Giardia intestinalis incorporates heme into cytosolic cytochrome b₅
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
24297440
PubMed Central
PMC3910980
DOI
10.1128/ec.00200-13
PII: EC.00200-13
Knihovny.cz E-zdroje
- MeSH
- cytochromy b5 chemie metabolismus MeSH
- cytoplazma metabolismus MeSH
- Giardia chemie metabolismus MeSH
- hem metabolismus MeSH
- molekulární sekvence - údaje MeSH
- protozoální proteiny chemie metabolismus MeSH
- sekvence aminokyselin MeSH
- transport proteinů MeSH
- vazba proteinů MeSH
- vazebná místa MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cytochromy b5 MeSH
- hem MeSH
- protozoální proteiny MeSH
The anaerobic intestinal pathogen Giardia intestinalis does not possess enzymes for heme synthesis, and it also lacks the typical set of hemoproteins that are involved in mitochondrial respiration and cellular oxygen stress management. Nevertheless, G. intestinalis may require heme for the function of particular hemoproteins, such as cytochrome b5 (cytb5). We have analyzed the sequences of eukaryotic cytb5 proteins and identified three distinct cytb5 groups: group I, which consists of C-tail membrane-anchored cytb5 proteins; group II, which includes soluble cytb5 proteins; and group III, which comprises the fungal cytb5 proteins. The majority of eukaryotes possess both group I and II cytb5 proteins, whereas three Giardia paralogs belong to group II. We have identified a fourth Giardia cytb5 paralog (gCYTb5-IV) that is rather divergent and possesses an unusual 134-residue N-terminal extension. Recombinant Giardia cytb5 proteins, including gCYTb5-IV, were expressed in Escherichia coli and exhibited characteristic UV-visible spectra that corresponded to heme-loaded cytb5 proteins. The expression of the recombinant gCYTb5-IV in G. intestinalis resulted in the increased import of extracellular heme and its incorporation into the protein, whereas this effect was not observed when gCYTb5-IV containing a mutated heme-binding site was expressed. The electrons for Giardia cytb5 proteins may be provided by the NADPH-dependent Tah18-like oxidoreductase GiOR-1. Therefore, GiOR-1 and cytb5 may constitute a novel redox system in G. intestinalis. To our knowledge, G. intestinalis is the first anaerobic eukaryote in which the presence of heme has been directly demonstrated.
Zobrazit více v PubMed
Green J, Crack JC, Thomson AJ, Lebrun NE. 2009. Bacterial sensors of oxygen. Curr. Opin. Microbiol. 12:145–151. 10.1016/j.mib.2009.01.008 PubMed DOI
Poole RK, Hughes MN. 2000. New functions for the ancient globin family: bacterial responses to nitric oxide and nitrosative stress. Mol. Microbiol. 36:775–783. 10.1046/j.1365-2958.2000.01889.x PubMed DOI
Koreny L, Sobotka R, Janouskovec J, Keeling PJ, Obornik M. 2011. Tetrapyrrole synthesis of photosynthetic chromerids is likely homologous to the unusual pathway of apicomplexan parasites. Plant Cell 23:3454–3462. 10.1105/tpc.111.089102 PubMed DOI PMC
Koreny L, Lukeš J, Obornik M. 2010. Evolution of the haem synthetic pathway in kinetoplastid flagellates: an essential pathway that is not essential after all? Int. J. Parasitol. 40:149–156. 10.1016/j.ijpara.2009.11.007 PubMed DOI
Rao AU, Carta LK, Lesuisse E, Hamza I. 2005. Lack of heme synthesis in a free-living eukaryote. Proc. Natl. Acad. Sci. U. S. A. 102:4270–4275. 10.1073/pnas.0500877102 PubMed DOI PMC
Lara FA, Lins U, Bechara GH, Oliveira PL. 2005. Tracing heme in a living cell: hemoglobin degradation and heme traffic in digest cells of the cattle tick Boophilus microplus. J. Exp. Biol. 208:3093–3101. 10.1242/jeb.01749 PubMed DOI
Jedelsky PL, Dolezal P, Rada P, Pyrih J, Smid O, Hrdy I, Sedinova M, Marcincikova M, Voleman L, Perry AJ, Beltran NC, Lithgow T, Tachezy J. 2011. The minimal proteome in the reduced mitochondrion of the parasitic protist Giardia intestinalis. PLoS One 6:e17285. 10.1371/journal.pone.0017285 PubMed DOI PMC
Rada P, Dolezal P, Jedelsky PL, Bursac D, Perry AJ, Sedinova M, Smiskova K, Novotny M, Beltran NC, Hrdy I, Lithgow T, Tachezy J. 2011. The core components of organelle biogenesis and membrane transport in the hydrogenosomes of Trichomonas vaginalis. PLoS One 6:e24428. 10.1371/journal.pone.0024428 PubMed DOI PMC
Coombs GH, Westrop GD, Suchan P, Puzova G, Hirt RP, Embley TM, Mottram JC, Müller S. 2004. The amitochondriate eukaryote Trichomonas vaginalis contains a divergent thioredoxin-linked peroxiredoxin antioxidant system. J. Biol. Chem. 279:5249–5256. 10.1074/jbc.M304359200 PubMed DOI
Nixon JEJ, Wang A, Field J, Morrison HG, McArthur AG, Sogin ML, Loftus BJ, Samuelson J. 2002. Evidence for lateral transfer of genes encoding ferredoxins, nitroreductases, NADH oxidase, and alcohol dehydrogenase 3 from anaerobic prokaryotes to Giardia lamblia and Entamoeba histolytica. Eukaryot. Cell 1:181–190. 10.1128/EC.1.2.181-190.2002 PubMed DOI PMC
Smutna T, Goncalves VL, Saraiva LM, Tachezy J, Teixeira M, Hrdy I. 2009. Flavodiiron protein from Trichomonas vaginalis hydrogenosomes: the terminal oxygen reductase. Eukaryot. Cell 8:47–55. 10.1128/EC.00276-08 PubMed DOI PMC
Lindmark DG. 1980. Energy metabolism of the anaerobic protozoon Giardia lamblia. Mol. Biochem. Parasitol. 1:1–12 PubMed
Koreny L, Obornik M, Lukeš J. 2013. Make it, take it, or leave it: heme metabolism of parasites. PLoS Pathog. 9:e1003088. 10.1371/journal.ppat.1003088 PubMed DOI PMC
Nakanishi N, Takeuchi F, Okamoto H, Tamura A, Hori H, Tsubaki M. 2006. Characterization of heme-coordinating histidyl residues of cytochrome b5 based on the reactivity with diethylpyrocarbonate: a mechanism for the opening of axial imidazole rings. J. Biochem. 140:561–571. 10.1093/jb/mvj189 PubMed DOI
Alam S, Yee J, Couture M, Takayama SJ, Tseng WH, Mauk AG, Rafferty S. 2012. Cytochrome b(5) from Giardia lamblia. Metallomics 4:1255–1261. 10.1039/c2mt20152f PubMed DOI
Schenkman JB, Jansson I. 2003. The many roles of cytochrome b(5). Pharmacol. Ther. 97:139–152. 10.1016/S0163-7258(02)00327-3 PubMed DOI
Vergeres G, Waskell L. 1995. Cytochrome B(5), its functions, structure and membrane topology. Biochimie 77:604–620 PubMed
Guiard B, Lederer F. 1977. The “b5-like” domain from chicken-liver sulfite oxidase: a new case of common ancestral origin with liver cytochrome b5 and bakers' yeast cytochrome b2 core. Eur. J. Biochem. 74:181–190 PubMed
Napier JA, Sayanova O, Stobart AK, Shewry PR. 1997. A new class of cytochrome b5 fusion proteins. Biochem. J. 328:717–718 PubMed PMC
Rafferty S, Luu B, March RE, Yee J. 2010. Giardia lamblia encodes a functional flavohemoglobin. Biochem. Biophys. Res. Commun. 399:347–351. 10.1016/j.bbrc.2010.07.073 PubMed DOI
Keister DB. 1983. Axenic culture of Giardia lamblia in Tyi-S-33 medium supplemented with bile. Trans. R. Soc. Trop. Med. Hyg. 77:487–488 PubMed
Lauwaet T, Davids BJ, Torres-Escobar A, Birkeland SR, Cipriano MJ, Preheim SP, Palm D, Svard SG, McArthur AG, Gillin FD. 2007. Protein phosphatase 2A plays a crucial role in Giardia lamblia differentiation. Mol. Biochem. Parasitol. 152:80–89. 10.1016/j.molbiopara.2006.12.001 PubMed DOI PMC
Sun CH, Chou CF, Tai JH. 1998. Stable DNA transfection of the primitive protozoan pathogen Giardia lamblia. Mol. Biochem. Parasitol. 92:123–132 PubMed
Dawson SC, Sagolla MS, Mancuso JJ, Woessner DJ, House SA, Fritz-Laylin L, Cande WZ. 2007. Kinesin-13 regulates flagellar, interphase, and mitotic microtubule dynamics in Giardia intestinalis. Eukaryot. Cell 6:2354–2364. 10.1128/EC.00128-07 PubMed DOI PMC
Dagley MJ, Dolezal P, Likic VA, Smid O, Purcell AW, Buchanan SK, Tachezy J, Lithgow T. 2009. The protein import channel in the outer mitosomal membrane of Giardia intestinalis. Mol. Biol. Evol. 26:1941–1947. 10.1093/molbev/msp117 PubMed DOI PMC
Sonda S, Stefanic S, Hehl AB. 2008. A sphingolipid inhibitor induces a cytokinesis arrest and blocks stage differentiation in Giardia lamblia. Antimicrob. Agents Chemother. 52:563–569. 10.1128/AAC.01105-07 PubMed DOI PMC
Long SJ, Changmai P, Tsaousis AD, Skalicky T, Verner Z, Wen YZ, Roger AJ, Lukeš J. 2011. Stage-specific requirement for Isa1 and Isa2 proteins in the mitochondrion of Trypanosoma brucei and heterologous rescue by human and Blastocystis orthologues. Mol. Microbiol. 81:1403–1418. 10.1111/j.1365-2958.2011.07769.x PubMed DOI
Sinclair PR, Gorman N, Jacobs JM. 2001. Measurement of heme concentration. Curr. Protoc. Toxicol. Chapter 8: Unit 8.3. 10.1002/0471140856.tx0803s00 PubMed DOI
Tzagoloff A, Nobrega M, Gorman N, Sinclair P. 1993. On the functions of the yeast COX10 and COX11 gene products. Biochem. Mol. Biol. Int. 31:593–598 PubMed
Labbe P, Chaix P. 1971. Inexpensive device for recording difference absorption spectra at low temperature (-196 degrees). Anal. Biochem. 39:322. PubMed
Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25:3389–3402 PubMed PMC
Jeanmougin F, Thompson JD, Gouy M, Higgins DG, Gibson TJ. 1998. Multiple sequence alignment with Clustal X. Trends Biochem. Sci. 23:403–405 PubMed
Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59:307–321. 10.1093/sysbio/syq010 PubMed DOI
Hwang YT, Pelitire SM, Henderson MP, Andrews DW, Dyer JM, Mullen RT. 2004. Novel targeting signals mediate the sorting of different isoforms of the tail-anchored membrane protein cytochrome b5 to either endoplasmic reticulum or mitochondria. Plant Cell 16:3002–3019. 10.1105/tpc.104.026039 PubMed DOI PMC
Farr H, Gull K. 2009. Functional studies of an evolutionarily conserved, cytochrome b5 domain protein reveal a specific role in axonemal organisation and the general phenomenon of post-division axonemal growth in Trypanosomes. Cell Motil. Cytoskeleton 66:24–35. 10.1002/cm.20322 PubMed DOI
D'Arrigo A, Manera E, Longhi R, Borgese N. 1993. The specific subcellular-localization of 2 isoforms of cytochrome-B5 suggests novel targeting pathways. J. Biol. Chem. 268:2802–2808 PubMed
Seguin A, Sutak R, Bulteau AL, Garcia-Serres R, Oddou JL, Lefevre S, Santos R, Dancis A, Camadro JM, Latour JM, Lesuisse E. 2010. Evidence that yeast frataxin is not an iron storage protein in vivo. Biochim. Biophys. Acta 1802:531–538. 10.1016/j.bbadis.2010.03.008 PubMed DOI
Falk JE. 1964. Porphyrins and metalloporphyrins. Elsevier Publishing Co; New York, NY
Bonnerot C, Galle AM, Jolliot A, Kader JC. 1985. Purification and properties of plant cytochrome-B5. Biochem. J. 226:331–334 PubMed PMC
Smith MA, Napier JA, Stymne S, Tatham AS, Shewry PR, Stobart AK. 1994. Expression of a biologically-active plant cytochrome b(5) in Escherichia coli. Biochem. J. 303:73–79 PubMed PMC
Hultquist DE, Passon PG. 1971. Catalysis of methaemoglobin reduction by erythrocyte cytochrome B5 and cytochrome B5 reductase. Nat. New Biol. 229:252–254 PubMed
Giordano SJ, Steggles AW. 1991. The human liver and reticulocyte cytochrome b5 mRNAs are products from a single gene. Biochem. Biophys. Res. Commun. 178:38–44 PubMed
Olteanu H, Banerjee R. 2003. Redundancy in the pathway for redox regulation of mammalian methionine synthase: reductive activation by the dual flavoprotein, novel reductase 1. J. Biol. Chem. 278:38310–38314. 10.1074/jbc.M306282200 PubMed DOI
Netz DJ, Stumpfig M, Dore C, Muhlenhoff U, Pierik AJ, Lill R. 2010. Tah18 transfers electrons to Dre2 in cytosolic iron-sulfur protein biogenesis. Nat. Chem. Biol. 6:758–765. 10.1038/nchembio.432 PubMed DOI
Vernis L, Facca C, Delagoutte E, Soler N, Chanet R, Guiard B, Faye G, Baldacci G. 2009. A newly identified essential complex, Dre2-Tah18, controls mitochondria integrity and cell death after oxidative stress in yeast. PLoS One 4:e4376. 10.1371/journal.pone.0004376 PubMed DOI PMC
Nishimura A, Kawahara N, Takagi H. 2013. The flavoprotein Tah18-dependent NO synthesis confers high-temperature stress tolerance on yeast cells. Biochem. Biophys. Res. Commun. 430:137–143. 10.1016/j.bbrc.2012.11.023 PubMed DOI
Morrison HG, McArthur AG, Gillin FD, Aley SB, Adam RD, Olsen GJ, Best AA, Cande WZ, Chen F, Cipriano MJ, Davids BJ, Dawson SC, Elmendorf HG, Hehl AB, Holder ME, Huse SM, Kim UU, Lasek-Nesselquist E, Manning G, Nigam A, Nixon JE, Palm D, Passamaneck NE, Prabhu A, Reich CI, Reiner DS, Samuelson J, Svard SG, Sogin ML. 2007. Genomic minimalism in the early diverging intestinal parasite Giardia lamblia. Science 317:1921–1926. 10.1126/science.1143837 PubMed DOI
Xu K, Elliott T. 1993. An oxygen-dependent coproporphyrinogen oxidase encoded by the hemF gene of Salmonella typhimurium. J. Bacteriol. 175:4990–4999 PubMed PMC
Dailey TA, Dailey HA. 1996. Human protoporphyrinogen oxidase: expression, purification, and characterization of the cloned enzyme. Protein Sci. 5:98–105 PubMed PMC
Chang CS, Chang KP. 1985. Heme requirement and acquisition by extracellular and intracellular stages of Leishmania mexicana amazonensis. Mol. Biochem. Parasitol. 16:267–276 PubMed
Pfeifer K, Kim KS, Kogan S, Guarente L. 1989. Functional dissection and sequence of yeast HapI activator. Cell 56:291–301 PubMed
Munakata H, Sun JY, Yoshida K, Nakatani T, Honda E, Hayakawa S, Furuyama K, Hayashi N. 2004. Role of the heme regulatory motif in the heme-mediated inhibition of mitochondrial import of 5-aminolevulinate synthase. J. Biochem. 136:233–238. 10.1093/jb/mvh112 PubMed DOI
Zhang L, Guarente L. 1995. Heme binds to a short sequence that serves a regulatory function in diverse proteins. EMBO J. 14:313–320 PubMed PMC
West AR, Thomas C, Sadlier J, Oates PS. 2006. Haemochromatosis protein is expressed on the terminal web of enterocytes in proximal small intestine of the rat. Histochem. Cell Biol. 125:283–292. 10.1007/s00418-005-0060-6 PubMed DOI
van Dooren GG, Kennedy AT, McFadden GI. 2012. The use and abuse of heme in apicomplexan parasites. Antioxid. Redox Signal. 17:634–656. 10.1089/ars.2012.4539 PubMed DOI
Vanhollebeke B, De Muylder G, Nielsen MJ, Pays A, Tebabi P, Dieu M, Raes M, Moestrup SK, Pays E. 2008. A haptoglobin-hemoglobin receptor conveys innate immunity to Trypanosoma brucei in humans. Science 320:677–681. 10.1126/science.1156296 PubMed DOI
Lara FA, Sant'anna C, Lemos D, Laranja GA, Coelho MG, Reis S, Michel IA, Oliveira PL, Cunha-E-Silva Salmon D, Paes MC. 2007. Heme requirement and intracellular trafficking in Trypanosoma cruzi epimastigotes. Biochem. Biophys. Res. Commun. 355:16–22. 10.1016/j.bbrc.2006.12.238 PubMed DOI
Huynh C, Yuan X, Miguel DC, Renberg RL, Protchenko O, Philpott CC, Hamza I, Andrews NW. 2012. Heme uptake by Leishmania amazonensis is mediated by the transmembrane protein LHR1. PLoS Pathog. 8:e1002795. 10.1371/journal.ppat.1002795 PubMed DOI PMC
Koreny L, Sobotka R, Kovarova J, Gnipova A, Flegontov P, Horvath A, Obornik M, Ayala FJ, Lukes J. 2012. Aerobic kinetoplastid flagellate Phytomonas does not require heme for viability. Proc. Natl. Acad. Sci. U. S. A. 109:3808–3813. 10.1073/pnas.1201089109 PubMed DOI PMC
Campos-Salinas J, Cabello-Donayre M, Garcia-Hernandez R, Perez-Victoria I, Castanys S, Gamarro F, Perez-Victoria JM. 2011. A new ATP-binding cassette protein is involved in intracellular haem trafficking in Leishmania. Mol. Microbiol. 79:1430–1444. 10.1111/j.1365-2958.2010.07531.x PubMed DOI
Koster W. 2001. ABC transporter-mediated uptake of iron, siderophores, heme and vitamin B12. Res. Microbiol. 152:291–301. 10.1016/S0923-2508(01)01200-1 PubMed DOI
Krishnamurthy PC, Du G, Fukuda Y, Sun D, Sampath J, Mercer KE, Wang J, Sosa-Pineda B, Murti KG, Schuetz JD. 2006. Identification of a mammalian mitochondrial porphyrin transporter. Nature 443:586–589. 10.1038/nature05125 PubMed DOI
The Mastigamoeba balamuthi Genome and the Nature of the Free-Living Ancestor of Entamoeba