-
Je něco špatně v tomto záznamu ?
The bloodstream form of Trypanosoma brucei displays non-canonical gluconeogenesis
J. Kovářová, M. Moos, MP. Barrett, D. Horn, A. Zíková
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články
Grantová podpora
Wellcome Trust - United Kingdom
NLK
Directory of Open Access Journals
od 2007
Free Medical Journals
od 2007
Public Library of Science (PLoS)
od 2007
PubMed Central
od 2007
Europe PubMed Central
od 2007
ProQuest Central
od 2007-10-01
Open Access Digital Library
od 2007-08-30
Open Access Digital Library
od 2007-01-01
Open Access Digital Library
od 2007-01-01
Medline Complete (EBSCOhost)
od 2009-04-01
Health & Medicine (ProQuest)
od 2007-10-01
Public Health Database (ProQuest)
od 2007-10-01
ROAD: Directory of Open Access Scholarly Resources
od 2007
- MeSH
- adenosintrifosfát metabolismus MeSH
- fosfofruktokinasy metabolismus MeSH
- glukoneogeneze * genetika MeSH
- glukosa metabolismus MeSH
- glycerol metabolismus MeSH
- lidé MeSH
- savci MeSH
- transaldolasa metabolismus MeSH
- Trypanosoma brucei brucei * genetika metabolismus MeSH
- uhlík metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Trypanosoma brucei is a causative agent of the Human and Animal African Trypanosomiases. The mammalian stage parasites infect various tissues and organs including the bloodstream, central nervous system, skin, adipose tissue and lungs. They rely on ATP produced in glycolysis, consuming large amounts of glucose, which is readily available in the mammalian host. In addition to glucose, glycerol can also be used as a source of carbon and ATP and as a substrate for gluconeogenesis. However, the physiological relevance of glycerol-fed gluconeogenesis for the mammalian-infective life cycle forms remains elusive. To demonstrate its (in)dispensability, first we must identify the enzyme(s) of the pathway. Loss of the canonical gluconeogenic enzyme, fructose-1,6-bisphosphatase, does not abolish the process hence at least one other enzyme must participate in gluconeogenesis in trypanosomes. Using a combination of CRISPR/Cas9 gene editing and RNA interference, we generated mutants for four enzymes potentially capable of contributing to gluconeogenesis: fructose-1,6-bisphoshatase, sedoheptulose-1,7-bisphosphatase, phosphofructokinase and transaldolase, alone or in various combinations. Metabolomic analyses revealed that flux through gluconeogenesis was maintained irrespective of which of these genes were lost. Our data render unlikely a previously hypothesised role of a reverse phosphofructokinase reaction in gluconeogenesis and preclude the participation of a novel biochemical pathway involving transaldolase in the process. The sustained metabolic flux in gluconeogenesis in our mutants, including a triple-null strain, indicates the presence of a unique enzyme participating in gluconeogenesis. Additionally, the data provide new insights into gluconeogenesis and the pentose phosphate pathway, and improve the current understanding of carbon metabolism of the mammalian-infective stages of T. brucei.
Wellcome Centre for Anti Infectives Research University of Dundee Dundee United Kingdom
Wellcome Centre for Integrative Parasitology University of Glasgow Glasgow United Kingdom
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc24007068
- 003
- CZ-PrNML
- 005
- 20240423155716.0
- 007
- ta
- 008
- 240412s2024 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1371/journal.pntd.0012007 $2 doi
- 035 __
- $a (PubMed)38394337
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Kovářová, Julie $u Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic $1 https://orcid.org/0000000187376403
- 245 14
- $a The bloodstream form of Trypanosoma brucei displays non-canonical gluconeogenesis / $c J. Kovářová, M. Moos, MP. Barrett, D. Horn, A. Zíková
- 520 9_
- $a Trypanosoma brucei is a causative agent of the Human and Animal African Trypanosomiases. The mammalian stage parasites infect various tissues and organs including the bloodstream, central nervous system, skin, adipose tissue and lungs. They rely on ATP produced in glycolysis, consuming large amounts of glucose, which is readily available in the mammalian host. In addition to glucose, glycerol can also be used as a source of carbon and ATP and as a substrate for gluconeogenesis. However, the physiological relevance of glycerol-fed gluconeogenesis for the mammalian-infective life cycle forms remains elusive. To demonstrate its (in)dispensability, first we must identify the enzyme(s) of the pathway. Loss of the canonical gluconeogenic enzyme, fructose-1,6-bisphosphatase, does not abolish the process hence at least one other enzyme must participate in gluconeogenesis in trypanosomes. Using a combination of CRISPR/Cas9 gene editing and RNA interference, we generated mutants for four enzymes potentially capable of contributing to gluconeogenesis: fructose-1,6-bisphoshatase, sedoheptulose-1,7-bisphosphatase, phosphofructokinase and transaldolase, alone or in various combinations. Metabolomic analyses revealed that flux through gluconeogenesis was maintained irrespective of which of these genes were lost. Our data render unlikely a previously hypothesised role of a reverse phosphofructokinase reaction in gluconeogenesis and preclude the participation of a novel biochemical pathway involving transaldolase in the process. The sustained metabolic flux in gluconeogenesis in our mutants, including a triple-null strain, indicates the presence of a unique enzyme participating in gluconeogenesis. Additionally, the data provide new insights into gluconeogenesis and the pentose phosphate pathway, and improve the current understanding of carbon metabolism of the mammalian-infective stages of T. brucei.
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a lidé $7 D006801
- 650 12
- $a glukoneogeneze $x genetika $7 D005943
- 650 12
- $a Trypanosoma brucei brucei $x genetika $x metabolismus $7 D014346
- 650 _2
- $a transaldolasa $x metabolismus $7 D014153
- 650 _2
- $a glycerol $x metabolismus $7 D005990
- 650 _2
- $a glukosa $x metabolismus $7 D005947
- 650 _2
- $a fosfofruktokinasy $x metabolismus $7 D025221
- 650 _2
- $a uhlík $x metabolismus $7 D002244
- 650 _2
- $a adenosintrifosfát $x metabolismus $7 D000255
- 650 _2
- $a savci $7 D008322
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Moos, Martin $u Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
- 700 1_
- $a Barrett, Michael P $u Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom
- 700 1_
- $a Horn, David $u Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, United Kingdom
- 700 1_
- $a Zíková, Alena $u Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
- 773 0_
- $w MED00165375 $t PLoS neglected tropical diseases $x 1935-2735 $g Roč. 18, č. 2 (2024), s. e0012007
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/38394337 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20240412 $b ABA008
- 991 __
- $a 20240423155713 $b ABA008
- 999 __
- $a ok $b bmc $g 2081210 $s 1216835
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2024 $b 18 $c 2 $d e0012007 $e 20240223 $i 1935-2735 $m PLoS neglected tropical diseases $n PLoS negl. trop. dis. $x MED00165375
- GRA __
- $p Wellcome Trust $2 United Kingdom
- LZP __
- $a Pubmed-20240412