Flavodiiron protein from Trichomonas vaginalis hydrogenosomes: the terminal oxygen reductase
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
19011120
PubMed Central
PMC2620750
DOI
10.1128/ec.00276-08
PII: EC.00276-08
Knihovny.cz E-zdroje
- MeSH
- ferredoxiny chemie genetika izolace a purifikace metabolismus MeSH
- flavinmononukleotid metabolismus MeSH
- kyslík metabolismus MeSH
- molekulární sekvence - údaje MeSH
- organely chemie enzymologie genetika MeSH
- oxidoreduktasy chemie genetika izolace a purifikace metabolismus MeSH
- protozoální proteiny chemie genetika izolace a purifikace metabolismus MeSH
- sekvence aminokyselin MeSH
- substrátová specifita MeSH
- Trichomonas vaginalis chemie enzymologie genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ferredoxiny MeSH
- flavinmononukleotid MeSH
- kyslík MeSH
- oxidoreduktasy MeSH
- protozoální proteiny MeSH
Trichomonas vaginalis is one of a few eukaryotes that have been found to encode several homologues of flavodiiron proteins (FDPs). Widespread among anaerobic prokaryotes, these proteins are believed to function as oxygen and/or nitric oxide reductases to provide protection against oxidative/nitrosative stresses and host immune responses. One of the T. vaginalis FDP homologues is equipped with a hydrogenosomal targeting sequence and is expressed in the hydrogenosomes, oxygen-sensitive organelles that participate in carbohydrate metabolism and assemble iron-sulfur clusters. The bacterial homologues characterized thus far have been dimers or tetramers; the trichomonad protein is a dimer of identical 45-kDa subunits, each noncovalently binding one flavin mononucleotide. The protein reduces dioxygen to water but is unable to utilize nitric oxide as a substrate, similarly to its closest homologue from another human parasite Giardia intestinalis and related archaebacterial proteins. T. vaginalis FDP is able to accept electrons derived from pyruvate or NADH via ferredoxin and is proposed to play a role in the protection of hydrogenosomes against oxygen.
Zobrazit více v PubMed
Andersson, J. O., R. P. Hirt, P. G. Foster, and A. J. Roger. 2006. Evolution of four gene families with patchy phylogenetic distributions: influx of genes into protist genomes. BMC Evol. Biol. 627. PubMed PMC
Andersson, J. O., A. M. Sjogren, L. A. M. Davis, T. M. Embley, and A. J. Roger. 2003. Phylogenetic analyses of diplomonad genes reveal frequent lateral gene transfers affecting eukaryotes. Curr. Biol. 1394-104. PubMed
Bradley, P. J., C. J. Lahti, E. Plümper, and P. J. Johnson. 1997. Targeting and translocation of proteins into the hydrogenosome of the protist Trichomonas: similarities with mitochondrial protein import. EMBO J. 163484-3493. PubMed PMC
Brown, M. T., H. M. H. Goldstone, F. Bastida-Corcuera, M. G. Gadillo-Correa, A. G. McArthur, and P. J. Johnson. 2007. A functionally divergent hydrogenosomal peptidase with protomitochondrial ancestry. Mol. Microbiol. 641154-1163. PubMed
Carlton, J. M., R. P. Hirt, J. C. Silva, A. L. Delcher, M. Schatz, Q. Zhao, J. R. Wortman, S. L. Bidwell, U. C. M. Alsmark, S. Besteiro, T. Sicheritz-Ponten, C. J. Noel, J. B. Dacks, P. G. Foster, C. Simillion, Y. Van de Peer, D. Miranda-Saavedra, G. J. Barton, G. D. Westrop, S. Müller, D. Dessi, P. L. Fiori, Q. H. Ren, I. Paulsen, H. B. Zhang, F. D. Bastida-Corcuera, A. Simoes-Barbosa, M. T. Brown, R. D. Hayes, M. Mukherjee, C. Y. Okumura, R. Schneider, A. J. Smith, S. Vanacova, M. Villalvazo, B. J. Haas, M. Pertea, T. V. Feldblyum, T. R. Utterback, C. L. Shu, K. Osoegawa, P. J. D. Jong, I. Hrdy, L. Horvathova, Z. Zubacova, L. Horvathova, S. B. Malik, J. M. Logsdon, K. Henze, A. Gupta, C. C. Wang, R. L. Dunne, J. A. Upcroft, P. Upcroft, O. White, S. L. Salzberg, P. Tang, C. H. Chiu, Y. S. Lee, T. M. Embley, G. H. Coombs, J. C. Mottram, J. Tachezy, C. M. Fraser-Liggett, and P. J. Johnson. 2007. Draft genome sequence of the sexually transmitted pathogen Trichomonas vaginalis. Science 315207-212. PubMed PMC
Cerkasov, J., A. Cerkasovova, J. Kulda, and D. Vilhelmova. 1978. Respiration of hydrogenosomes of Tritrichomonas foetus. 1. Adp-dependent oxidation of malate and pyruvate. J. Biol. Chem. 2531207-1214. PubMed
Chapman, A., D. J. Linstead, and D. Lloyd. 1999. Hydrogen peroxide is a product of oxygen consumption by Trichomonas vaginalis. J. Biosci. 24339-344.
Chapman, A., D. J. Linstead, D. Lloyd, and J. Williams. 1985. C-13-NMR reveals glycerol as an unexpected major metabolite of the protozoan parasite Trichomonas vaginalis. FEBS Lett. 191287-292. PubMed
Chen, L., M. Y. Liu, J. LeGall, P. Fareleira, H. Santos, and A. V. Xavier. 1993. Purification and characterization of an NADH-rubredoxin oxidoreductase involved in the utilization of oxygen by Desulfovibrio gigas. Eur. J. Biochem. 216443-448. PubMed
Chen, L., M. Y. Liu, J. LeGall, P. Fareleira, H. Santos, and A. V. Xavier. 1993. Rubredoxin oxidase, a new flavo-hemo-protein, is the site of oxygen reduction to water by the strict anaerobe Desulfovibrio gigas. Biochem. Biophys. Res. Commun. 193100-105. PubMed
Coombs, G. H., G. D. Westrop, P. Suchan, G. Puzova, R. P. Hirt, T. M. Embley, J. C. Mottram, and S. Müller. 2004. The amitochondriate eukaryote Trichomonas vaginalis contains a divergent thioredoxin-linked peroxiredoxin antioxidant system. J. Biol. Chem. 2795249-5256. PubMed
Delgadillo, M. G., D. R. Liston, K. Niazi, and P. J. Johnson. 1997. Transient and selectable transformation of the parasitic protist Trichomonas vaginalis. Proc. Natl. Acad. Sci. USA 944716-4720. PubMed PMC
Di Matteo, A., F. M. Scandurra, F. Testa, E. Forte, P. Sarti, M. Brunori, and A. Giuffre. 2008. The O2-scavenging flavodiiron protein in the human parasite Giardia intestinalis. J. Biol. Chem. 2834061-4068. PubMed
Dolezal, P., O. Smid, P. Rada, Z. Zubacova, D. Bursac, R. Sutak, J. Nebesarova, T. Lithgow, and J. Tachezy. 2005. Giardia mitosomes and trichomonad hydrogenosomes share a common mode of protein targeting. Proc. Natl. Acad. Sci. USA 10210924-10929. PubMed PMC
Drmota, T., P. Proost, M. VanRanst, F. Weyda, J. Kulda, and J. Tachezy. 1996. Iron-ascorbate cleavable malic enzyme from hydrogenosomes of Trichomonas vaginalis: purification and characterization. Mol. Biochem. Parasitol. 83221-234. PubMed
Dyall, S. D., W. H. Yan, M. G. gadillo-Correa, A. Lunceford, J. A. Loo, C. F. Clarke, and P. J. Johnson. 2004. Non-mitochondrial complex I proteins in a hydrogenosomal oxidoreductase complex. Nature 4311103-1107. PubMed
Ellis, J. E., N. Yarlett, D. Cole, M. J. Humphreys, and D. Lloyd. 1994. Antioxidant defenses in the microaerophilic protozoan Trichomonas vaginalis: comparison of metronidazole-resistant and sensitive strains. Microbiol. SGM 1402489-2494. PubMed
Fischer, D. S., and D. C. Price. 1964. Simple serum iron method using new sensitive chromogen tripyridyl-S-triazine. Clin. Chem. 1021-31. PubMed
Frazao, C., G. Silva, C. M. Gomes, P. Matias, R. Coelho, L. Sieker, S. Macedo, M. Y. Liu, S. Oliveira, M. Teixeira, A. V. Xavier, C. Rodrigues-Pousada, M. A. Carrondo, and J. Le Gall. 2000. Structure of a dioxygen reduction enzyme from Desulfovibrio gigas. Nat. Struct. Biol. 71041-1045. PubMed
Gardner, A. M., R. A. Helmick, and P. R. Gardner. 2002. Flavorubredoxin, an inducible catalyst for nitric oxide reduction and detoxification Escherichia coli. J. Biol. Chem. 2778172-8177. PubMed
Gomes, C. M., A. Giuffre, E. Forte, J. B. Vicente, L. M. Saraiva, M. Brunori, and M. Teixeira. 2002. A novel type of nitric-oxide reductase: Escherichia coli flavorubredoxin. J. Biol. Chem. 27725273-25276. PubMed
Gomes, C. M., G. Silva, S. Oliveira, J. LeGall, M. Y. Liu, A. V. Xavier, C. Rodrigues-Pousada, and M. Teixeira. 1997. Studies on the redox centers of the terminal oxidase from Desulfovibrio gigas and evidence for its interaction with rubredoxin. J. Biol. Chem. 27222502-22508. PubMed
Hampl, V., D. S. Horner, P. Dyal, J. Kulda, J. Flegr, P. G. Foster, and T. M. Embley. 2005. Inference of the phylogenetic position of oxymonads based on nine genes: support for Metamonada and Excavata. Mol. Biol. Evol. 222508-2518. PubMed
Hrdy, I., R. Cammack, P. Stopka, J. Kulda, and J. Tachezy. 2005. Alternative pathway of metronidazole activation in Trichomonas vaginalis hydrogenosomes. Antimicrob. Agents Chemother. 495033-5036. PubMed PMC
Hrdy, I., R. P. Hirt, P. Dolezal, L. Bardonova, P. G. Foster, J. Tachezy, and T. M. Embley. 2004. Trichomonas hydrogenosomes contain the NADH dehydrogenase module of mitochondrial complex I. Nature 432618-622. PubMed
Hrdy, I., and M. Müller. 1995. Primary structure and eubacterial relationships of the pyruvate, ferredoxin oxidoreductase of the amitochondriate eukaryote Trichomonas vaginalis. J. Mol. Evol. 41388-396. PubMed
Hrdy, I., and M. Müller. 1995. Primary structure of the hydrogenosomal malic enzyme of Trichomonas vaginalis and its relationship to homologous enzymes. J. Eukaryot. Microbiol. 42593-603. PubMed
Hrdy, I., J. Tachezy, and M. Müller. 2008. Metabolism of trichomonad hydrogenosomes, p. 113-145. In J. Tachezy (ed.), Hydrogenosomes and mitosomes: mitochondria of anaerobic eukaryotes, vol. 9. Springer, New York, NY.
Lindmark, D. G., and M. Müller. 1973. Hydrogenosome, a cytoplasmic organelle of anaerobic flagellate Tritrichomonas foetus, and its role in pyruvate metabolism. J. Biol. Chem. 2487724-7728. PubMed
Lindmark, D. G., and M. Müller. 1974. Superoxide-dismutase in anaerobic flagellates, Tritrichomonas foetus, and Monocercomonas sp. J. Biol. Chem. 2494634-4637. PubMed
Linstead, D. J., and S. Bradley. 1988. The purification and properties of 2 soluble reduced nicotinamide-acceptor oxidoreductases from Trichomonas vaginalis. Mol. Biochem. Parasitol. 27125-134. PubMed
Lloyd, D., and B. Kristensen. 1985. Metronidazole inhibition of hydrogen-production in vivo in drug-sensitive and resistant strains of Trichomonas vaginalis. J. Gen. Microbiol. 131849-853. PubMed
Loftus, B., I. Anderson, R. Davies, U. C. M. Alsmark, J. Samuelson, P. Amedeo, P. Roncaglia, M. Berriman, R. P. Hirt, B. J. Mann, T. Nozaki, B. Suh, M. Pop, M. Duchene, J. Ackers, E. Tannich, M. Leippe, M. Hofer, I. Bruchhaus, U. Willhoeft, A. Bhattacharya, T. Chillingworth, C. Churcher, Z. Hance, B. Harris, D. Harris, K. Jagels, S. Moule, K. Mungall, D. Ormond, R. Squares, S. Whitehead, M. A. Quail, E. Rabbinowitsch, H. Norbertczak, C. Price, Z. Wang, N. Guillen, C. Gilchrist, S. E. Stroup, S. Bhattacharya, A. Lohia, P. G. Foster, T. Sicheritz-Ponten, C. Weber, U. Singh, C. Mukherjee, N. M. El-Sayed, W. A. Petri, C. G. Clark, T. M. Embley, B. Barrell, C. M. Fraser, and N. Hall. 2005. The genome of the protist parasite Entamoeba histolytica. Nature 433865-868. PubMed
Lowry, O. H., N. J. Rosebrough, A. L. Farr, and R. J. Randall. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193265-275. PubMed
Mertens, E., and M. Müller. 1990. Glucokinase and fructokinase of Trichomonas vaginalis and Tritrichomonas foetus. J. Protozool. 37384-388. PubMed
Müller, M. 1993. The hydrogenosome. J. Gen. Microbiol. 1392879-2889. PubMed
Nittler, M. P., D. Hocking-Murray, C. K. Foo, and A. Sil. 2005. Identification of Histoplasma capsulatum transcripts induced in response to reactive nitrogen species. Mol. Biol. Cell 164792-4813. PubMed PMC
Petrin, D., K. Delgaty, R. Bhatt, and G. Garber. 1998. Clinical and microbiological aspects of Trichomonas vaginalis. Clin. Microbiol. Rev. 11300-317. PubMed PMC
Pütz, S., G. Gelius-Dietrich, M. Piotrowski, and K. Henze. 2005. Rubrerythrin and peroxiredoxin: two novel putative peroxidases in the hydrogenosomes of the microaerophilic protozoon Trichomonas vaginalis. Mol. Biochem. Parasitol. 142212-223. PubMed
Rodrigues, R., J. B. Vicente, R. Felix, S. Oliveira, M. Teixeira, and C. Rodrigues-Pousada. 2006. Desulfovibrio gigas flavodiiron protein affords protection against nitrosative stress in vivo. J. Bacteriol. 1882745-2751. PubMed PMC
Saraiva, L. M., J. B. Vicente, and M. Teixeira. 2004. The role of the flavodiiron proteins in microbial nitric oxide detoxification. Adv. Microb. Physiol. 4977-129. PubMed
Sarti, P., P. L. Fiori, E. Forte, P. Rappelli, M. Teixeira, D. Mastronicola, G. Sanciu, A. Giuffre, and M. Brunori. 2004. Trichomonas vaginalis degrades nitric oxide and expresses a flavorubredoxin-like protein: a new pathogenic mechanism? Cell Mol. Life Sci. 61618-623. PubMed PMC
Seedorf, H., A. Dreisbach, R. Hedderich, S. Shima, and R. K. Thauer. 2004. F420H2 oxidase (FprA) from Methanobrevibacter arboriphilus, a coenzyme F-420-dependent enzyme involved in O2 detoxification. Arch. Microbiol. 182126-137. PubMed
Seedorf, H., C. H. Hagemeier, S. Shima, R. K. Thauer, E. Warkentin, and U. Ermler. 2007. Structure of coenzyme F420H2 oxidase (FprA), a di-iron flavoprotein from methanogenic Archaea catalyzing the reduction of O2 to H2O. FEBS J. 2741588-1599. PubMed
Silaghi-Dumitrescu, R., E. D. Coulter, A. Das, L. G. Ljungdahl, G. N. L. Jameson, B. H. Huynh, and D. M. Kurtz. 2003. A flavodiiron protein and high molecular weight rubredoxin from Moorella thermoacetica with nitric oxide reductase activity. Biochemistry 422806-2815. PubMed
Silaghi-Dumitrescu, R., K. Y. Ng, R. Viswanathan, and D. M. Kurtz. 2005. A flavo-diiron protein from Desulfovibrio vulgaris with oxidase and nitric oxide reductase activities: evidence for an in vivo nitric oxide scavenging function. Biochemistry 443572-3579. PubMed
Steinbüchel, A., and M. Müller. 1986. Anaerobic pyruvate metabolism of Tritrichomonas foetus and Trichomonas vaginalis hydrogenosomes. Mol. Biochem. Parasitol. 2057-65. PubMed
Steinbüchel, A., and M. Müller. 1986. Glycerol, A Metabolic end-product of Trichomonas vaginalis and Tritrichomonas foetus. Mol. Biochem. Parasitol. 2045-55. PubMed
Sutak, R., P. Dolezal, H. L. Fiumera, I. Hrdy, A. Dancis, M. Delgadillo-Correa, P. J. Johnson, M. Müller, and J. Tachezy. 2004. Mitochondrial-type assembly of FeS centers in the hydrogenosomes of the amitochondriate eukaryote Trichomonas vaginalis. Proc. Natl. Acad. Sci. USA 10110368-10373. PubMed PMC
Vicente, J. B., M. C. Justino, V. L. Goncalves, L. M. Saraiva, and M. Teixeira. 2008. Biochemical, spectroscopic, and thermodynamic properties of flavodiiron proteins. Methods Enzymol. 43721-45. PubMed
Vicente, J. B., and M. Teixeira. 2005. Redox and spectroscopic properties of the Escherichia coli nitric oxide-detoxifying system involving flavorubredoxin and its NADH-oxidizing redox partner. J. Biol. Chem. 28034599-34608. PubMed
Vidakovic, M. S., G. Fraczkiewicz, and J. P. Germanas. 1996. Expression and spectroscopic characterization of the hydrogenosomal [2Fe-2S] ferredoxin from the protozoan Trichomonas vaginalis. J. Biol. Chem. 27114734-14739. PubMed
Vondruskova, E., J. van den Burg, A. Zikova, N. L. Ernst, K. Stuart, R. Benne, and J. Lukes. 2005. RNA interference analyses suggest a transcript-specific regulatory role for mitochondrial RNA-binding proteins MRP1 and MRP2 in RNA editing and other RNA processing in Trypanosoma brucei. J. Biol. Chem. 2802429-2438. PubMed
Wasserfallen, A., S. Ragettli, Y. Jouanneau, and T. Leisinger. 1998. A family of flavoproteins in the domains Archaea and Bacteria. Eur. J. Biochem. 254325-332. PubMed
Wolff, S. P. 1994. Ferrous ion oxidation in presence of ferric ion indicator xylenol orange for measurement of hydroperoxides. Methods Enzymol. 233182-189.
Novel functions of an iron-sulfur flavoprotein from Trichomonas vaginalis hydrogenosomes
Giardia intestinalis incorporates heme into cytosolic cytochrome b₅
Iron-induced changes in the proteome of Trichomonas vaginalis hydrogenosomes
Live imaging of mitosomes and hydrogenosomes by HaloTag technology