The Remarkable Metabolism of Vickermania ingenoplastis: Genomic Predictions
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/16_019/0000759
European Regional Development Fund
20-07186S
Grantová Agentura České Republiky
LL1601
European Resuscitation Council
SGS/PrF/2020
Ostravská Univerzita v Ostravě
19-15-00054
Russian Science Foundation
19-74-10008
Russian Science Foundation
PubMed
33466586
PubMed Central
PMC7828693
DOI
10.3390/pathogens10010068
PII: pathogens10010068
Knihovny.cz E-zdroje
- Klíčová slova
- Phytomonas, Vickermania ingenoplastis, genome sequencing, metabolism,
- Publikační typ
- časopisecké články MeSH
A recently redescribed two-flagellar trypanosomatid Vickermania ingenoplastis is insensitive to the classical inhibitors of respiration and thrives under anaerobic conditions. Using genomic and transcriptomic data, we analyzed its genes of the core metabolism and documented that subunits of the mitochondrial respiratory complexes III and IV are ablated, while those of complexes I, II, and V are all present, along with an alternative oxidase. This explains the previously reported conversion of glucose to acetate and succinate by aerobic fermentation. Glycolytic pyruvate is metabolized to acetate and ethanol by pyruvate dismutation, whereby a unique type of alcohol dehydrogenase (shared only with Phytomonas spp.) processes an excess of reducing equivalents formed under anaerobic conditions, leading to the formation of ethanol. Succinate (formed to maintain the glycosomal redox balance) is converted to propionate by a cyclic process involving three enzymes of the mitochondrial methyl-malonyl-CoA pathway, via a cyclic process, which results in the formation of additional ATP. The unusual structure of the V. ingenoplastis genome and its similarity with that of Phytomonas spp. imply their relatedness or convergent evolution. Nevertheless, a critical difference between these two trypanosomatids is that the former has significantly increased its genome size by gene duplications, while the latter streamlined its genome.
De Duve Institute Université Catholique de Louvain 1200 Brussels Belgium
Faculty of Biology M 5 Lomonosov Moscow State University 119991 Moscow Russia
Faculty of Science University of South Bohemia 370 05 České Budějovice Czech Republic
Life Science Research Centre Faculty of Science University of Ostrava 710 00 Ostrava Czech Republic
Zobrazit více v PubMed
Vickerman K. In: Comparative Cell Biology of the Kinetoplastid Flagellates in Biology of Kinetoplastida. Vickerman K., Preston T.M., editors. Academic Press; London, UK: 1976. pp. 35–130.
Maslov D.A., Opperdoes F.R., Kostygov A.Y., Hashimi H., Lukeš J., Yurchenko V. Recent advances in trypanosomatid research: Genome organization, expression, metabolism, taxonomy and evolution. Parasitology. 2019;146:1–27. doi: 10.1017/S0031182018000951. PubMed DOI
Maslov D.A., Votýpka J., Yurchenko V., Lukeš J. Diversity and phylogeny of insect trypanosomatids: All that is hidden shall be revealed. Trends Parasitol. 2013;29:43–52. doi: 10.1016/j.pt.2012.11.001. PubMed DOI
D’Avila-Levy C.M., Boucinha C., Kostygov A., Santos H.L.C., Morelli K.A., Grybchuk-Ieremenko A., Duval L., Votýpka J., Yurchenko V., Grellier P., et al. Exploring the environmental diversity of kinetoplastid flagellates in the high-throughput DNA sequencing era. Memórias Inst. Oswaldo Cruz. 2015;110:956–965. doi: 10.1590/0074-02760150253. PubMed DOI PMC
Lukeš J., Butenko A., Hashimi H., Maslov D.A., Votýpka J., Yurchenko V. Trypanosomatids Are Much More than Just Trypanosomes: Clues from the Expanded Family Tree. Trends Parasitol. 2018;34:466–480. doi: 10.1016/j.pt.2018.03.002. PubMed DOI
Lukeš J., Skalický T., Týč J., Votýpka J., Yurchenko V. Evolution of parasitism in kinetoplastid flagellates. Mol. Biochem. Parasitol. 2014;195:115–122. doi: 10.1016/j.molbiopara.2014.05.007. PubMed DOI
Wheeler R.J., Gluenz E., Gull K. The cell cycle of Leishmania: Morphogenetic events and their implications for parasite biology. Mol. Microbiol. 2010;79:647–662. doi: 10.1111/j.1365-2958.2010.07479.x. PubMed DOI PMC
Broadhead R., Dawe H.R., Farr H., Griffiths S., Hart S.R., Portman N., Shaw M.K., Ginger M.L., Gaskell S.J., Mckean P.G., et al. Flagellar motility is required for the viability of the bloodstream trypanosome. Nature. 2006;440:224–227. doi: 10.1038/nature04541. PubMed DOI
Hughes L., Ralston K.S., Hill K.L., Zhou Z.H. Three-Dimensional Structure of the Trypanosome Flagellum Suggests that the Paraflagellar Rod Functions as a Biomechanical Spring. PLoS One. 2012;7:e25700. doi: 10.1371/journal.pone.0025700. PubMed DOI PMC
Beneke T., Demay F., Hookway E., Ashman N., Jeffery H., Smith J., Valli J., Bečvář T., Myškova J., Leštinová T., et al. Genetic dissection of a Leishmania flagellar proteome demonstrates requirement for directional motility in sand fly infections. PLoS Pathog. 2019;15:e1007828. doi: 10.1371/journal.ppat.1007828. PubMed DOI PMC
Szempruch A.J., Sykes S.E., Kieft R., Dennison L., Becker A.C., Gartrell A., Martin W.J., Nakayasu E.S., Almeida I.C., Hajduk S.L., et al. Extracellular vesicles from Trypanosoma brucei mediate virulence factor transfer and cause host anemia. Cell. 2016;164:246–257. doi: 10.1016/j.cell.2015.11.051. PubMed DOI PMC
Kostygov A.Y., Frolov A.O., Malysheva M.N., Ganyukova A.I., Chistyakova L.V., Tashyreva D., Tesařová M., Spodareva V.V., Režnarová J., Macedo D.H., et al. Vickermania gen. nov., trypanosomatids that use two joined flagella to resist midgut peristaltic flow within the fly host. BMC Biol. 2020;18:187. doi: 10.1186/s12915-020-00916-y. PubMed DOI PMC
Redman C.A., Coombs G.H. The Products and Pathways of Glucose Catabolism in Herpetomonas muscarum ingenoplastis and Herpetomonas muscarum muscarum. J. Eukaryot. Microbiol. 1997;44:46–51. doi: 10.1111/j.1550-7408.1997.tb05690.x. DOI
Coombs G.H. Herpetomonas muscarum ingenoplastis: An anaerobic kinetoplastid flagellate? In: Lloyd D., Coombs G.H., Paget T.A., editors. Biochemistry and Molecular Biology of “anaerobic” Protozoa. Harwood Academic Publishers; London, UK: 1989. pp. 254–266.
Tielens A.G.M., Van Hellemond J.J. Differences in Energy Metabolism between Trypanosomatidae. Parasitol. Today. 1998;14:265–272. doi: 10.1016/S0169-4758(98)01263-0. PubMed DOI
Hajduk S. Ph.D. Thesis. Department of Zoology, University of Glasgow; Glasgow, UK: 1980. Studies of Trypanosomatid Flagellates with Special Reference to Antigenic Variation and Kinetoplast DNA; p. 229.
D’Avila-Levy C.M., Bearzatto B., Ambroise J., Helaers R., Butenko A., Yurchenko V., Morelli K.A., Santos H.L.C., Brouillard P., Grellier P., et al. First Draft Genome of the Trypanosomatid Herpetomonas muscarum ingenoplastis through MinION Oxford Nanopore Technology and Illumina Sequencing. Trop. Med. Infect. Dis. 2020;5:25. doi: 10.3390/tropicalmed5010025. PubMed DOI PMC
Opperdoes F., Michels P.A. Complex I of Trypanosomatidae: Does it exist? Trends Parasitol. 2008;24:310–317. doi: 10.1016/j.pt.2008.03.013. PubMed DOI
Čermáková P., Maďarová A., Baráth P., Bellová J., Yurchenko V., Horváth A. Differences in mitochondrial NADH dehydrogenase activities in trypanosomatids. Parasitology. 2021 in press. PubMed PMC
Morales J., Mogi T., Mineki S., Takashima E., Mineki R., Hirawake H., Sakamoto K., Ōmura S., Kita K. Novel Mitochondrial Complex II Isolated from Trypanosoma cruziIs Composed of 12 Peptides Including a Heterodimeric Ip Subunit. J. Biol. Chem. 2009;284:7255–7263. doi: 10.1074/jbc.M806623200. PubMed DOI PMC
Acestor N., Zíková A., Dalley R.A., Anupama A., Panigrahi A.K., Stuart K.D. Trypanosoma brucei Mitochondrial Respiratome: Composition and Organization in Procyclic Form. Mol. Cell. Proteom. 2011;10:006908. doi: 10.1074/mcp.M110.006908. PubMed DOI PMC
Peña-Diaz P., Mach J., Kriegova E., Poliak P., Tachezy J., Lukeš J. Trypanosomal mitochondrial intermediate peptidase does not behave as a classical mitochondrial processing peptidase. PLoS ONE. 2018;13:e0196474. doi: 10.1371/journal.pone.0196474. PubMed DOI PMC
Zíková A., Panigrahi A.K., Uboldi A.D., Dalley R.A., Handman E., Stuart K. Structural and Functional Association of Trypanosoma brucei MIX Protein with Cytochrome c Oxidase Complex. Eukaryot. Cell. 2008;7:1994–2003. doi: 10.1128/EC.00204-08. PubMed DOI PMC
Acestor N., Panigrahi A.K., Ogata Y., Anupama A., Stuart K. Protein composition of Trypanosoma brucei mitochondrial membranes. Proteomics. 2009;9:5497–5508. doi: 10.1002/pmic.200900354. PubMed DOI PMC
Porcel B.M., Denoeud F., Opperdoes F., Noel B., Madoui M.-A., Hammarton T.C., Field M.C., Da Silva C., Couloux A., Poulain J., et al. The Streamlined Genome of Phytomonas spp. Relative to Human Pathogenic Kinetoplastids Reveals a Parasite Tailored for Plants. PLoS Genet. 2014;10:e1004007. doi: 10.1371/journal.pgen.1004007. PubMed DOI PMC
Zíková A., Schnaufer A., Dalley R.A., Panigrahi A.K., Stuart K. The F0F1-ATP Synthase Complex Contains Novel Subunits and Is Essential for Procyclic Trypanosoma brucei. PLoS Pathog. 2009;5:e1000436. doi: 10.1371/journal.ppat.1000436. PubMed DOI PMC
Opperdoes F., Borst P., Fonck K. The potential use of inhibitors of glycerol-3-phosphate oxidase for chemotherapy of African trypanosomiasis. FEBS Lett. 1976;62:169–172. doi: 10.1016/0014-5793(76)80045-2. PubMed DOI
Opperdoes F.R., Butenko A., Flegontov P., Yurchenko V., Lukeš J. Comparative Metabolism of Free-living Bodo saltans and Parasitic Trypanosomatids. J. Eukaryot. Microbiol. 2016;63:657–678. doi: 10.1111/jeu.12315. PubMed DOI
Butenko A., Hammond M., Field M.C., Ginger M.L., Yurchenko V., Lukeš J. Reductionist Pathways for Parasitism in Euglenozoans? Expanded Datasets Provide New Insights. Trends Parasitol. 2020;37:100–116. doi: 10.1016/j.pt.2020.10.001. PubMed DOI
Van Weelden S.W.H., Van Hellemond J., Opperdoes F., Tielens A.G.M. New Functions for Parts of the Krebs Cycle in Procyclic Trypanosoma brucei, a Cycle Not Operating as a Cycle. J. Biol. Chem. 2005;280:12451–12460. doi: 10.1074/jbc.M412447200. PubMed DOI
Opperdoes F., Van Hellemond J., Tielens A. The extraordinary mitochondrion and unusual citric acid cycle in Trypanosoma brucei. Biochem. Soc. Trans. 2005;33:967–971. doi: 10.1042/BST20050967. PubMed DOI
Opperdoes F., Michels P. The glycosomes of the Kinetoplastida. Biochimie. 1993;75:231–234. doi: 10.1016/0300-9084(93)90081-3. PubMed DOI
Molinas S.M., Altabe S.G., Opperdoes F., Rider M.H., Michels P.A.M., Uttaro A.D. The Multifunctional Isopropyl Alcohol Dehydrogenase of Phytomona ssp. Could Be the Result of a Horizontal Gene Transfer from a Bacterium to the Trypanosomatid Lineage. J. Biol. Chem. 2003;278:36169–36175. doi: 10.1074/jbc.M305666200. PubMed DOI
Muller M., Mentel M., Van Hellemond J., Henze K., Woehle C., Gould D., Yu R.-Y., Van Der Giezen M., Tielens A., Martin W. Biochemistry and Evolution of Anaerobic Energy Metabolism in Eukaryotes. Microbiol. Mol. Biol. Rev. 2012;76:444–495. doi: 10.1128/MMBR.05024-11. PubMed DOI PMC
Martin W.F., Tielens A.G.M., Mentel M. Mitochondria and Anaerobic Energy Metabolism in Eukaryotes: Biochemistry and Evolution. De Gruyter; Düsseldorf, Germany: 2021. p. 252.
Van Hellemond J.J., Klockiewicz M., Gaasenbeek C.P.H., Roos M.H., Tielens A.G.M. Rhodoquinone and Complex II of the Electron Transport Chain in Anaerobically Functioning Eukaryotes. J. Biol. Chem. 1995;270:31065–31070. doi: 10.1074/jbc.270.52.31065. PubMed DOI
Fairlamb A.H., Opperdoes F., Borst P. New approach to screening drugs for activity against African trypanosomes. Nature. 1977;265:270–271. doi: 10.1038/265270a0. PubMed DOI
Patterson S., Wyllie S. Nitro drugs for the treatment of trypanosomatid diseases: Past, present, and future prospects. Trends Parasitol. 2014;30:289–298. doi: 10.1016/j.pt.2014.04.003. PubMed DOI PMC
Lee S.H., Stephens J.L., Englund P.T. A fatty-acid synthesis mechanism specialized for parasitism. Nat. Rev. Genet. 2007;5:287–297. doi: 10.1038/nrmicro1617. PubMed DOI
Millerioux Y., Mazet M., Bouyssou G., Allmann S., Kiema T.-R., Bertiaux E., Fouillen L., Thapa C., Biran M., Plazolles N., et al. De novo biosynthesis of sterols and fatty acids in the Trypanosoma brucei procyclic form: Carbon source preferences and metabolic flux redistributions. PLoS Pathog. 2018;14:e1007116. doi: 10.1371/journal.ppat.1007116. PubMed DOI PMC
Kraeva N., Horáková E., Kostygov A., Kořený L., Butenko A., Yurchenko V., Lukeš J. Catalase in Leishmaniinae: With me or against me? Infect. Genet. Evol. 2017;50:121–127. doi: 10.1016/j.meegid.2016.06.054. PubMed DOI
Škodová-Sveráková I., Záhonová K., Bučková B., Füssy Z., Yurchenko V., Lukeš J. Catalase and ascorbate peroxidase in euglenozoan protists. Pathogens. 2020;9:317. doi: 10.3390/pathogens9040317. PubMed DOI PMC
Bianchi C., Kostygov A.Y., Kraeva N., Záhonová K., Horáková E., Sobotka R., Lukeš J., Yurchenko V. An enigmatic catalase of Blastocrithidia. Mol. Biochem. Parasitol. 2019;232:111199. doi: 10.1016/j.molbiopara.2019.111199. PubMed DOI
Kořený L., Oborník M., Lukeš J. Make It, Take It, or Leave It: Heme Metabolism of Parasites. PLoS Pathog. 2013;9:e1003088. doi: 10.1371/journal.ppat.1003088. PubMed DOI PMC
Škodová-Sveráková I., Verner Z., Skalický T., Votýpka J., Horváth A., Lukeš J. Lineage-specific activities of a multipotent mitochondrion of trypanosomatid flagellates. Mol. Microbiol. 2015;96:55–67. doi: 10.1111/mmi.12920. PubMed DOI
Rosenzweig D., Smith D., Opperdoes F., Stern S., Olafson R.W., Zilberstein D. Retooling Leishmania metabolism: From sand fly gut to human macrophage. FASEB J. 2008;22:590–602. doi: 10.1096/fj.07-9254com. PubMed DOI
Zikova A., Verner Z., Nenarokova A., Michels P.A.M., Lukeš J. A paradigm shift: The mitoproteomes of procyclic and bloodstream Trypanosoma brucei are comparably complex. PLoS Pathog. 2017;13:e1006679. doi: 10.1371/journal.ppat.1006679. PubMed DOI PMC
Mazet M., Morand P., Biran M., Bouyssou G., Courtois P., Daulouède S., Millerioux Y., Franconi J.-M., Vincendeau P., Moreau P., et al. Revisiting the Central Metabolism of the Bloodstream Forms of Trypanosoma brucei: Production of Acetate in the Mitochondrion Is Essential for Parasite Viability. PLoS Negl. Trop. Dis. 2013;7:e2587. doi: 10.1371/journal.pntd.0002587. PubMed DOI PMC
Van Hellemond J.J., Bakker B.M., Tielens A.G. Energy Metabolism and Its Compartmentation in Trypanosoma brucei. Adv. Microb. Physiol. 2005;50:199–226. doi: 10.1016/s0065-2911(05)50005-5. PubMed DOI
Lai D.-H., Hashimi H., Lun Z.-R., Ayala F.J., Lukeš J. Adaptations of Trypanosoma brucei to gradual loss of kinetoplast DNA: Trypanosoma equiperdum and Trypanosoma evansi are petite mutants of T. brucei. Proc. Natl. Acad. Sci. USA. 2008;105:1999–2004. doi: 10.1073/pnas.0711799105. PubMed DOI PMC
Jaskowska E., Butler C., Preston G., Kelly S. Phytomonas: Trypanosomatids adapted to plant environments. PLoS Pathog. 2015;11:e1004484. doi: 10.1371/journal.ppat.1004484. PubMed DOI PMC
Uttaro A.D., Opperdoes F. Purification and characterisation of a novel iso-propanol dehydrogenase from Phytomonas sp. Mol. Biochem. Parasitol. 1997;85:213–219. doi: 10.1016/S0166-6851(97)02830-2. PubMed DOI
Chaumont F., Schanck A.N., Blum J.J., Opperdoes F.R. Aerobic and anaerobic glucose metabolism of Phytomonas sp. isolated from Euphorbia characias. Mol. Biochem. Parasitol. 1994;67:321–331. doi: 10.1016/0166-6851(94)00141-3. PubMed DOI
Opperdoes F.R., Borst P. Localization of nine glycolytic enzymes in a microbody-like organelle in Trypanosoma brucei: The glycosome. FEBS Lett. 1977;80:360–364. doi: 10.1016/0014-5793(77)80476-6. PubMed DOI
Sanchez-Moreno M., Lasztity D., Coppens I., Opperdoes F. Characterization of carbohydrate metabolism and demonstration of glycosomes in a Phytomonas sp. isolated from Euphorbia characias. Mol. Biochem. Parasitol. 1992;54:185–199. doi: 10.1016/0166-6851(92)90111-V. PubMed DOI
Uttaro A.D., Sanchez-Moreno M., Opperdoes F. Genus-specific biochemical markers for Phytomonas spp. Mol. Biochem. Parasitol. 1997;90:337–342. doi: 10.1016/S0166-6851(97)00142-4. PubMed DOI
Zimin A.V., Marçais G., Puiu D., Roberts M., Salzberg S.L., Yorke J.A. The MaSuRCA genome assembler. Bioinformatics. 2013;29:2669–2677. doi: 10.1093/bioinformatics/btt476. PubMed DOI PMC
Li H., Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–1760. doi: 10.1093/bioinformatics/btp324. PubMed DOI PMC
Steinbiss S., Silva-Franco F., Brunk B., Foth B., Hertz-Fowler C., Berriman M., Otto T.D. Companion: A web server for annotation and analysis of parasite genomes. Nucleic Acids Res. 2016;44:W29–W34. doi: 10.1093/nar/gkw292. PubMed DOI PMC
Gurevich A., Saveliev V., Vyahhi N., Tesler G. QUAST: Quality assessment tool for genome assemblies. Bioinformatics. 2013;29:1072–1075. doi: 10.1093/bioinformatics/btt086. PubMed DOI PMC
Seppey M., Manni M., Zdobnov E.M. BUSCO: Assessing genome assembly and annotation completeness. In: Kollmar M., editor. Gene Prediction: Methods in Molecular Biology. Volume 1962. Humana; New York, NY, USA: 2019. pp. 227–245. PubMed
Bolger A.M., Lohse M., Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC
Langmead B., Salzberg S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods. 2012;9:357–359. doi: 10.1038/nmeth.1923. PubMed DOI PMC
Quinlan A. BEDTools: The Swiss-Army Tool for Genome Feature Analysis. Curr. Protoc. Bioinform. 2014;47:11.12.1–11.12.34. doi: 10.1002/0471250953.bi1112s47. PubMed DOI PMC
Butenko A., Kostygov A.Y., Sádlová J., Kleschenko Y., Bečvář T., Podešvová L., Macedo D.H., Žihala D., Lukeš J., Bates P.A., et al. Comparative genomics of Leishmania (Mundinia) BMC Genom. 2019;20:726. doi: 10.1186/s12864-019-6126-y. PubMed DOI PMC
Distribution and Functional Analysis of Isocitrate Dehydrogenases across Kinetoplastids
Kinetoplast Genome of Leishmania spp. Is under Strong Purifying Selection
Comparative Analysis of Three Trypanosomatid Catalases of Different Origin
Genomics of Trypanosomatidae: Where We Stand and What Needs to Be Done?