Vitamin D Supplementation Influences Ultramarathon-Induced Changes in Serum Amino Acid Levels, Tryptophan/Branched-Chain Amino Acid Ratio, and Arginine/Asymmetric Dimethylarginine Ratio

. 2023 Aug 11 ; 15 (16) : . [epub] 20230811

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, randomizované kontrolované studie

Perzistentní odkaz   https://www.medvik.cz/link/pmid37630726

Grantová podpora
2020/37/B/NZ7/01794. National Science Center

Exercise affects serum levels of amino acids and their metabolites, with important metabolic consequences. Since vitamin D impacts skeletal muscle protein degradation, we hypothesised that it would also impact exercise-induced changes in serum amino acid levels and the serum levels of arginine metabolites, influencing the body's ability to synthesise NO. Accordingly, we analysed the effect of a single high-dose vitamin D supplementation on the serum levels of various amino acids in ultramarathon runners. Thirty-five male amateur runners were assigned to the supplemented group, administered 150,000 IU vitamin D in vegetable oil 24 h before the run (n = 16), or the control (placebo) group (n = 19). Blood was sampled 24 h before, immediately after, and 24 h after the run. Changes in the serum levels of some amino acids were distinct in the two groups. The asymmetric dimethyl arginine levels were significantly decreased immediately after the run and increased 24 h later and were not affected by the supplementation. The symmetric dimethyl arginine levels were increased after the run in both groups but were lower in the supplemented group than in the placebo group 24 h after the run. The dimethylamine levels increased significantly in the supplemented group as compared to the placebo group. In conclusion, vitamin D impacts exercise-induced changes in serum amino acids and methylated arginine metabolites.

Zobrazit více v PubMed

Mieszkowski J., Niespodzinski B., Kochanowicz A., Gmiat A., Prusik K., Prusik K., Kortas J., Ziemann E., Antosiewicz J. The Effect of Nordic Walking Training Combined with Vitamin D Supplementation on Postural Control and Muscle Strength in Elderly People—A Randomized Controlled Trial. Int. J. Environ. Res. Public Health. 2018;15:1951. doi: 10.3390/ijerph15091951. PubMed DOI PMC

Grimaldi A.S., Parker B.A., Capizzi J.A., Clarkson P.M., Pescatello L.S., White M.C., Thompson P.D. 25(OH) vitamin D is associated with greater muscle strength in healthy men and women. Med. Sci. Sports Exerc. 2013;45:157–162. doi: 10.1249/MSS.0b013e31826c9a78. PubMed DOI PMC

Allison R.J., Close G.L., Farooq A., Riding N.R., Salah O., Hamilton B., Wilson M.G. Severely vitamin D-deficient athletes present smaller hearts than sufficient athletes. Eur. J. Prev. Cardiol. 2015;22:535–542. doi: 10.1177/2047487313518473. PubMed DOI

Angeline M.E., Gee A.O., Shindle M., Warren R.F., Rodeo S.A. The effects of vitamin D deficiency in athletes. Am. J. Sports Med. 2013;41:461–464. doi: 10.1177/0363546513475787. PubMed DOI

Mieszkowski J., Kochanowicz A., Piskorska E., Niespodzinski B., Siodmiak J., Busko K., Stankiewicz B., Olszewska-Slonina D., Antosiewicz J. Serum levels of bone formation and resorption markers in relation to vitamin D status in professional gymnastics and physically active men during upper and lower body high-intensity exercise. J. Int. Soc. Sports Nutr. 2021;18:29. doi: 10.1186/s12970-021-00430-8. PubMed DOI PMC

Lips P. Vitamin D status and nutrition in Europe and Asia. J. Steroid Biochem. Mol. Biol. 2007;103:620–625. doi: 10.1016/j.jsbmb.2006.12.076. PubMed DOI

Farrokhyar F., Tabasinejad R., Dao D., Peterson D., Ayeni O.R., Hadioonzadeh R., Bhandari M. Prevalence of vitamin D inadequacy in athletes: A systematic-review and meta-analysis. Sports Med. 2015;45:365–378. doi: 10.1007/s40279-014-0267-6. PubMed DOI

Russo C., Valle M.S., Casabona A., Spicuzza L., Sambataro G., Malaguarnera L. Vitamin D Impacts on Skeletal Muscle Dysfunction in Patients with COPD Promoting Mitochondrial Health. Biomedicines. 2022;10:898. doi: 10.3390/biomedicines10040898. PubMed DOI PMC

Capiati D., Benassati S., Boland R.L. 1,25(OH)2-vitamin D3 induces translocation of the vitamin D receptor (VDR) to the plasma membrane in skeletal muscle cells. J. Cell. Biochem. 2002;86:128–135. doi: 10.1002/jcb.10191. PubMed DOI

Dhesi J.K., Bearne L.M., Moniz C., Hurley M.V., Jackson S.H., Swift C.G., Allain T.J. Neuromuscular and psychomotor function in elderly subjects who fall and the relationship with vitamin D status. J. Bone Miner. Res. 2002;17:891–897. doi: 10.1359/jbmr.2002.17.5.891. PubMed DOI

Costa E.M., Blau H.M., Feldman D. 1,25-dihydroxyvitamin D3 receptors and hormonal responses in cloned human skeletal muscle cells. Endocrinology. 1986;119:2214–2220. doi: 10.1210/endo-119-5-2214. PubMed DOI

Olsson K., Saini A., Stromberg A., Alam S., Lilja M., Rullman E., Gustafsson T. Evidence for Vitamin D Receptor Expression and Direct Effects of 1alpha,25(OH)2D3 in Human Skeletal Muscle Precursor Cells. Endocrinology. 2016;157:98–111. doi: 10.1210/en.2015-1685. PubMed DOI

Tomlinson P.B., Joseph C., Angioi M. Effects of vitamin D supplementation on upper and lower body muscle strength levels in healthy individuals. A systematic review with meta-analysis. J. Sci. Med. Sport. 2015;18:575–580. doi: 10.1016/j.jsams.2014.07.022. PubMed DOI

Ryan Z.C., Craig T.A., Folmes C.D., Wang X., Lanza I.R., Schaible N.S., Salisbury J.L., Nair K.S., Terzic A., Sieck G.C., et al. 1alpha,25-Dihydroxyvitamin D3 Regulates Mitochondrial Oxygen Consumption and Dynamics in Human Skeletal Muscle Cells. J. Biol. Chem. 2016;291:1514–1528. doi: 10.1074/jbc.M115.684399. PubMed DOI PMC

Beaudart C., Buckinx F., Rabenda V., Gillain S., Cavalier E., Slomian J., Petermans J., Reginster J.Y., Bruyere O. The effects of vitamin D on skeletal muscle strength, muscle mass, and muscle power: A systematic review and meta-analysis of randomized controlled trials. J. Clin. Endocrinol. Metab. 2014;99:4336–4345. doi: 10.1210/jc.2014-1742. PubMed DOI

Rowland S.N., Da Boit M., Tan R., Robinson G.P., O’Donnell E., James L.J., Bailey S.J. Dietary Nitrate Supplementation Enhances Performance and Speeds Muscle Deoxyhaemoglobin Kinetics during an End-Sprint after Prolonged Moderate-Intensity Exercise. Antioxidants. 2022;12:25. doi: 10.3390/antiox12010025. PubMed DOI PMC

Olek R.A., Ziemann E., Grzywacz T., Kujach S., Luszczyk M., Antosiewicz J., Laskowski R. A single oral intake of arginine does not affect performance during repeated Wingate anaerobic test. J. Sports Med. Phys. Fit. 2010;50:52–56. PubMed

Tain Y.L., Hsu C.N. Toxic Dimethylarginines: Asymmetric Dimethylarginine (ADMA) and Symmetric Dimethylarginine (SDMA) Toxins. 2017;9:92. doi: 10.3390/toxins9030092. PubMed DOI PMC

Palm F., Onozato M.L., Luo Z., Wilcox C.S. Dimethylarginine dimethylaminohydrolase (DDAH): Expression, regulation, and function in the cardiovascular and renal systems. Am. J. Physiol. Heart Circ. Physiol. 2007;293:H3227–H3245. doi: 10.1152/ajpheart.00998.2007. PubMed DOI

Dzik K., Skrobot W., Flis D.J., Karnia M., Libionka W., Kloc W., Kaczor J.J. Vitamin D supplementation attenuates oxidative stress in paraspinal skeletal muscles in patients with low back pain. Eur. J. Appl. Physiol. 2018;118:143–151. doi: 10.1007/s00421-017-3755-1. PubMed DOI

Tsuda Y., Yamaguchi M., Noma T., Okaya E., Itoh H. Combined Effect of Arginine, Valine, and Serine on Exercise-Induced Fatigue in Healthy Volunteers: A Randomized, Double-Blinded, Placebo-Controlled Crossover Study. Nutrients. 2019;11:862. doi: 10.3390/nu11040862. PubMed DOI PMC

Dohm G.L. Protein as a fuel for endurance exercise. Exerc. Sport Sci. Rev. 1986;14:143–173. doi: 10.1249/00003677-198600140-00008. PubMed DOI

Nyborg C., Bonnevie-Svendsen M., Melsom H.S., Melau J., Seljeflot I., Hisdal J. Reduced L-Arginine and L-Arginine-ADMA-Ratio, and Increased SDMA after Norseman Xtreme Triathlon. Sports. 2021;9:120. doi: 10.3390/sports9090120. PubMed DOI PMC

Dzik K.P., Skrobot W., Kaczor K.B., Flis D.J., Karnia M.J., Libionka W., Antosiewicz J., Kloc W., Kaczor J.J. Vitamin D Deficiency Is Associated with Muscle Atrophy and Reduced Mitochondrial Function in Patients with Chronic Low Back Pain. Oxid. Med. Cell. Longev. 2019;2019:6835341. doi: 10.1155/2019/6835341. PubMed DOI PMC

Bode-Boger S.M., Scalera F., Ignarro L.J. The L-arginine paradox: Importance of the L-arginine/asymmetrical dimethylarginine ratio. Pharmacol. Ther. 2007;114:295–306. doi: 10.1016/j.pharmthera.2007.03.002. PubMed DOI

Tsikas D. Urinary Dimethylamine (DMA) and Its Precursor Asymmetric Dimethylarginine (ADMA) in Clinical Medicine, in the Context of Nitric Oxide (NO) and Beyond. J. Clin. Med. 2020;9:1843. doi: 10.3390/jcm9061843. PubMed DOI PMC

Areces F., Gonzalez-Millan C., Salinero J.J., Abian-Vicen J., Lara B., Gallo-Salazar C., Ruiz-Vicente D., Del Coso J. Changes in Serum Free Amino Acids and Muscle Fatigue Experienced during a Half-Ironman Triathlon. PLoS ONE. 2015;10:e0138376. doi: 10.1371/journal.pone.0138376. PubMed DOI PMC

Mieszkowski J., Brzezinska P., Stankiewicz B., Kochanowicz A., Niespodzinski B., Reczkowicz J., Waldzinski T., Kacprzak B., Siuba-Jarosz N., Petr M., et al. Direct Effects of Vitamin D Supplementation on Ultramarathon-Induced Changes in Kynurenine Metabolism. Nutrients. 2022;14:4485. doi: 10.3390/nu14214485. PubMed DOI PMC

Yamamoto T., Newsholme E.A. The effect of tryptophan deficiency in the brain on rat fatigue levels: A rat model of fatigue reduction. Adv. Exp. Med. Biol. 2003;527:527–530. doi: 10.1007/978-1-4615-0135-0_60. PubMed DOI

Chaouloff F. Effects of acute physical exercise on central serotonergic systems. Med. Sci. Sports Exerc. 1997;29:58–62. doi: 10.1097/00005768-199701000-00009. PubMed DOI

Blomstrand E., Hassmen P., Ekblom B., Newsholme E.A. Administration of branched-chain amino acids during sustained exercise--effects on performance and on plasma concentration of some amino acids. Eur. J. Appl. Physiol. Occup. Physiol. 1991;63:83–88. doi: 10.1007/BF00235174. PubMed DOI

Spoto B., Parlongo R.M., Parlongo G., Sgro E., Zoccali C. The enzymatic machinery for ADMA synthesis and degradation is fully expressed in human adipocytes. J. Nephrol. 2007;20:554–559. PubMed

Wassner S.J., Li J.B., Sperduto A., Norman M.E. Vitamin D Deficiency, hypocalcemia, and increased skeletal muscle degradation in rats. J. Clin. Investig. 1983;72:102–112. doi: 10.1172/JCI110947. PubMed DOI PMC

Visser M., Deeg D.J., Lips P., Longitudinal Aging Study A. Low vitamin D and high parathyroid hormone levels as determinants of loss of muscle strength and muscle mass (sarcopenia): The Longitudinal Aging Study Amsterdam. J. Clin. Endocrinol. Metab. 2003;88:5766–5772. doi: 10.1210/jc.2003-030604. PubMed DOI

Cannell J.J., Hollis B.W., Sorenson M.B., Taft T.N., Anderson J.J. Athletic performance and vitamin D. Med. Sci. Sports Exerc. 2009;41:1102–1110. doi: 10.1249/MSS.0b013e3181930c2b. PubMed DOI

Ceglia L., Harris S.S. Vitamin D and its role in skeletal muscle. Calcif. Tissue Int. 2013;92:151–162. doi: 10.1007/s00223-012-9645-y. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...