Phage tail fibre assembly proteins employ a modular structure to drive the correct folding of diverse fibres

. 2019 Oct ; 4 (10) : 1645-1653. [epub] 20190617

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31209305
Odkazy

PubMed 31209305
DOI 10.1038/s41564-019-0477-7
PII: 10.1038/s41564-019-0477-7
Knihovny.cz E-zdroje

Phage tail fibres are elongated protein assemblies capable of specific recognition of bacterial surfaces during the first step of viral infection1-4. The folding of these complex trimeric structures often requires a phage-encoded tail fibre assembly (Tfa) protein5-7. Despite the wide occurrence of Tfa proteins, their functional mechanism has not been elucidated. Here, we investigate the tail fibre and Tfa of Escherichia coli phage Mu. We demonstrate that Tfa forms a stable complex with the tail fibre, and present a 2.1 Å resolution X-ray crystal structure of this complex. We find that Tfa proteins are comprised of two domains: a non-conserved N-terminal domain that binds to the C-terminal region of the fibre and a conserved C-terminal domain that probably mediates fibre oligomerization and assembly. Tfa forms rapidly exchanging multimers on its own, but not a stable trimer, implying that Tfa does not specify the trimeric state of the fibre. We propose that the key conserved role of Tfa is to ensure that fibre assembly and multimerization initiates at the C terminus, ensuring that the intertwined and repetitive structural elements of fibres come together in the correct sequence. The universal importance of correctly aligning the C termini of phage fibres is highlighted by our work.

Zobrazit více v PubMed

van de Putte, P., Cramer, S. & Giphart-Gassler, M. Invertible DNA determines host specificity of bacteriophage Mu. Nature 286, 218–222 (1980). DOI

Wilson, J. H., Luftig, R. B. & Wood, W. B. Interaction of bacteriophage T4 tail fiber components with a lipopolysaccharide fraction from Escherichia coli. J. Mol. Biol. 51, 423–434 (1970). DOI

Le, S. et al. Mapping the tail fiber as the receptor binding protein responsible for differential host specificity of Pseudomonas aeruginosa bacteriophages PaP1 and JG004. PLoS ONE 8, e68562 (2013). DOI

Grundy, F. J. & Howe, M. M. Involvement of the invertible G segment in bacteriophage Mu tail fiber biosynthesis. Virology 134, 296–317 (1984). DOI

Bartual, S. G., Garcia-Doval, C., Alonso, J., Schoehn, G. & van Raaij, M. J. Two-chaperone assisted soluble expression and purification of the bacteriophage T4 long tail fibre protein gp37. Protein Expr. Purif. 70, 116–121 (2010). DOI

Hashemolhosseini, S., Stierhof, Y. D., Hindennach, I. & Henning, U. Characterization of the helper proteins for the assembly of tail fibers of coliphages T4 and lambda. J. Bacteriol. 178, 6258–6265 (1996). DOI

Leiman, P. G. et al. Morphogenesis of the T4 tail and tail fibers. Virol. J. 7, 355 (2010). DOI

Sandulache, R., Prehm, P. & Kamp, D. Cell wall receptor for bacteriophage Mu G(+). J. Bacteriol. 160, 299–303 (1984). PubMed PMC

Bartual, S. G. et al. Structure of the bacteriophage T4 long tail fiber receptor-binding tip. Proc. Natl Acad. Sci. USA 107, 20287–20292 (2010). DOI

Granell, M., Namura, M., Alvira, S., Kanamaru, S. & van Raaij, M. J. Crystal structure of the carboxy-terminal region of the bacteriophage T4 proximal long tail fiber protein Gp34. Viruses 9, E168 (2017). DOI

Abedon, S. T., Garcia, P., Mullany, P. & Aminov, R. Editorial: Phage therapy: past, present and future. Front Microbiol 8, 981 (2017). DOI

Denyes, J. M. et al. Modified Bacteriophage S16 Long Tail Fiber Proteins for Rapid and Specific Immobilization and Detection of Salmonella Cells. Appl. Environ. Microbiol. 83, e00277-17 (2017). DOI

Braff, D., Shis, D. & Collins, J. J. Synthetic biology platform technologies for antimicrobial applications. Adv. Drug Deliv. Rev. 105, 35–43 (2016). DOI

Ando, H., Lemire, S., Pires, D. P. & Lu, T. K. Engineering modular viral scaffolds for targeted bacterial population editing. Cell Syst. 1, 187–196 (2015). DOI

Cerritelli, M. E., Wall, J. S., Simon, M. N., Conway, J. F. & Steven, A. C. Stoichiometry and domainal organization of the long tail-fiber of bacteriophage T4: a hinged viral adhesin. J. Mol. Biol. 260, 767–780 (1996). DOI

Montag, D., Hashemolhosseini, S. & Henning, U. Receptor-recognizing proteins of T-even type bacteriophages. J. Mol. Biol. 216, 327–334 (1990). DOI

Finn, R. D. et al. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res. 44, D279–285 (2016). DOI

The UniProt Consortium UniProt: the universal protein knowledgebase. Nucleic Acids Res. 45, D158–D169 (2017). DOI

Büttner, C. R., Wu, Y., Maxwell, K. L. & Davidson, A. R. Baseplate assembly of phage Mu: Defining the conserved core components of contractile-tailed phages and related bacterial systems. Proc. Natl Acad. Sci. USA 113, 10174–10179 (2016). DOI

Howe, M. M., O’Day, K. J. & Schultz, D. W. Isolation of mutations defining five new cistrons essential for development of bacteriophage Mu. Virology 93, 303–319 (1979). DOI

Holm, L. & Laakso, L. M. Dali server update. Nucleic Acids Res. 44, W351–W355 (2016). DOI

Gibrat, J.-F., Madej, T. & Bryant, S. H. Surprising similarities in structure comparison. Curr. Opin. Struct. Biol. 6, 377–385 (1996). DOI

Chen, M. et al. Inducible prophage mutant of Escherichia coli can lyse new host and the key sites of receptor recognition identification. Front. Microbiol. 8, 147 (2017). PubMed PMC

Tetart, F., Repoila, F., Monod, C. & Krisch, H. M. Bacteriophage T4 host range is expanded by duplications of a small domain of the tail fiber adhesin. J. Mol. Biol. 258, 726–731 (1996). DOI

Jakhetia, R. & Verma, N. K. Identification and molecular characterisation of a novel Mu-like bacteriophage, SfMu, of Shigella flexneri. PLoS ONE 10, e0124053 (2015). DOI

Sandulache, R., Prehm, P., Expert, D., Toussaint, A. & Kamp, D. The cell wall receptor for bacteriophage Mu G(-) in Erwinia and Escherichia coli C. FEMS Microbiol. Lett. 28, 307–310 (1985).

Howe, M. M. Prophage deletion mapping of bacteriophage Mu-1. Virology 54, 93–101 (1973). DOI

Pawluk, A. et al. Disabling a type I-E CRISPR-Cas nuclease with a bacteriophage-encoded anti-CRISPR protein. mBio 8, e01751–01717 (2017). DOI

Abzalimov, R. R. et al. Studies of pH-dependent self-association of a recombinant form of arylsulfatase A with electrospray ionization mass spectrometry and size-exclusion chromatography. Anal. Chem. 85, 1591–1596 (2013). DOI

Hendrix, R. & Duda, R. Bacteriophage lambda PaPa: not the mother of all lambda phages. Science 258, 1145–1148 (1992). DOI

Riede, I., Drexler, K., Schwarz, H. & Henning, U. T-even-type bacteriophages use an adhesin for recognition of cellular receptors. J. Mol. Biol. 194, 23–30 (1987). DOI

Dunne, M. et al. Salmonella phage S16 tail fiber adhesin features a rare polyglycine rich domain for host recognition. Structure 26, 1573–1582 (2018). DOI

Montag, D. & Henning, U. An open reading frame in the Escherichia coli bacteriophage lambda genome encodes a protein that functions in assembly of the long tail fibers of bacteriophage T4. J. Bacteriol. 169, 5884–5886 (1987). DOI

Tao, Y., Strelkov, S. V., Mesyanzhinov, V. V. & Rossmann, M. G. Structure of bacteriophage T4 fibritin: a segmented coiled coil and the role of the C-terminal domain. Structure 5, 789–798 (1997). DOI

Schulz, E. C. et al. Crystal structure of an intramolecular chaperone mediating triple-beta-helix folding. Nat. Struct. Mol. Biol. 17, 210–215 (2010). DOI

Marti, R. et al. Long tail fibres of the novel broad-host-range T-even bacteriophage S16 specifically recognize Salmonella OmpC. Mol. Microbiol. 87, 818–834 (2013). DOI

Garcia-Doval, C. et al. Structure of the receptor-binding carboxy-terminal domain of the bacteriophage T5 L-shaped tail fibre with and without its intra-molecular chaperone. Viruses 7, 6424–6440 (2015). DOI

Miroshnikov, K. A., Marusich, E. I., Cerritelli, M. E., Cheng, N., Hyde, C. C., Steven, A. C. & Mesyanzhinov, V. V. Engineering trimeric fibrous proteins based on bacteriophage T4 adhesins. Protein Eng. 11, 329–332 (1998). DOI

Gorelik, M., Stanger, K. & Davidson, A. R. A conserved residue in the yeast Bem1p SH3 domain maintains the high level of binding specificity required for function. J. Biol. Chem. 286, 19470–19477 (2011). DOI

Stollar, E. J. et al. Structural, functional, and bioinformatic studies demonstrate the crucial role of an extended peptide binding site for the SH3 domain of yeast Abp1p. J. Biol. Chem. 284, 26918–26927 (2009). DOI

Demers, J. P. & Mittermaier, A. Binding mechanism of an SH3 domain studied by NMR and ITC. J. Am. Chem. Soc. 131, 4355–4367 (2009). DOI

Zeng, D., Bhatt, V. S., Shen, Q. & Cho, J. H. Kinetic insights into the inding between the nSH3 domain of CrkII and proline-rich motifs in cAbl. Biophys. J. 111, 1843–1853 (2016). DOI

Murshudov, G. N. et al. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr D 67, 355–367 (2011). DOI

Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D 66, 213–221 (2010). DOI

Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr D 60, 2126–2132 (2004). DOI

Thaipisuttikul, I. et al. A divergent Pseudomonas aeruginosa palmitoyltransferase essential for cystic fibrosis-specific lipid A. Mol. Microbiol. 91, 158–174 (2014). DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

New Genus Fibralongavirus in Siphoviridae Phages of Staphylococcus pseudintermedius

. 2019 Dec 10 ; 11 (12) : . [epub] 20191210

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...