.1016/j.cub.2020.04.051 PubMed DOI PMC

Ralph S. A., van Dooren G. G., Waller R. F., Crawford M. J., Fraunholz M. J., Foth B. J., et al. . (2004). Metabolic maps and functions of the Plasmodium falciparum apicoplast. Nat. Rev. Microbiol. 2, 203–216. 10.1038/nrmicro843 PubMed DOI

Saad M. G., Dosoky N. S., Zoromba M. S., Shafik H. M. (2019). Algal biofuels: current status and key challenges. Energies 12:1920. 10.3390/en12101920 DOI

Sekiguchi H., Moriya M., Nakayama T., Inouye I. (2002). Vestigial chloroplasts in heterotrophic stramenopiles Pteridomonas danica and Ciliophrys infusionum (Dictyochophyceae). Protist 153, 157–167. 10.1078/1434-4610-00094 PubMed DOI

Smith D. R., Lee R. W. (2014). A plastid without a genome: evidence form the nonphotosynthetic green algal genus Polytomella. Plant Physiol. 164, 1812–1819. 10.1104/pp.113.233718 PubMed DOI PMC

Stoecker D. K., Hansen P. J., Caron D. A., Mitra D. A. (2017). Mixotrophy in the marine plankton. Ann. Rev. Mar. Sci. 9, 311–335. 10.1146/annurev-marine-010816-060617 PubMed DOI

Toso M. A., Omoto C. K. (2007). Gregarina niphandrodes may lack both a plastid genome and organelle. J. Euk. Microbiol. 54, 66–72. 10.1111/j.1550-7408.2006.00229.x PubMed DOI

Zhu G., Marchewka M. J., Keithly J. S. (2000). Cryptosporidium parvum appears to lack a plastid genome. Microbiology 146, 315–321. 10.1099/00221287-146-2-315 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace