New Genus Fibralongavirus in Siphoviridae Phages of Staphylococcus pseudintermedius

. 2019 Dec 10 ; 11 (12) : . [epub] 20191210

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31835553

Bacteriophages of the significant veterinary pathogen Staphylococcus pseudintermedius are rarely described morphologically and genomically in detail, and mostly include phages of the Siphoviridae family. There is currently no taxonomical classification for phages of this bacterial species. Here we describe a new phage designated vB_SpsS_QT1, which is related to phage 2638A originally described as a Staphylococcus aureus phage. Propagating strain S. aureus 2854 of the latter was reclassified by rpoB gene sequencing as S. pseudintermedius 2854 in this work. Both phages have a narrow but different host range determined on 54 strains. Morphologically, both of them belong to the family Siphoviridae, share the B1 morphotype, and differ from other staphylococcal phage genera by a single long fibre at the terminus of the tail. The complete genome of phage vB_SpsS_QT1 was sequenced with the IonTorrent platform and expertly annotated. Its linear genome with cohesive ends is 43,029 bp long and encodes 60 predicted genes with the typical modular structure of staphylococcal siphophages. A global alignment found the genomes of vB_SpsS_QT1 and 2638A to share 84% nucleotide identity, but they have no significant similarity of nucleotide sequences with other phage genomes available in public databases. Based on the morphological, phylogenetic, and genomic analyses, a novel genus Fibralongavirus in the family Siphoviridae is described with phage species vB_SpsS_QT1 and 2638A.

Zobrazit více v PubMed

Sasaki T., Kikuchi K., Tanaka Y., Takahashi N., Kamata S., Hiramatsu K. Reclassification of phenotypically identified Staphylococcus intermedius strains. J. Clin. Microbiol. 2007;45:2770–2778. doi: 10.1128/JCM.00360-07. PubMed DOI PMC

Bannoehr J., Franco A., Iurescia M., Battisti A., Fitzgerald J.R. Molecular diagnostic identification of Staphylococcus pseudintermedius. J. Clin. Microbiol. 2009;47:469–471. doi: 10.1128/JCM.01915-08. PubMed DOI PMC

Švec P., Pantůček R., Petráš P., Sedláček I., Nováková D. Identification of Staphylococcus spp. using (GTG)5-PCR fingerprinting. Syst. Appl. Microbiol. 2010;33:451–456. doi: 10.1016/j.syapm.2010.09.004. PubMed DOI

Bannoehr J., Ben Zakour N.L., Waller A.S., Guardabassi L., Thoday K.L., van den Broek A.H., Fitzgerald J.R. Population genetic structure of the Staphylococcus intermedius group: Insights into agr diversification and the emergence of methicillin-resistant strains. J. Bacteriol. 2007;189:8685–8692. doi: 10.1128/JB.01150-07. PubMed DOI PMC

Bannoehr J., Guardabassi L. Staphylococcus pseudintermedius in the dog: Taxonomy, diagnostics, ecology, epidemiology and pathogenicity. Vet. Dermatol. 2012;23:253-e52. doi: 10.1111/j.1365-3164.2012.01046.x. PubMed DOI

Börjesson S., Gómez-Sanz E., Ekström K., Torres C., Grönlund U. Staphylococcus pseudintermedius can be misdiagnosed as Staphylococcus aureus in humans with dog bite wounds. Eur. J. Clin. Microbiol. Infect. Dis. 2014;34:839–844. doi: 10.1007/s10096-014-2300-y. PubMed DOI

Riegel P., Jesel-Morel L., Laventie B., Boisset S., Vandenesch F., Prévost G. Coagulase-positive Staphylococcus pseudintermedius from animals causing human endocarditis. Int. J. Med. Microbiol. 2011;301:237–239. doi: 10.1016/j.ijmm.2010.09.001. PubMed DOI

Van Duijkeren E., Catry B., Greko C., Moreno M.A., Pomba M.C., Pyorala S., Ruzauskas M., Sanders P., Threlfall E.J., Torren-Edo J., et al. Review on methicillin-resistant Staphylococcus pseudintermedius. J. Antimicrob. Chemother. 2011;66:2705–2714. doi: 10.1093/jac/dkr367. PubMed DOI

European Medicines Agency (EMA) Reflection Paper on Meticillin-Resistant Staphylococcus pseudintermedius EMEA/CVMP/SAGAM/736964/2009. [(accessed on 13 November 2019)]; Available online: https://www.ema.europa.eu/en/meticillin-resistant-staphylococcus-pseudintermedius.

Kawano J., Shimizu A., Kimura S., Blouse L. Experimental bacteriophage set for typing Staphylococcus intermedius. Zentralbl. Bakteriol. Mikrobiol. Hyg. A. 1982;253:321–330. doi: 10.1016/S0174-3031(82)80067-X. PubMed DOI

Overturf G.D., Talan D.A., Singer K., Anderson N., Miller J.I., Greene R.T., Froman S. Phage typing of Staphylococcus intermedius. J. Clin. Microbiol. 1991;29:373–375. PubMed PMC

Wakita Y., Shimizu A., Hájek V., Kawano J., Yamashita K. Characterization of Staphylococcus intermedius from pigeons, dogs, foxes, mink, and horses by pulsed-field gel electrophoresis. J. Vet. Med. Sci. 2002;64:237–243. doi: 10.1292/jvms.64.237. PubMed DOI

Leskinen K., Tuomala H., Wicklund A., Horsma-Heikkinen J., Kuusela P., Skurnik M., Kiljunen S. Characterization of vB_SauM-fRuSau02, a Twort-like bacteriophage isolated from a therapeutic phage cocktail. Viruses. 2017;9:258. doi: 10.3390/v9090258. PubMed DOI PMC

Moodley A., Kot W., Nälgård S., Jakociune D., Neve H., Hansen L.H., Guardabassi L., Vogensen F.K. Isolation and characterization of bacteriophages active against methicillin-resistant Staphylococcus pseudintermedius. Res. Vet. Sci. 2019;122:81–85. doi: 10.1016/j.rvsc.2018.11.008. PubMed DOI

Melter O., Švec P., Tkadlec J., Doškař J., Kinská H., Pantůček R. Characterisation of methicillin-susceptible Staphylococcus pseudintermedius isolates from canine infections and determination of virulence factors using multiplex PCR. Vet. Med. 2017;62:81–89. doi: 10.17221/105/2016-VETMED. DOI

Mališová L., Šafránková R., Kekláková J., Petráš P., Žemličková H., Jakubů V. Correct species identification (reclassification in CNCTC) of strains of Staphylococcus intermedius-group can improve an insight into their evolutionary history. Folia Microbiol. 2018;64:231–236. doi: 10.1007/s12223-018-0647-7. PubMed DOI

Hyman P., Abedon S.T. Practical Methods for Determining Phage Growth Parameters. In: Clokie M.R., Kropinski A.M., editors. Bacteriophages. Methods in Molecular Biology. Volume 501. Humana Press; New York, NY, USA: 2009. pp. 175–202. PubMed DOI

Mašlaňová I., Stříbná S., Doškař J., Pantůček R. Efficient plasmid transduction to Staphylococcus aureus strains insensitive to the lytic action of transducing phage. FEMS Microbiol. Lett. 2016;363:fnw211. doi: 10.1093/femsle/fnw211. PubMed DOI

Subcommittee on Taxonomy of Staphylococci and Micrococci Recommendations. Int. Bull. Bacteriol. Nomencl. Taxon. 1965;15:109–110. doi: 10.1099/00207713-15-2-109. DOI

Cadness-Graves B., Williams R., Harper G.J., Miles A.A. Slide-test for coagulase-positive staphylococci. Lancet. 1943;241:736–738. doi: 10.1093/oxfordjournals.bmb.a070244. DOI

Mašlaňová I., Doškař J., Varga M., Kuntová L., Mužík J., Malúšková D., Růžičková V., Pantůček R. Bacteriophages of Staphylococcus aureus efficiently package various bacterial genes and mobile genetic elements including SCCmec with different frequencies. Environ. Microbiol. Rep. 2013;5:66–73. doi: 10.1111/j.1758-2229.2012.00378.x. PubMed DOI

Mellmann A., Becker K., von Eiff C., Keckevoet U., Schumann P., Harmsen D. Sequencing and staphylococci identification. Emerging Infect. Dis. 2006;12:333–336. doi: 10.3201/eid1202.050962. PubMed DOI PMC

Andrews S. FastQC: A Quality Control Tool for High Throughput Sequence Data. [(accessed on 3 June 2018)]; Babraham Bioinformatics, Babraham Institute, Cambridge, UK. Available online: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

Nurk S., Bankevich A., Antipov D., Gurevich A., Korobeynikov A., Lapidus A., Prjibelsky A., Pyshkin A., Sirotkin A., Sirotkin Y., et al. Assembling Genomes and Mini-Metagenomes from Highly Chimeric Reads. In: Minghua D., Rui J., Fengzhu S., Xuegong Z., editors. Research in Computational Molecular Biology. Volume 7821. Springer; Berlin, Germany: 2013. pp. 158–170. PubMed DOI PMC

Gurevich A., Saveliev V., Vyahhi N., Tesler G. QUAST: Quality assessment tool for genome assemblies. Bioinformatics. 2013;29:1072–1075. doi: 10.1093/bioinformatics/btt086. PubMed DOI PMC

Okonechnikov K., Golosova O., Fursov M. Unipro UGENE: A unified bioinformatics toolkit. Bioinformatics. 2012;28:1166–1167. doi: 10.1093/bioinformatics/bts091. PubMed DOI

Myers E.W., Miller W. Optimal alignments in linear space. Comput. Appl. Biosci. 1988;4:11–17. doi: 10.1093/bioinformatics/4.1.11. PubMed DOI

Besemer J. Heuristic approach to deriving models for gene finding. Nucleic Acids Res. 1999;27:3911–3920. doi: 10.1093/nar/27.19.3911. PubMed DOI PMC

Brettin T., Davis J.J., Disz T., Edwards R.A., Gerdes S., Olsen G.J., Olson R., Overbeek R., Parrello B., Pusch G.D., et al. RASTtk: A modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci. Rep. 2015;5:8365. doi: 10.1038/srep08365. PubMed DOI PMC

Grazziotin A.L., Koonin E.V., Kristensen D.M. Prokaryotic Virus Orthologous Groups (pVOGs): A resource for comparative genomics and protein family annotation. Nucleic Acids Res. 2017;45:D491–D498. doi: 10.1093/nar/gkw975. PubMed DOI PMC

Marchler-Bauer A., Bo Y., Han L., He J., Lanczycki C.J., Lu S., Chitsaz F., Derbyshire M.K., Geer R.C., Gonzales N.R., et al. CDD/SPARCLE: Functional classification of proteins via subfamily domain architectures. Nucleic Acids Res. 2017;45:D200–D203. doi: 10.1093/nar/gkw1129. PubMed DOI PMC

Mitchell A.L., Attwood T.K., Babbitt P.C., Blum M., Bork P., Bridge A., Brown S.D., Chang H.-Y., El-Gebali S., Fraser M.I., et al. InterPro in 2019: Improving coverage, classification and access to protein sequence annotations. Nucleic Acids Res. 2019;47:D351–D360. doi: 10.1093/nar/gky1100. PubMed DOI PMC

Lowe T.M., Chan P.P. tRNAscan-SE on-line: Integrating search and context for analysis of transfer RNA genes. Nucleic Acids Res. 2016;44:W54–W57. doi: 10.1093/nar/gkw413. PubMed DOI PMC

Lagesen K., Hallin P., Rødland E.A., Stærfeldt H.H., Rognes T., Ussery D.W. RNAmmer: Consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 2007;35:3100–3108. doi: 10.1093/nar/gkm160. PubMed DOI PMC

Finn R.D., Clements J., Eddy S.R. HMMER web server: Interactive sequence similarity searching. Nucleic Acids Res. 2011;39:W29–W37. doi: 10.1093/nar/gkr367. PubMed DOI PMC

Seemann T. Abricate: Mass Screening of Contigs for Antimicrobial and Virulence Genes. [(accessed on 28 February 2019)]; Department of Microbiology and Immunology, The University of Melbourne, Melbourne, Australia. Available online: https://github.com/tseemann/abricate.

Jia B., Raphenya A.R., Alcock B., Waglechner N., Guo P., Tsang K.K., Lago B.A., Dave B.M., Pereira S., Sharma A.N., et al. CARD 2017: Expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res. 2017;45:D566–D573. doi: 10.1093/nar/gkw1004. PubMed DOI PMC

Zankari E., Hasman H., Cosentino S., Vestergaard M., Rasmussen S., Lund O., Aarestrup F.M., Larsen M.V. Identification of acquired antimicrobial resistance genes. J. Antimicrob. Chemother. 2012;67:2640–2644. doi: 10.1093/jac/dks261. PubMed DOI PMC

Feldgarden M., Brover V., Haft D.H., Prasad A.B., Slotta D.J., Tolstoy I., Tyson G.H., Zhao S., Hsu C.-H., McDermott P.F., et al. Validating the AMRFinder tool and resistance gene database by using antimicrobial resistance genotype-phenotype correlations in a collection of isolates. Antimicrob. Agents Chemother. 2019;63:e00483-19. doi: 10.1128/AAC.00483-19. PubMed DOI PMC

Gupta S.K., Padmanabhan B.R., Diene S.M., Lopez-Rojas R., Kempf M., Landraud L., Rolain J.M. ARG-ANNOT, a new bioinformatic tool to discover antibiotic resistance genes in bacterial genomes. Antimicrob. Agents Chemother. 2014;58:212–220. doi: 10.1128/AAC.01310-13. PubMed DOI PMC

Chen L., Zheng D., Liu B., Yang J., Jin Q. VFDB 2016: Hierarchical and refined dataset for big data analysis—10 years on. Nucleic Acids Res. 2016;44:D694–D697. doi: 10.1093/nar/gkv1239. PubMed DOI PMC

Drozdetskiy A., Cole C., Procter J., Barton G.J. JPred4: A protein secondary structure prediction server. Nucleic Acids Res. 2015;43:W389–W394. doi: 10.1093/nar/gkv332. PubMed DOI PMC

Gautier R., Douguet D., Antonny B., Drin G. HELIQUEST: A web server to screen sequences with specific a-helical properties. Bioinformatics. 2008;24:2101–2102. doi: 10.1093/bioinformatics/btn392. PubMed DOI

Yang J., Yan R., Roy A., Xu D., Poisson J., Zhang Y. The I-TASSER Suite: Protein structure and function prediction. Nat. Methods. 2014;12:7–8. doi: 10.1038/nmeth.3213. PubMed DOI PMC

Sullivan M.J., Petty N.K., Beatson S.A. Easyfig: A genome comparison visualizer. Bioinformatics. 2011;27:1009–1010. doi: 10.1093/bioinformatics/btr039. PubMed DOI PMC

Lemoine F., Correia D., Lefort V., Doppelt-Azeroual O., Mareuil F., Cohen-Boulakia S., Gascuel O. NGPhylogeny.fr: New generation phylogenetic services for non-specialists. Nucleic Acids Res. 2019;47:W260–W265. doi: 10.1093/nar/gkz303. PubMed DOI PMC

Rambaut A. FigTree: Produce High-Quality Figures of Phylogenetic Trees. [(accessed on 9 August 2019)]; Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK. Available online: http://tree.bio.ed.ac.uk/software/figtree/

Ahmed N., Ågren J., Sundström A., Håfström T., Segerman B. Gegenees: Fragmented alignment of multiple genomes for determining phylogenomic distances and genetic signatures unique for specified target groups. PLoS ONE. 2012;7:e39107. doi: 10.1371/journal.pone.0039107. PubMed DOI PMC

Candiano G., Bruschi M., Musante L., Santucci L., Ghiggeri G.M., Carnemolla B., Orecchia P., Zardi L., Righetti P.G. Blue silver: A very sensitive colloidal Coomassie G-250 staining for proteome analysis. Electrophoresis. 2004;25:1327–1333. doi: 10.1002/elps.200305844. PubMed DOI

Wiśniewski J.R., Ostasiewicz P., Mann M. High recovery FASP applied to the proteomic analysis of microdissected formalin fixed paraffin embedded cancer tissues retrieves known colon cancer markers. J. Proteome Res. 2011;10:3040–3049. doi: 10.1021/pr200019m. PubMed DOI

Stejskal K., Potěšil D., Zdráhal Z. Suppression of peptide sample losses in autosampler vials. J. Proteome Res. 2013;12:3057–3062. doi: 10.1021/pr400183v. PubMed DOI

Kwan T., Liu J., DuBow M., Gros P., Pelletier J. The complete genomes and proteomes of 27 Staphylococcus aureus bacteriophages. Proc. Natl Acad. Sci. USA. 2005;102:5174–5179. doi: 10.1073/pnas.0501140102. PubMed DOI PMC

Slopek S., Krzywy T. Morphology and ultrastructure of bacteriophages. An electron microscopic study. Arch. Immunol. Ther. Exp. 1985;33:12–17. PubMed

Lopes A., Tavares P., Petit M.A., Guérois R., Zinn-Justin S. Automated classification of tailed bacteriophages according to their neck organization. BMC Genom. 2014;15:1027. doi: 10.1186/1471-2164-15-1027. PubMed DOI PMC

Schulz E.C., Dickmanns A., Urlaub H., Schmitt A., Mühlenhoff M., Stummeyer K., Schwarzer D., Gerardy-Schahn R., Ficner R. Crystal structure of an intramolecular chaperone mediating triple-β-helix folding. Nat. Struct. Mol. Biol. 2010;17:210–215. doi: 10.1038/nsmb.1746. PubMed DOI

Wipf J.R.K., Deutsch D.R., Westblade L.F., Fischetti V.A., Putonti C. Genome sequences of six prophages isolated from Staphylococcus pseudintermedius strains recovered from human and animal clinical specimens. Microbiol. Res. Announc. 2019;8:e00387-19. doi: 10.1128/MRA.00387-19. PubMed DOI PMC

Nowakowski M., Jaremko Ł., Wladyka B., Dubin G., Ejchart A., Mak P. Spatial attributes of the four-helix bundle group of bacteriocins – The high-resolution structure of BacSp222 in solution. Int. J. Biol. Macromol. 2018;107:2715–2724. doi: 10.1016/j.ijbiomac.2017.10.158. PubMed DOI

Kang J.H., Hwang C.Y. First detection of multiresistance pRE25-like elements from Enterococcus spp. in Staphylococcus pseudintermedius isolated from canine pyoderma. J. Glob. Antimicrob. Resist. 2020 doi: 10.1016/j.jgar.2019.08.022. in press. PubMed DOI

Drancourt M., Raoult D. rpoB gene sequence-based identification of Staphylococcus species. J. Clin. Microbiol. 2002;40:1333–1338. doi: 10.1128/JCM.40.4.1333-1338.2002. PubMed DOI PMC

Azam A.H., Kadoi K., Miyanaga K., Usui M., Tamura Y., Cui L., Tanji Y. Analysis host-recognition mechanism of staphylococcal kayvirus φSA039 reveals a novel strategy that protects Staphylococcus aureus against infection by Staphylococcus pseudintermedius Siphoviridae phages. Appl. Microbiol. Biotechnol. 2019;103:6809–6823. doi: 10.1007/s00253-019-09940-7. PubMed DOI

Ben Zakour N.L., Beatson S.A., van den Broek A.H.M., Thoday K.L., Fitzgerald J.R. Comparative genomics of the Staphylococcus intermedius group of animal pathogens. Front. Cell. Infect. Microbiol. 2012;2:44. doi: 10.3389/fcimb.2012.00044. PubMed DOI PMC

Abedon S.T. Lysis from without. Bacteriophage. 2014;1:46–49. doi: 10.4161/bact.1.1.13980. PubMed DOI PMC

Ingmer H., Gerlach D., Wolz C. Temperate phages of Staphylococcus aureus. Microbiol. Spectrum. 2019;7 doi: 10.1128/microbiolspec.GPP3-0058-2018. PubMed DOI PMC

Brüssow H., Desiere F. Comparative phage genomics and the evolution of Siphoviridae: Insights from dairy phages. Mol. Microbiol. 2001;39:213–223. doi: 10.1046/j.1365-2958.2001.02228.x. PubMed DOI

Quiles-Puchalt N., Carpena N., Alonso J.C., Novick R.P., Marina A., Penadés J.R. Staphylococcal pathogenicity island DNA packaging system involving cos-site packaging and phage-encoded HNH endonucleases. Proc. Natl Acad. Sci. USA. 2014;111:6016–6021. doi: 10.1073/pnas.1320538111. PubMed DOI PMC

Becker K., Verstappen K.M., Huijbregts L., Spaninks M., Wagenaar J.A., Fluit A.C., Duim B. Development of a real-time PCR for detection of Staphylococcus pseudintermedius using a novel automated comparison of whole-genome sequences. PLoS ONE. 2017;12:e0183925. doi: 10.1371/journal.pone.0183925. PubMed DOI PMC

Cernooka E., Rumnieks J., Tars K., Kazaks A. Structural basis for DNA recognition of a single-stranded DNA-binding protein from Enterobacter phage Enc34. Sci. Rep. 2017;7:15529. doi: 10.1038/s41598-017-15774-y. PubMed DOI PMC

Dempsey R.M. Sau42I, a II-like restriction-modification system encoded by the Staphylococcus aureus quadruple-converting phage φ42. Microbiology. 2005;151:1301–1311. doi: 10.1099/mic.0.27646-0. PubMed DOI

Christie G.E., Matthews A.M., King D.G., Lane K.D., Olivarez N.P., Tallent S.M., Gill S.R., Novick R.P. The complete genomes of Staphylococcus aureus bacteriophages 80 and 80α—Implications for the specificity of SaPI mobilization. Virology. 2010;407:381–390. doi: 10.1016/j.virol.2010.08.036. PubMed DOI PMC

Kossykh V.G., Schlagman S.L., Hattman S. Phage T4 DNA [N]-adenine6 methyltransferase. Overexpression, purification, and characterization. J. Biol. Chem. 1995;270:14389–14393. doi: 10.1074/jbc.270.24.14389. PubMed DOI

Xu J., Hendrix R.W., Duda R.L. Chaperone–protein interactions that mediate assembly of the bacteriophage λ tail to the correct length. J. Mol. Biol. 2014;426:1004–1018. doi: 10.1016/j.jmb.2013.06.040. PubMed DOI PMC

Rodríguez-Rubio L., Gutiérrez D., Martínez B., Rodríguez A., Götz F., García P. The tape measure protein of the Staphylococcus aureus bacteriophage vB_SauS-φIPLA35 has an active muramidase domain. Appl. Environ. Microbiol. 2012;78:6369–6371. doi: 10.1128/AEM.01236-12. PubMed DOI PMC

North O.I., Sakai K., Yamashita E., Nakagawa A., Iwazaki T., Buttner C.R., Takeda S., Davidson A.R. Phage tail fibre assembly proteins employ a modular structure to drive the correct folding of diverse fibres. Nat. Microbiol. 2019;4:1645–1653. doi: 10.1038/s41564-019-0477-7. PubMed DOI

Neethirajan S., DiCicco M. Atomic force microscopy study of the antibacterial effect of fosfomycin on methicillin-resistant Staphylococcus pseudintermedius. Appl. Nanosci. 2013;4:703–709. doi: 10.1007/s13204-013-0256-3. DOI

Schuch R., Fischetti V.A. Detailed genomic analysis of the Wβ and γ phages infecting Bacillus anthracis: Implications for evolution of environmental fitness and antibiotic resistance. J. Bacteriol. 2006;188:3037–3051. doi: 10.1128/JB.188.8.3037-3051.2006. PubMed DOI PMC

Schade S.Z., Adler J., Ris H. How bacteriophage χ attacks motile bacteria. J. Virol. 1967;1:599–609. PubMed PMC

Abaev I., Foster-Frey J., Korobova O., Shishkova N., Kiseleva N., Kopylov P., Pryamchuk S., Schmelcher M., Becker S.C., Donovan D.M. Staphylococcal phage 2638A endolysin is lytic for Staphylococcus aureus and harbors an inter-lytic-domain secondary translational start site. Appl. Microbiol. Biotechnol. 2012;97:3449–3456. doi: 10.1007/s00253-012-4252-4. PubMed DOI PMC

Becker S.C., Foster-Frey J., Stodola A.J., Anacker D., Donovan D.M. Differentially conserved staphylococcal SH3b_5 cell wall binding domains confer increased staphylolytic and streptolytic activity to a streptococcal prophage endolysin domain. Gene. 2009;443:32–41. doi: 10.1016/j.gene.2009.04.023. PubMed DOI

Schmelcher M., Shen Y., Nelson D.C., Eugster M.R., Eichenseher F., Hanke D.C., Loessner M.J., Dong S., Pritchard D.G., Lee J.C., et al. Evolutionarily distinct bacteriophage endolysins featuring conserved peptidoglycan cleavage sites protect mice from MRSA infection. J. Antimicrob. Chemother. 2015;70:1453–1465. doi: 10.1093/jac/dku552. PubMed DOI PMC

Kovalskaya N.Y., Herndon E.E., Foster-Frey J.A., Donovan D.M., Hammond R.W. Antimicrobial activity of bacteriophage derived triple fusion protein against Staphylococcus aureus. AIMS Microbiol. 2019;5:158–175. doi: 10.3934/microbiol.2019.2.158. PubMed DOI PMC

Daniel A., Bonnen P.E., Fischetti V.A. First complete genome sequence of two Staphylococcus epidermidis bacteriophages. J. Bacteriol. 2006;189:2086–2100. doi: 10.1128/JB.01637-06. PubMed DOI PMC

Gutiérrez D., Martínez B., Rodríguez A., García P. Genomic characterization of two Staphylococcus epidermidis bacteriophages with anti-biofilm potential. BMC Genom. 2012;13:228. doi: 10.1186/1471-2164-13-228. PubMed DOI PMC

Fernández L., Gutiérrez D., García P., Rodríguez A. The perfect bacteriophage for therapeutic applications—A quick guide. Antibiotics. 2019;8:126. doi: 10.3390/antibiotics8030126. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace