• This record comes from PubMed

Direct Effects of Vitamin D Supplementation on Ultramarathon-Induced Changes in Kynurenine Metabolism

. 2022 Oct 25 ; 14 (21) : . [epub] 20221025

Language English Country Switzerland Media electronic

Document type Journal Article, Randomized Controlled Trial

Grant support
2020/37/B/NZ7/01794 National Science Center

In humans, most free tryptophan is degraded via kynurenine pathways into kynurenines. Kynurenines modulate the immune system, central nervous system, and skeletal muscle bioenergetics. Consequently, kynurenine pathway metabolites (KPMs) have been studied in the context of exercise. However, the effect of vitamin D supplementation on exercise-induced changes in KPMs has not been investigated. Here, we analyzed the effect of a single high-dose vitamin D supplementation on KPMs and tryptophan levels in runners after an ultramarathon. In the study, 35 amateur runners were assigned into two groups: vitamin D supplementation group, administered 150,000 IU vitamin D in vegetable oil 24 h before the run (n = 16); and control (placebo) group (n = 19). Blood was collected for analysis 24 h before, immediately after, and 24 h after the run. Kynurenic, xanthurenic, quinolinic, and picolinic acids levels were significantly increased after the run in the control group, but the effect was blunted by vitamin D supplementation. Conversely, the decrease in serum tryptophan, tyrosine, and phenylalanine levels immediately after the run was more pronounced in the supplemented group than in the control. The 3-hydroxy-l-kynurenine levels were significantly increased in both groups after the run. We conclude that vitamin D supplementation affects ultramarathon-induced changes in tryptophan metabolism.

See more in PubMed

Joisten N., Kummerhoff F., Koliamitra C., Schenk A., Walzik D., Hardt L., Knoop A., Thevis M., Kiesl D., Metcalfe A.J., et al. Exercise and the Kynurenine pathway: Current state of knowledge and results from a randomized cross-over study comparing acute effects of endurance and resistance training. Exerc. Immunol. Rev. 2020;26:24–42. PubMed

Kurgan S., Onder C., Balci N., Akdogan N., Altingoz S.M., Serdar M.A., Gunhan M. Influence of periodontal inflammation on tryptophan-kynurenine metabolism: A cross-sectional study. Clin. Oral Investig. 2022;26:5721–5732. doi: 10.1007/s00784-022-04528-4. PubMed DOI

Wang Q., Liu D., Song P., Zou M.H. Tryptophan-kynurenine pathway is dysregulated in inflammation, and immune activation. Front. Biosci. A J. Virtual Libr. 2015;20:1116–1143. PubMed PMC

Agudelo L.Z., Femenia T., Orhan F., Porsmyr-Palmertz M., Goiny M., Martinez-Redondo V., Correia J.C., Izadi M., Bhat M., Schuppe-Koistinen I., et al. Skeletal muscle PGC-1alpha1 modulates kynurenine metabolism and mediates resilience to stress-induced depression. Cell. 2014;159:33–45. doi: 10.1016/j.cell.2014.07.051. PubMed DOI

Agudelo L.Z., Ferreira D.M.S., Dadvar S., Cervenka I., Ketscher L., Izadi M., Zhengye L., Furrer R., Handschin C., Venckunas T., et al. Skeletal muscle PGC-1alpha1 reroutes kynurenine metabolism to increase energy efficiency and fatigue-resistance. Nat. Commun. 2019;10:2767. doi: 10.1038/s41467-019-10712-0. PubMed DOI PMC

Vecsei L., Szalardy L., Fulop F., Toldi J. Kynurenines in the CNS: Recent advances and new questions. Nat. Rev. Drug Discov. 2013;12:64–82. doi: 10.1038/nrd3793. PubMed DOI

Guillemin G.J. Quinolinic acid, the inescapable neurotoxin. FEBS J. 2012;279:1356–1365. doi: 10.1111/j.1742-4658.2012.08485.x. PubMed DOI

Campbell B.M., Charych E., Lee A.W., Moller T. Kynurenines in CNS disease: Regulation by inflammatory cytokines. Front. Neurosci. 2014;8:12. doi: 10.3389/fnins.2014.00012. PubMed DOI PMC

Martin K.S., Azzolini M., Lira Ruas J. The kynurenine connection: How exercise shifts muscle tryptophan metabolism and affects energy homeostasis, the immune system, and the brain. Am. J. Physiol. Cell Physiol. 2020;318:C818–C830. doi: 10.1152/ajpcell.00580.2019. PubMed DOI

Savitz J. The kynurenine pathway: A finger in every pie. Mol. Psychiatry. 2020;25:131–147. doi: 10.1038/s41380-019-0414-4. PubMed DOI PMC

Alves M.D.J., Silva D.D.S., Pereira E.V.M., Pereira D.D., de Sousa Fernandes M.S., Santos D.F.C., Oliveira D.P.M., Vieira-Souza L.M., Aidar F.J., de Souza R.F. Changes in Cytokines Concentration Following Long-Distance Running: A Systematic Review and Meta-Analysis. Front. Physiol. 2022;13:838069. doi: 10.3389/fphys.2022.838069. PubMed DOI PMC

Rudarli Nalcakan G., Onur E., Oran A., Varol S.R. Comparison of sprint interval and continuous endurance training on oxidative stress and antioxidant adaptations in young healthy adults. Balt. J. Health Phys. Act. 2021;13:27–35. doi: 10.29359/BJHPA.13.2.03. DOI

Petrus P., Cervantes M., Samad M., Sato T., Chao A., Sato S., Koronowski K.B., Park G., Alam Y., Mejhert N., et al. Tryptophan metabolism is a physiological integrator regulating circadian rhythms. Mol. Metab. 2022;64:29. doi: 10.1016/j.molmet.2022.101556. PubMed DOI PMC

Mieszkowski J., Borkowska A., Stankiewicz B., Kochanowicz A., Niespodzinski B., Surmiak M., Waldzinski T., Rola R., Petr M., Antosiewicz J. Single High-Dose Vitamin D Supplementation as an Approach for Reducing Ultramarathon-Induced Inflammation: A Double-Blind Randomized Controlled Trial. Nutrients. 2021;13:1280. doi: 10.3390/nu13041280. PubMed DOI PMC

Abushamma A.A. The Effects of Vitamin D Supplementation on Athletic Performance and Injury Prevention. J. Sport. Med. Allied Health Sci. Off. J. Ohio Athl. Train. Assoc. 2022;8:3. doi: 10.25035/jsmahs.08.02.03. DOI

Baciur P., Chmura A., Skowrońska K., Białas F., Kondel K. The role of Vitamin D in the prevention and treatment of inflammatory skin diseases—Atopic dermatitis and psoriasis—Literature review. J. Educ. Health Sport. 2022;12:1156–1163. doi: 10.12775/JEHS.2022.12.08.099. DOI

Sabir M.S., Haussler M.R., Mallick S., Kaneko I., Lucas D.A., Haussler C.A., Whitfield G.K., Jurutka P.W. Optimal vitamin D spurs serotonin: 1, 25-dihydroxyvitamin D represses serotonin reuptake transport (SERT) and degradation (MAO-A) gene expression in cultured rat serotonergic neuronal cell lines. Genes Nutr. 2018;13:19. doi: 10.1186/s12263-018-0605-7. PubMed DOI PMC

Weinhold M., Shimabukuro-Vornhagen A., Franke A., Theurich S., Wahl P., Hallek M., Schmidt A., Schinkothe T., Mester J., von Bergwelt-Baildon M., et al. Physical exercise modulates the homeostasis of human regulatory T cells. J. Allergy Clin. Immunol. 2016;137:1607–1610.e1608. doi: 10.1016/j.jaci.2015.10.035. PubMed DOI

Patrick R.P., Ames B.N. Vitamin D hormone regulates serotonin synthesis. Part 1: Relevance for autism. FASEB J. 2014;28:2398–2413. doi: 10.1096/fj.13-246546. PubMed DOI

Obara-Michlewska M. The tryptophan metabolism, kynurenine pathway and oxidative stress—Implications for glioma pathobiology. Neurochem. Int. 2022;158:3. doi: 10.1016/j.neuint.2022.105363. PubMed DOI

Isung J., Granqvist M., Trepci A., Huang J., Schwieler L., Kierkegaard M., Erhardt S., Jokinen J., Piehl F. Differential effects on blood and cerebrospinal fluid immune protein markers and kynurenine pathway metabolites from aerobic physical exercise in healthy subjects. Sci. Rep. 2021;11:1669. doi: 10.1038/s41598-021-81306-4. PubMed DOI PMC

Puigarnau S., Fernàndez A., Obis E., Jové M., Castañer M., Pamplona R., Portero-Otin M., Camerino O. Metabolomics reveals that fittest trail runners show a better adaptation of bioenergetic pathways. J. Sci. Med. Sport. 2022;25:425–431. doi: 10.1016/j.jsams.2021.12.006. PubMed DOI

Schlittler M., Goiny M., Agudelo L.Z., Venckunas T., Brazaitis M., Skurvydas A., Kamandulis S., Ruas J.L., Erhardt S., Westerblad H., et al. Endurance exercise increases skeletal muscle kynurenine aminotransferases and plasma kynurenic acid in humans. Am. J. Physiol. Cell Physiol. 2016;310:C836–C840. doi: 10.1152/ajpcell.00053.2016. PubMed DOI

Mudry J.M., Alm P.S., Erhardt S., Goiny M., Fritz T., Caidahl K., Zierath J.R., Krook A., Wallberg-Henriksson H. Direct effects of exercise on kynurenine metabolism in people with normal glucose tolerance or type 2 diabetes. Diabetes Metab. Res. Rev. 2016;32:754–761. doi: 10.1002/dmrr.2798. PubMed DOI

Dzik K.P., Skrobot W., Kaczor K.B., Flis D.J., Karnia M.J., Libionka W., Antosiewicz J., Kloc W., Kaczor J.J. Vitamin D Deficiency Is Associated with Muscle Atrophy and Reduced Mitochondrial Function in Patients with Chronic Low Back Pain. Oxidative Med. Cell. Longev. 2019;2019:6835341. doi: 10.1155/2019/6835341. PubMed DOI PMC

Louis E., Raue U., Yang Y., Jemiolo B., Trappe S. Time course of proteolytic, cytokine, and myostatin gene expression after acute exercise in human skeletal muscle. J. Appl. Physiol. 2007;103:1744–1751. doi: 10.1152/japplphysiol.00679.2007. PubMed DOI

Shirey K.A., Jung J.Y., Maeder G.S., Carlin J.M. Upregulation of IFN-gamma receptor expression by proinflammatory cytokines influences IDO activation in epithelial cells. J. Interf. Cytokine Res. 2006;26:53–62. doi: 10.1089/jir.2006.26.53. PubMed DOI PMC

Pardridge W.M. Blood-brain barrier carrier-mediated transport and brain metabolism of amino acids. Neurochem. Res. 1998;23:635–644. doi: 10.1023/A:1022482604276. PubMed DOI

Cordeiro L.M.S., Rabelo P.C.R., Moraes M.M., Teixeira-Coelho F., Coimbra C.C., Wanner S.P., Soares D.D. Physical exercise-induced fatigue: The role of serotonergic and dopaminergic systems. Braz. J. Med. Biol. Res. 2017;50:e6432. doi: 10.1590/1414-431x20176432. PubMed DOI PMC

Yamamoto T., Newsholme E.A. The effect of tryptophan deficiency in the brain on rat fatigue levels: A rat model of fatigue reduction. Adv. Exp. Med. Biol. 2003;527:527–530. doi: 10.1007/978-1-4615-0135-0_60. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...