Alternative pathway of metronidazole activation in Trichomonas vaginalis hydrogenosomes
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
16304169
PubMed Central
PMC1315937
DOI
10.1128/aac.49.12.5033-5036.2005
PII: 49/12/5033
Knihovny.cz E-zdroje
- MeSH
- antitrichomonádové látky metabolismus farmakologie MeSH
- léková rezistence fyziologie MeSH
- metronidazol metabolismus farmakologie MeSH
- organely enzymologie metabolismus MeSH
- Trichomonas vaginalis účinky léků růst a vývoj MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antitrichomonádové látky MeSH
- metronidazol MeSH
Metronidazole and related 5-nitroimidazoles are the only available drugs in the treatment of human urogenital trichomoniasis caused by the protozoan parasite Trichomonas vaginalis. The drugs are activated to cytotoxic anion radicals by their reduction within the hydrogenosomes. It has been established that electrons required for metronidazole activation are released from pyruvate by the activity of pyruvate:ferredoxin oxidoreductase and transferred to the drug by a low-redox-potential carrier, ferredoxin. Here we describe a novel pathway involved in the drug activation within the hydrogenosome. The source of electrons is malate, another major hydrogenosomal substrate, which is oxidatively decarboxylated to pyruvate and CO2 by NAD-dependent malic enzyme. The electrons released during this reaction are transferred from NADH to ferredoxin by NADH dehydrogenase homologous to the catalytic module of mitochondrial complex I, which uses ferredoxin as electron acceptor. Trichomonads acquire high-level metronidazole resistance only after both pyruvate- and malate-dependent pathways of metronidazole activation are eliminated from the hydrogenosomes.
Zobrazit více v PubMed
Cerkasovova, A., J. Cerkasov, and J. Kulda. 1984. Metabolic differences between metronidazole resistant and susceptible strains of Tritrichomonas foetus. Mol. Biochem. Parasitol. 11:105-118. PubMed
Chapman, A., R. Cammack, D. Linstead, and D. Lloyd. 1985. The generation of metronidazole radicals in hydrogenosomes isolated from Trichomonas vaginalis. J. Gen. Microbiol. 131:2141-2144. PubMed
Clark, C. G., and L. S. Diamond. 2002. Methods for cultivation of luminal parasitic protists of clinical importance. Clin. Microbiol. Rev. 15:329-341. PubMed PMC
Drmota, T., P. Proost, R. M. Van, F. Weyda, J. Kulda, and J. Tachezy. 1996. Iron-ascorbate cleavable malic enzyme from hydrogenosomes of Trichomonas vaginalis: purification and characterization. Mol. Biochem. Parasitol. 83:221-234. PubMed
Edwards, D. I. 1993. Nitroimidazole drugs—action and resistance mechanisms. II. Mechanisms of resistance. J. Antimicrob. Chemother. 31:201-210. PubMed
Hrdy, I., R. P. Hirt, P. Dolezal, L. Bardonova, P. G. Foster, J. Tachezy, and T. M. Embley. 2004. Trichomonas hydrogenosomes contain the NADH dehydrogenase module of mitochondrial complex I. Nature 432:618-622. PubMed
Kulda, J. 1999. Trichomonads, hydrogenosomes and drug resistance. Int. J. Parasitol. 29:199-212. PubMed
Kulda, J., J. Tachezy, and A. Cerkasovova. 1993. In vitro induced anaerobic resistance to metronidazole in Trichomonas vaginalis. J. Eukaryot. Microbiol. 40:262-269. PubMed
Kulda, J., M. Vojtechovska, J. Tachezy, P. Demes, and E. Kunzova. 1982. Metronidazole resistance of Trichomonas vaginalis as a cause of treatment failure in trichomoniasis—a case report. Br. J. Vener. Dis. 58:394-399. PubMed PMC
Land, K. M., M. G. Gadillo-Correa, J. Tachezy, S. Vanacova, C. L. Hsieh, R. Sutak, and P. J. Johnson. 2004. Targeted gene replacement of a ferredoxin gene in Trichomonas vaginalis does not lead to metronidazole resistance. Mol. Microbiol. 51:115-122. PubMed
Lindmark, D. G., and M. Muller. 1976. Antitrichomonad action, mutagenicity, and reduction of metronidazole and other nitroimidazoles. Antimicrob. Agents Chemother. 10:476-482. PubMed PMC
Marczak, R., T. E. Gorrell, and M. Muller. 1983. Hydrogenosomal ferredoxin of the anaerobic protozoon, Tritrichomonas foetus. J. Biol. Chem. 258:12427-12433. PubMed
Moreno, S. N., R. P. Mason, and R. Docampo. 1984. Distinct reduction of nitrofurans and metronidazole to free radical metabolites by Tritrichomonas foetus hydrogenosomal and cytosolic enzymes. J. Biol. Chem. 259:8252-8259. PubMed
Muller, M. 1986. Reductive activation of nitroimidazoles in anaerobic microorganisms. Biochem. Pharmacol. 35:37-41. PubMed
Muller, M. 1993. The hydrogenosome. J. Gen. Microbiol. 139:2879-2889. PubMed
Quon, D. V., C. E. d'Oliveira, and P. J. Johnson. 1992. Reduced transcription of the ferredoxin gene in metronidazole-resistant Trichomonas vaginalis. Proc. Natl. Acad. Sci. USA 89:4402-4406. PubMed PMC
Rasoloson, D., S. Vanacova, E. Tomkova, J. Razga, I. Hrdy, J. Tachezy, and J. Kulda. 2002. Mechanisms of in vitro development of resistance to metronidazole in Trichomonas vaginalis. Microbiology 148:2467-2477. PubMed
Steinbuchel, A., and M. Muller. 1986. Anaerobic pyruvate metabolism of Tritrichomonas foetus and Trichomonas vaginalis hydrogenosomes. Mol. Biochem. Parasitol. 20:57-65. PubMed
Sutak, R., P. Dolezal, H. L. Fiumera, I. Hrdy, A. Dancis, M. Gadillo-Correa, P. J. Johnson, M. Muller, and J. Tachezy. 2004. Mitochondrial-type assembly of FeS centers in the hydrogenosomes of the amitochondriate eukaryote Trichomonas vaginalis. Proc. Natl. Acad. Sci. USA 101:10368-10373. PubMed PMC
Thong, K. W., and G. H. Coombs. 1987. Comparative study of ferredoxin-linked and oxygen-metabolizing enzymes of trichomonads. Comp. Biochem. Physiol. B 87:637-641. PubMed
Vidakovic, M., C. R. Crossnoe, C. Neidre, K. Kim, K. L. Krause, and J. P. Germanas. 2003. Reactivity of reduced [2Fe-2S] ferredoxins parallels host susceptibility to nitroimidazoles. Antimicrob. Agents Chemother. 47:302-308. PubMed PMC