Editorial: Mixotrophic, Secondary Heterotrophic, and Parasitic Algae
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu úvodníky
PubMed
34899815
PubMed Central
PMC8655977
DOI
10.3389/fpls.2021.798555
Knihovny.cz E-zdroje
- Klíčová slova
- endosymbiosis, evolution, loss, photosynthesis, plastid,
- Publikační typ
- úvodníky MeSH
AquaBioSafe Laboratory University of Tyumen Tyumen Russia
Biology Centre Institute of Parasitology Czech Academy of Sciences České Budějovice Czechia
Faculty of Science University of South Bohemia České Budějovice Czechia
Papanin Institute for Biology of Inland Waters Russian Academy of Sciences Borok Russia
Editorial on the Research Topic Mixotrophic, Secondary Heterotrophic, and Parasitic Algae PubMed
Zobrazit více v PubMed
Archibald J. M. (2015). Endosymbiosis and eukaryotic cell evolution. Curr. Biol. 25, R911–R921. 10.1016/j.cub.2015.07.055 PubMed DOI
Dorrell R. G., Azuma T., Nomura M., de Kerdrel G. A., Paoli L., Yang S., et al. . (2019). Principles of plastid reductive evolution illuminated by nonphotosyntehtic chrysophytes. Proc. Natl. Acad. Sci. U.S.A. 116, 6914–6923. 10.1073/pnas.1819976116 PubMed DOI PMC
Dorrell R. G., Howe C. J. (2012). What makes a chloroplast? Reconstructing the establishment of photosynthetic symbioses. J. Cell. Sci. 125, 1865–1875. 10.1242/jcs.102285 PubMed DOI
Fleischmann A. S., Schlauer J., Smith S. A., Givnish T. J. (2018). “Evolution of carnivory in angiosperms,” in Carnivorous Plants: Physiology, Ecology, and Evolution, eds A. Ellison and L. Adamec (Oxford: Oxford University Press; ). 10.1093/oso/9780198779841.003.0003 DOI
Fukushima K., Fanf X., Alvarez-Ponce D., Cai H., Carretero-Paulet L., Chen C., et al. . (2017). Genome of the pitcher plant Cephalotus reveals genetic changes associtated with carnivory. Nat. Ecol. Evol. 1:0059. 10.1038/s41559-016-0059 PubMed DOI
Füssy Z., Záhonová K., Tomčala A., Krajčovič J., Yurchenko V., Oborník M., et al. . (2020). The cryptic plastid of Euglena longa defines a new type of nonphotosynthetic plastid organelle. mSphere 5, e00675–e00620. 10.1128/mSphere.00675-20 PubMed DOI PMC
Gornik S. G., Febrimarsa Cassin A. M., MacRae J. I., Ramprasad A., Rchiad Z. (2015). Endosymbiosis undone by stepwise elimination of the plastid in a parasitic dinoflagellate. Proc. Natl. Acad. Sci. U.S.A. 112, 5767–5772. 10.1073/pnas.1423400112 PubMed DOI PMC
Hadariová L., Vesteg M., Hampl V., Krajčoviš J. (2018). Reductive evolution of chloroplasts in non-photosynthetic plants, algae and protists. Curr. Genet. 64, 365–387. 10.1007/s00294-017-0761-0 PubMed DOI
Johnson M. D., Tengs T., Oldach D., Stoecker D. K. (2006). Sequestration, performance, and functional control of cryptophyte plastids in the ciliate Myrionecta rubra (Ciliophora). J. Phycol. 42, 1235–1246. 10.1111/j.1529-8817.2006.00275.x DOI
Keeling P. J. (2013). The number, speed, and impact of plastid endosymbioses in eukaryotic evolution. Ann. Rev. Plant. Biol. 64, 583–607. 10.1146/annurev-arplant-050312-120144 PubMed DOI
Lass-Flörl C., Mayr A. (2007). Human protothecosis. Clin. Microbiol. Rev. 20, 230–242. 10.1128/CMR.00032-06 PubMed DOI PMC
Lowrey J., Brooks M. S., McGinn P. J. (2015). Heterotrophic and mixotrophic cultivation of microalgae for biodiesel production in agricultural wastewaters and associated challenges-a critical review. J. App. Phycol. 27, 1485–1498. 10.1007/s10811-014-0459-3 DOI
Molina J., Hazzouri K. M., Nickrent D., Geisler M., Meyer R. S., Pentony M. M., et al. . (2014). Possible loss of the chloroplast genome in the parasitic flowering plant Rafflesia lagascae (Rafflesiaceae). Mol. Biol. Evol. 31, 763–803. 10.1093/molbev/msu051 PubMed DOI PMC
Oborník M. (2019). Endosymbiotic evolution of algae, secondary heterotrophy and parasitism. Biomolecules 9:266. 10.3390/biom9070266 PubMed DOI PMC
Oborník M. (2020). Photoparasitism as an intermediate state in the evolution of apicomplexan parasites. Trend. Parasitol. 36, 727–734. 10.1016/j.pt.2020.06.002 PubMed DOI
Palfalvi G., Hackl T., Terhoeven N., Shibata T. F., Nishiyama T., Ankenbrand M., et al. . (2020). Genomes of the venus flytrap and close relatives unveil the roots of plant carnivory. Curr. Biol. 30, 2312–2320.e5. 10.1016/j.cub.2020.04.051 PubMed DOI PMC
Ralph S. A., van Dooren G. G., Waller R. F., Crawford M. J., Fraunholz M. J., Foth B. J., et al. . (2004). Metabolic maps and functions of the Plasmodium falciparum apicoplast. Nat. Rev. Microbiol. 2, 203–216. 10.1038/nrmicro843 PubMed DOI
Saad M. G., Dosoky N. S., Zoromba M. S., Shafik H. M. (2019). Algal biofuels: current status and key challenges. Energies 12:1920. 10.3390/en12101920 DOI
Sekiguchi H., Moriya M., Nakayama T., Inouye I. (2002). Vestigial chloroplasts in heterotrophic stramenopiles Pteridomonas danica and Ciliophrys infusionum (Dictyochophyceae). Protist 153, 157–167. 10.1078/1434-4610-00094 PubMed DOI
Smith D. R., Lee R. W. (2014). A plastid without a genome: evidence form the nonphotosynthetic green algal genus Polytomella. Plant Physiol. 164, 1812–1819. 10.1104/pp.113.233718 PubMed DOI PMC
Stoecker D. K., Hansen P. J., Caron D. A., Mitra D. A. (2017). Mixotrophy in the marine plankton. Ann. Rev. Mar. Sci. 9, 311–335. 10.1146/annurev-marine-010816-060617 PubMed DOI
Toso M. A., Omoto C. K. (2007). Gregarina niphandrodes may lack both a plastid genome and organelle. J. Euk. Microbiol. 54, 66–72. 10.1111/j.1550-7408.2006.00229.x PubMed DOI
Zhu G., Marchewka M. J., Keithly J. S. (2000). Cryptosporidium parvum appears to lack a plastid genome. Microbiology 146, 315–321. 10.1099/00221287-146-2-315 PubMed DOI
Integrated overview of stramenopile ecology, taxonomy, and heterotrophic origin