14-3-3 Regulates Actin Filament Formation in the Deep-Branching Eukaryote Giardia lamblia

. 2017 Sep-Oct ; 2 (5) : . [epub] 20170913

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28932813

Grantová podpora
R01 AI110708 NIAID NIH HHS - United States

The phosphoserine/phosphothreonine-binding protein 14-3-3 is known to regulate actin; this function has been previously attributed to sequestration of phosphorylated cofilin. 14-3-3 was identified as an actin-associated protein in the deep-branching eukaryote Giardia lamblia; however, Giardia lacks cofilin and all other canonical actin-binding proteins (ABPs). Thus, the role of G. lamblia 14-3-3 (Gl-14-3-3) in actin regulation was unknown. Gl-14-3-3 depletion resulted in an overall disruption of actin organization characterized by ectopically distributed short actin filaments. Using phosphatase and kinase inhibitors, we demonstrated that actin phosphorylation correlated with destabilization of the actin network and increased complex formation with 14-3-3, while blocking actin phosphorylation stabilized actin filaments and attenuated complex formation. Giardia's sole Rho family GTPase, Gl-Rac, modulates Gl-14-3-3's association with actin, providing the first connection between Gl-Rac and the actin cytoskeleton in Giardia. Giardia actin (Gl-actin) contains two putative 14-3-3 binding motifs, one of which (S330) is conserved in mammalian actin. Mutation of these sites reduced, but did not completely disrupt, the association with 14-3-3. Native gels and overlay assays indicate that intermediate proteins are required to support complex formation between 14-3-3 and actin. Overall, our results support a role for 14-3-3 as a regulator of actin; however, the presence of multiple 14-3-3-actin complexes suggests a more complex regulatory relationship than might be expected for a minimalistic parasite. IMPORTANCEGiardia lacks canonical actin-binding proteins. Gl-14-3-3 was identified as an actin interactor, but the significance of this interaction was unknown. Loss of Gl-14-3-3 results in ectopic short actin filaments, indicating that Gl-14-3-3 is an important regulator of the actin cytoskeleton in Giardia. Drug studies indicate that Gl-14-3-3 complex formation is in part phospho-regulated. We demonstrate that complex formation is downstream of Giardia's sole Rho family GTPase, Gl-Rac. This result provides the first mechanistic connection between Gl-Rac and Gl-actin in Giardia. Native gels and overlay assays indicate intermediate proteins are required to support the interaction between Gl-14-3-3 and Gl-actin, suggesting that Gl-14-3-3 is regulating multiple Gl-actin complexes.

Zobrazit více v PubMed

Gardino AK, Yaffe MB. 2011. 14-3-3 proteins as signaling integration points for cell cycle control and apoptosis. Semin Cell Dev Biol 22:688–695. doi:10.1016/j.semcdb.2011.09.008. PubMed DOI PMC

Sluchanko NN, Gusev NB. 2010. 14-3-3 proteins and regulation of cytoskeleton. Biochemistry (Mosc) 75:1528–1546. doi:10.1134/S0006297910130031. PubMed DOI

Tzivion G, Avruch J. 2002. 14-3-3 proteins: active cofactors in cellular regulation by serine/threonine phosphorylation. J Biol Chem 277:3061–3064. doi:10.1074/jbc.R100059200. PubMed DOI

Gohla A, Bokoch GM. 2002. 14-3-3 regulates actin dynamics by stabilizing phosphorylated cofilin. Curr Biol 12:1704–1710. doi:10.1016/S0960-9822(02)01184-3. PubMed DOI

Kakinuma N, Roy BC, Zhu Y, Wang Y, Kiyama R. 2008. Kank regulates Rhoa-dependent formation of actin stress fibers and cell migration via 14-3-3 in Pi3k-Akt signaling. J Cell Biol 181:537–549. doi:10.1083/jcb.200707022. PubMed DOI PMC

Roth D, Birkenfeld J, Betz H. 1999. Dominant negative alleles of 14–3-3 proteins cause defects in actin organization and vesicle targeting in the yeast Saccharomyces cerevisiae. FEBS Lett 460:411–416. doi:10.1016/S0014-5793(99)01383-6. PubMed DOI

Zhou Q, Kee YS, Poirier CC, Jelinek C, Osborne J, Divi S, Surcel A, Will ME, Eggert US, Müller-Taubenberger A, Iglesias PA, Cotter RJ, Robinson DN. 2010. 14-3-3 coordinates microtubules, Rac, and myosin Ii to control cell mechanics and cytokinesis. Curr Biol 20:1881–1889. doi:10.1016/j.cub.2010.09.048. PubMed DOI PMC

Klahre U, Kost B. 2006. Tobacco RhoGTPase activating protein 1 spatially restricts signaling of Rac/Rop to the apex of pollen tubes. Plant Cell 18:3033–3046. doi:10.1105/tpc.106.045336. PubMed DOI PMC

Birkenfeld J, Betz H, Roth D. 2003. Identification of cofilin and Lim-domain-containing protein kinase 1 as novel interaction partners of 14-3-3 zeta. Biochem J 369:45–54. doi:10.1042/BJ20021152. PubMed DOI PMC

Pozuelo Rubio M, Geraghty KM, Wong BH, Wood NT, Campbell DG, Morrice N, Mackintosh C. 2004. 14-3-3-affinity purification of over 200 human phosphoproteins reveals new links to regulation of cellular metabolism, proliferation and trafficking. Biochem J 379:395–408. doi:10.1042/BJ20031797. PubMed DOI PMC

Chang IF, Curran A, Woolsey R, Quilici D, Cushman JC, Mittler R, Harmon A, Harper JF. 2009. Proteomic profiling of tandem affinity purified 14-3-3 protein complexes in Arabidopsis thaliana. Proteomics 9:2967–2985. doi:10.1002/pmic.200800445. PubMed DOI PMC

Pauly B, Lasi M, MacKintosh C, Morrice N, Imhof A, Regula J, Rudd S, David CN, Böttger A. 2007. Proteomic screen in the simple metazoan Hydra identifies 14-3-3 binding proteins implicated in cellular metabolism, cytoskeletal organisation and Ca2+ signalling. BMC Cell Biol 8:31. doi:10.1186/1471-2121-8-31. PubMed DOI PMC

Boudreau A, Tanner K, Wang D, Geyer FC, Reis-Filho JS, Bissell MJ. 2013. 14-3-3 sigma stabilizes a complex of soluble actin and intermediate filament to enable breast tumor invasion. Proc Natl Acad Sci U S A 110:E3937–E3944. doi:10.1073/pnas.1315022110. PubMed DOI PMC

Pollard TD. 2003. The cytoskeleton, cellular motility and the reductionist agenda. Nature 422:741–745. doi:10.1038/nature01598. PubMed DOI

Drouin G, Moniz de Sá M, Zuker M. 1995. The Giardia lamblia actin gene and the phylogeny of eukaryotes. J Mol Evol 41:841–849. doi:10.1007/BF00173163. PubMed DOI

Morrison HG, McArthur AG, Gillin FD, Aley SB, Adam RD, Olsen GJ, Best AA, Cande WZ, Chen F, Cipriano MJ, Davids BJ, Dawson SC, Elmendorf HG, Hehl AB, Holder ME, Huse SM, Kim UU, Lasek-Nesselquist E, Manning G, Nigam A, Nixon JE, Palm D, Passamaneck NE, Prabhu A, Reich CI, Reiner DS, Samuelson J, Svard SG, Sogin ML. 2007. Genomic minimalism in the early diverging intestinal parasite Giardia lamblia. Science 317:1921–1926. doi:10.1126/science.1143837. PubMed DOI

Dawson SC, Paredez AR. 2013. Alternative cytoskeletal landscapes: cytoskeletal novelty and evolution in basal excavate protists. Curr Opin Cell Biol 25:134–141. doi:10.1016/j.ceb.2012.11.005. PubMed DOI PMC

Carlton JM, Hirt RP, Silva JC, Delcher AL, Schatz M, Zhao Q, Wortman JR, Bidwell SL, Alsmark UC, Besteiro S, Sicheritz-Ponten T, Noel CJ, Dacks JB, Foster PG, Simillion C, Van de Peer Y, Miranda-Saavedra D, Barton GJ, Westrop GD, Müller S, Dessi D, Fiori PL, Ren Q, Paulsen I, Zhang H, Bastida-Corcuera FD, Simoes-Barbosa A, Brown MT, Hayes RD, Mukherjee M, Okumura CY, Schneider R, Smith AJ, Vanacova S, Villalvazo M, Haas BJ, Pertea M, Feldblyum TV, Utterback TR, Shu CL, Osoegawa K, de Jong PJ, Hrdy I, Horvathova L, Zubacova Z, Dolezal P, Malik SB, Logsdon JM Jr, Henze K, Gupta A. 2007. Draft genome sequence of the sexually transmitted pathogen Trichomonas vaginalis. Science 315:207–212. doi:10.1126/science.1132894. PubMed DOI PMC

Paredez AR, Nayeri A, Xu JW, Krtková J, Cande WZ. 2014. Identification of obscure yet conserved actin associated proteins in Giardia lamblia. Eukaryot Cell 13:776–784. doi:10.1128/EC.00041-14. PubMed DOI PMC

Xu F, Jerlström-Hultqvist J, Einarsson E, Astvaldsson A, Svärd SG, Andersson JO. 2014. The genome of Spironucleus Salmonicida highlights a fish pathogen adapted to fluctuating environments. PLoS Genet 10:e1004053. doi:10.1371/journal.pgen.1004053. PubMed DOI PMC

Paredez AR, Assaf ZJ, Sept D, Timofejeva L, Dawson SC, Wang CJ, Cande WZ. 2011. An actin cytoskeleton with evolutionarily conserved functions in the absence of canonical actin-binding proteins. Proc Natl Acad Sci U S A 108:6151–6156. doi:10.1073/pnas.1018593108. PubMed DOI PMC

Lalle M, Camerini S, Cecchetti S, Sayadi A, Crescenzi M, Pozio E. 2012. Interaction network of the 14–3-3 protein in the ancient protozoan parasite Giardia duodenalis. J Proteome Res 11:2666–2683. doi:10.1021/pr3000199. PubMed DOI

Hansen WR, Tulyathan O, Dawson SC, Cande WZ, Fletcher DA. 2006. Giardia lamblia attachment force is insensitive to surface treatments. Eukaryot Cell 5:781–783. doi:10.1128/EC.5.4.781-783.2006. PubMed DOI PMC

Hardin WR, Li R, Xu J, Shelton AM, Alas GCM, Minin VN, Paredez AR. 2017. Myosin-independent cytokinesis in Giardia utilizes flagella to coordinate force generation and direct membrane trafficking. Proc Natl Acad Sci U S A 114:E5854–E5863. doi:10.1073/pnas.1705096114. PubMed DOI PMC

Schwartz CL, Heumann JM, Dawson SC, Hoenger A. 2012. A detailed, hierarchical study of Giardia lamblia’s ventral disc reveals novel microtubule-associated protein complexes. PLoS One 7:e43783. doi:10.1371/journal.pone.0043783. PubMed DOI PMC

Baek K, Liu X, Ferron F, Shu S, Korn ED, Dominguez R. 2008. Modulation of actin structure and function by phosphorylation of Tyr-53 and profilin binding. Proc Natl Acad Sci U S A 105:11748–11753. doi:10.1073/pnas.0805852105. PubMed DOI PMC

Constantin B, Meerschaert K, Vandekerckhove J, Gettemans J. 1998. Disruption of the actin cytoskeleton of mammalian cells by the capping complex actin-fragmin is inhibited by actin phosphorylation and regulated by Ca2+ ions. J Cell Sci 111:1695–1706. PubMed

Eichinger L, Bomblies L, Vandekerckhove J, Schleicher M, Gettemans J. 1996. A novel type of protein kinase phosphorylates actin in the actin-fragmin complex. EMBO J 15:5547–5556. PubMed PMC

Gu L, Zhang H, Chen Q, Chen J. 2003. Calyculin a-induced actin phosphorylation and depolymerization in renal epithelial cells. Cell Motil Cytoskeleton 54:286–295. doi:10.1002/cm.10099. PubMed DOI

Papakonstanti EA, Stournaras C. 2002. Association of PI-3 kinase with Pak1 leads to actin phosphorylation and cytoskeletal reorganization. Mol Biol Cell 13:2946–2962. doi:10.1091/mbc.02-01-0599. PubMed DOI PMC

Schweiger A, Mihalache O, Ecke M, Gerisch G. 1992. Stage-specific tyrosine phosphorylation of actin in Dictyostelium discoideum cells. J Cell Sci 102:601–609. PubMed

Sonobe S, Takahashi S, Hatano S, Kuroda K. 1986. Phosphorylation of ameba-G-actin and its effect on actin polymerization. J Biol Chem 261:14837–14843. PubMed

Gourguechon S, Holt LJ, Cande WZ. 2013. The Giardia cell cycle progresses independently of the anaphase-promoting complex. J Cell Sci 126:2246–2255. doi:10.1242/jcs.121632. PubMed DOI PMC

Kinoshita E, Kinoshita-Kikuta E, Takiyama K, Koike T. 2006. Phosphate-binding tag, a new tool to visualize phosphorylated proteins. Mol Cell Proteomics 5:749–757. doi:10.1074/mcp.T500024-MCP200. PubMed DOI

Posern G, Sotiropoulos A, Treisman R. 2002. Mutant actins demonstrate a role for unpolymerized actin in control of transcription by serum response factor. Mol Biol Cell 13:4167–4178. doi:10.1091/mbc.02-05-0068. PubMed DOI PMC

Madeira F, Tinti M, Murugesan G, Berrett E, Stafford M, Toth R, Cole C, MacKintosh C, Barton GJ. 2015. 14-3-3-Pred: improved methods to predict 14-3-3-binding phosphopeptides. Bioinformatics 31:2276–2283. doi:10.1093/bioinformatics/btv133. PubMed DOI PMC

Chan PM, Ng YW, Manser E. 2011. A robust protocol to map binding sites of the 14-3-3 interactome: Cdc25c requires phosphorylation of both S216 and S263 to bind 14-3-3. Mol Cell Proteomics 10:M110.005157. doi:10.1074/mcp.M110.005157. PubMed DOI PMC

Obenauer JC, Cantley LC, Yaffe MB. 2003. Scansite 2.0: proteome-wide prediction of cell signaling interactions using short sequence motifs. Nucleic Acids Res 31:3635–3641. doi:10.1093/nar/gkg584. PubMed DOI PMC

Lalle M, Bavassano C, Fratini F, Cecchetti S, Boisguerin P, Crescenzi M, Pozio E. 2010. Involvement of 14-3-3 protein post-translational modifications in Giardia duodenalis encystation. Int J Parasitol 40:201–213. doi:10.1016/j.ijpara.2009.07.010. PubMed DOI

Lalle M, Salzano AM, Crescenzi M, Pozio E. 2006. The Giardia duodenalis 14-3-3 protein is post-translationally modified by phosphorylation and polyglycylation of the C-terminal tail. J Biol Chem 281:5137–5148. doi:10.1074/jbc.M509673200. PubMed DOI

Deakin NO, Bass MD, Warwood S, Schoelermann J, Mostafavi-Pour Z, Knight D, Ballestrem C, Humphries MJ. 2009. An integrin-alpha4-14-3-3zeta-paxillin ternary complex mediates localised Cdc42 activity and accelerates cell migration. J Cell Sci 122:1654–1664. doi:10.1242/jcs.049130. PubMed DOI PMC

Fiorillo A, di Marino D, Bertuccini L, Via A, Pozio E, Camerini S, Ilari A, Lalle M. 2014. The crystal structure of Giardia duodenalis 14-3-3 in the apo form: when protein post-translational modifications make the difference. PLoS One 9:e92902. doi:10.1371/journal.pone.0092902. PubMed DOI PMC

Burke TA, Christensen JR, Barone E, Suarez C, Sirotkin V, Kovar DR. 2014. Homeostatic actin cytoskeleton networks are regulated by assembly factor competition for monomers. Curr Biol 24:579–585. doi:10.1016/j.cub.2014.01.072. PubMed DOI PMC

Suarez C, Carroll RT, Burke TA, Christensen JR, Bestul AJ, Sees JA, James ML, Sirotkin V, Kovar DR. 2015. Profilin regulates F-actin network homeostasis by favoring formin over Arp2/3 complex. Dev Cell 32:43–53. doi:10.1016/j.devcel.2014.10.027. PubMed DOI PMC

Xue B, Robinson RC. 2013. Guardians of the actin monomer. Eur J Cell Biol 92:316–332. doi:10.1016/j.ejcb.2013.10.012. PubMed DOI

Vandermoere F, El Yazidi-Belkoura I, Demont Y, Slomianny C, Antol J, Lemoine J, Hondermarck H. 2007. Proteomics exploration reveals that actin is a signaling target of the kinase Akt. Mol Cell Proteomics 6:114–124. doi:10.1074/mcp.M600335-MCP200. PubMed DOI

Sternlicht H, Farr GW, Sternlicht ML, Driscoll JK, Willison K, Yaffe MB. 1993. The t-complex polypeptide-1 complex is a chaperonin for tubulin and actin in vivo. Proc Natl Acad Sci U S A 90:9422–9426. doi:10.1073/pnas.90.20.9422. PubMed DOI PMC

Brackley KI, Grantham J. 2010. Subunits of the chaperonin Cct interact with F-actin and influence cell shape and cytoskeletal assembly. Exp Cell Res 316:543–553. doi:10.1016/j.yexcr.2009.11.003. PubMed DOI

Sagolla MS, Dawson SC, Mancuso JJ, Cande WZ. 2006. Three-dimensional analysis of mitosis and cytokinesis in the binucleate parasite Giardia intestinalis. J Cell Sci 119:4889–4900. doi:10.1242/jcs.03276. PubMed DOI

Abodeely M, DuBois KN, Hehl A, Stefanic S, Sajid M, deSouza W, Attias M, Engel JC, Hsieh I, Fetter RD, McKerrow JH. 2009. A contiguous compartment functions as endoplasmic reticulum and endosome/lysosome in Giardia lamblia. Eukaryot Cell 8:1665–1676. doi:10.1128/EC.00123-09. PubMed DOI PMC

Schneider CA, Rasband WS, Eliceiri KW. 2012. NIH image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675. doi:10.1038/nmeth.2089. PubMed DOI PMC

Krtková J, Paredez AR. 2017. Use of translation blocking morpholinos for gene knockdown in Giardia lamblia. Methods Mol Biol 1565:123–140. doi:10.1007/978-1-4939-6817-6_11. PubMed DOI

Phillips DR, Jennings LK, Edwards HH. 1980. Identification of membrane proteins mediating the interaction of human platelets. J Cell Biol 86:77–86. doi:10.1083/jcb.86.1.77. PubMed DOI PMC

Algrain M, Turunen O, Vaheri A, Louvard D, Arpin M. 1993. Ezrin contains cytoskeleton and membrane-binding domains accounting for its proposed role as a membrane-cytoskeletal linker. J Cell Biol 120:129–139. doi:10.1083/jcb.120.1.129. PubMed DOI PMC

Oda T, Iwasa M, Aihara T, Maéda Y, Narita A. 2009. The nature of the globular-to fibrous-actin transition. Nature 457:441–445. doi:10.1038/nature07685. PubMed DOI

Otterbein LR, Graceffa P, Dominguez R. 2001. The crystal structure of uncomplexed actin in the Adp state. Science 293:708–711. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...