The Remarkable Metabolism of Vickermania ingenoplastis: Genomic Predictions

. 2021 Jan 14 ; 10 (1) : . [epub] 20210114

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33466586

Grantová podpora
CZ.02.1.01/16_019/0000759 European Regional Development Fund
20-07186S Grantová Agentura České Republiky
LL1601 European Resuscitation Council
SGS/PrF/2020 Ostravská Univerzita v Ostravě
19-15-00054 Russian Science Foundation
19-74-10008 Russian Science Foundation

A recently redescribed two-flagellar trypanosomatid Vickermania ingenoplastis is insensitive to the classical inhibitors of respiration and thrives under anaerobic conditions. Using genomic and transcriptomic data, we analyzed its genes of the core metabolism and documented that subunits of the mitochondrial respiratory complexes III and IV are ablated, while those of complexes I, II, and V are all present, along with an alternative oxidase. This explains the previously reported conversion of glucose to acetate and succinate by aerobic fermentation. Glycolytic pyruvate is metabolized to acetate and ethanol by pyruvate dismutation, whereby a unique type of alcohol dehydrogenase (shared only with Phytomonas spp.) processes an excess of reducing equivalents formed under anaerobic conditions, leading to the formation of ethanol. Succinate (formed to maintain the glycosomal redox balance) is converted to propionate by a cyclic process involving three enzymes of the mitochondrial methyl-malonyl-CoA pathway, via a cyclic process, which results in the formation of additional ATP. The unusual structure of the V. ingenoplastis genome and its similarity with that of Phytomonas spp. imply their relatedness or convergent evolution. Nevertheless, a critical difference between these two trypanosomatids is that the former has significantly increased its genome size by gene duplications, while the latter streamlined its genome.

Zobrazit více v PubMed

Vickerman K. In: Comparative Cell Biology of the Kinetoplastid Flagellates in Biology of Kinetoplastida. Vickerman K., Preston T.M., editors. Academic Press; London, UK: 1976. pp. 35–130.

Maslov D.A., Opperdoes F.R., Kostygov A.Y., Hashimi H., Lukeš J., Yurchenko V. Recent advances in trypanosomatid research: Genome organization, expression, metabolism, taxonomy and evolution. Parasitology. 2019;146:1–27. doi: 10.1017/S0031182018000951. PubMed DOI

Maslov D.A., Votýpka J., Yurchenko V., Lukeš J. Diversity and phylogeny of insect trypanosomatids: All that is hidden shall be revealed. Trends Parasitol. 2013;29:43–52. doi: 10.1016/j.pt.2012.11.001. PubMed DOI

D’Avila-Levy C.M., Boucinha C., Kostygov A., Santos H.L.C., Morelli K.A., Grybchuk-Ieremenko A., Duval L., Votýpka J., Yurchenko V., Grellier P., et al. Exploring the environmental diversity of kinetoplastid flagellates in the high-throughput DNA sequencing era. Memórias Inst. Oswaldo Cruz. 2015;110:956–965. doi: 10.1590/0074-02760150253. PubMed DOI PMC

Lukeš J., Butenko A., Hashimi H., Maslov D.A., Votýpka J., Yurchenko V. Trypanosomatids Are Much More than Just Trypanosomes: Clues from the Expanded Family Tree. Trends Parasitol. 2018;34:466–480. doi: 10.1016/j.pt.2018.03.002. PubMed DOI

Lukeš J., Skalický T., Týč J., Votýpka J., Yurchenko V. Evolution of parasitism in kinetoplastid flagellates. Mol. Biochem. Parasitol. 2014;195:115–122. doi: 10.1016/j.molbiopara.2014.05.007. PubMed DOI

Wheeler R.J., Gluenz E., Gull K. The cell cycle of Leishmania: Morphogenetic events and their implications for parasite biology. Mol. Microbiol. 2010;79:647–662. doi: 10.1111/j.1365-2958.2010.07479.x. PubMed DOI PMC

Broadhead R., Dawe H.R., Farr H., Griffiths S., Hart S.R., Portman N., Shaw M.K., Ginger M.L., Gaskell S.J., Mckean P.G., et al. Flagellar motility is required for the viability of the bloodstream trypanosome. Nature. 2006;440:224–227. doi: 10.1038/nature04541. PubMed DOI

Hughes L., Ralston K.S., Hill K.L., Zhou Z.H. Three-Dimensional Structure of the Trypanosome Flagellum Suggests that the Paraflagellar Rod Functions as a Biomechanical Spring. PLoS One. 2012;7:e25700. doi: 10.1371/journal.pone.0025700. PubMed DOI PMC

Beneke T., Demay F., Hookway E., Ashman N., Jeffery H., Smith J., Valli J., Bečvář T., Myškova J., Leštinová T., et al. Genetic dissection of a Leishmania flagellar proteome demonstrates requirement for directional motility in sand fly infections. PLoS Pathog. 2019;15:e1007828. doi: 10.1371/journal.ppat.1007828. PubMed DOI PMC

Szempruch A.J., Sykes S.E., Kieft R., Dennison L., Becker A.C., Gartrell A., Martin W.J., Nakayasu E.S., Almeida I.C., Hajduk S.L., et al. Extracellular vesicles from Trypanosoma brucei mediate virulence factor transfer and cause host anemia. Cell. 2016;164:246–257. doi: 10.1016/j.cell.2015.11.051. PubMed DOI PMC

Kostygov A.Y., Frolov A.O., Malysheva M.N., Ganyukova A.I., Chistyakova L.V., Tashyreva D., Tesařová M., Spodareva V.V., Režnarová J., Macedo D.H., et al. Vickermania gen. nov., trypanosomatids that use two joined flagella to resist midgut peristaltic flow within the fly host. BMC Biol. 2020;18:187. doi: 10.1186/s12915-020-00916-y. PubMed DOI PMC

Redman C.A., Coombs G.H. The Products and Pathways of Glucose Catabolism in Herpetomonas muscarum ingenoplastis and Herpetomonas muscarum muscarum. J. Eukaryot. Microbiol. 1997;44:46–51. doi: 10.1111/j.1550-7408.1997.tb05690.x. DOI

Coombs G.H. Herpetomonas muscarum ingenoplastis: An anaerobic kinetoplastid flagellate? In: Lloyd D., Coombs G.H., Paget T.A., editors. Biochemistry and Molecular Biology of “anaerobic” Protozoa. Harwood Academic Publishers; London, UK: 1989. pp. 254–266.

Tielens A.G.M., Van Hellemond J.J. Differences in Energy Metabolism between Trypanosomatidae. Parasitol. Today. 1998;14:265–272. doi: 10.1016/S0169-4758(98)01263-0. PubMed DOI

Hajduk S. Ph.D. Thesis. Department of Zoology, University of Glasgow; Glasgow, UK: 1980. Studies of Trypanosomatid Flagellates with Special Reference to Antigenic Variation and Kinetoplast DNA; p. 229.

D’Avila-Levy C.M., Bearzatto B., Ambroise J., Helaers R., Butenko A., Yurchenko V., Morelli K.A., Santos H.L.C., Brouillard P., Grellier P., et al. First Draft Genome of the Trypanosomatid Herpetomonas muscarum ingenoplastis through MinION Oxford Nanopore Technology and Illumina Sequencing. Trop. Med. Infect. Dis. 2020;5:25. doi: 10.3390/tropicalmed5010025. PubMed DOI PMC

Opperdoes F., Michels P.A. Complex I of Trypanosomatidae: Does it exist? Trends Parasitol. 2008;24:310–317. doi: 10.1016/j.pt.2008.03.013. PubMed DOI

Čermáková P., Maďarová A., Baráth P., Bellová J., Yurchenko V., Horváth A. Differences in mitochondrial NADH dehydrogenase activities in trypanosomatids. Parasitology. 2021 in press. PubMed PMC

Morales J., Mogi T., Mineki S., Takashima E., Mineki R., Hirawake H., Sakamoto K., Ōmura S., Kita K. Novel Mitochondrial Complex II Isolated from Trypanosoma cruziIs Composed of 12 Peptides Including a Heterodimeric Ip Subunit. J. Biol. Chem. 2009;284:7255–7263. doi: 10.1074/jbc.M806623200. PubMed DOI PMC

Acestor N., Zíková A., Dalley R.A., Anupama A., Panigrahi A.K., Stuart K.D. Trypanosoma brucei Mitochondrial Respiratome: Composition and Organization in Procyclic Form. Mol. Cell. Proteom. 2011;10:006908. doi: 10.1074/mcp.M110.006908. PubMed DOI PMC

Peña-Diaz P., Mach J., Kriegova E., Poliak P., Tachezy J., Lukeš J. Trypanosomal mitochondrial intermediate peptidase does not behave as a classical mitochondrial processing peptidase. PLoS ONE. 2018;13:e0196474. doi: 10.1371/journal.pone.0196474. PubMed DOI PMC

Zíková A., Panigrahi A.K., Uboldi A.D., Dalley R.A., Handman E., Stuart K. Structural and Functional Association of Trypanosoma brucei MIX Protein with Cytochrome c Oxidase Complex. Eukaryot. Cell. 2008;7:1994–2003. doi: 10.1128/EC.00204-08. PubMed DOI PMC

Acestor N., Panigrahi A.K., Ogata Y., Anupama A., Stuart K. Protein composition of Trypanosoma brucei mitochondrial membranes. Proteomics. 2009;9:5497–5508. doi: 10.1002/pmic.200900354. PubMed DOI PMC

Porcel B.M., Denoeud F., Opperdoes F., Noel B., Madoui M.-A., Hammarton T.C., Field M.C., Da Silva C., Couloux A., Poulain J., et al. The Streamlined Genome of Phytomonas spp. Relative to Human Pathogenic Kinetoplastids Reveals a Parasite Tailored for Plants. PLoS Genet. 2014;10:e1004007. doi: 10.1371/journal.pgen.1004007. PubMed DOI PMC

Zíková A., Schnaufer A., Dalley R.A., Panigrahi A.K., Stuart K. The F0F1-ATP Synthase Complex Contains Novel Subunits and Is Essential for Procyclic Trypanosoma brucei. PLoS Pathog. 2009;5:e1000436. doi: 10.1371/journal.ppat.1000436. PubMed DOI PMC

Opperdoes F., Borst P., Fonck K. The potential use of inhibitors of glycerol-3-phosphate oxidase for chemotherapy of African trypanosomiasis. FEBS Lett. 1976;62:169–172. doi: 10.1016/0014-5793(76)80045-2. PubMed DOI

Opperdoes F.R., Butenko A., Flegontov P., Yurchenko V., Lukeš J. Comparative Metabolism of Free-living Bodo saltans and Parasitic Trypanosomatids. J. Eukaryot. Microbiol. 2016;63:657–678. doi: 10.1111/jeu.12315. PubMed DOI

Butenko A., Hammond M., Field M.C., Ginger M.L., Yurchenko V., Lukeš J. Reductionist Pathways for Parasitism in Euglenozoans? Expanded Datasets Provide New Insights. Trends Parasitol. 2020;37:100–116. doi: 10.1016/j.pt.2020.10.001. PubMed DOI

Van Weelden S.W.H., Van Hellemond J., Opperdoes F., Tielens A.G.M. New Functions for Parts of the Krebs Cycle in Procyclic Trypanosoma brucei, a Cycle Not Operating as a Cycle. J. Biol. Chem. 2005;280:12451–12460. doi: 10.1074/jbc.M412447200. PubMed DOI

Opperdoes F., Van Hellemond J., Tielens A. The extraordinary mitochondrion and unusual citric acid cycle in Trypanosoma brucei. Biochem. Soc. Trans. 2005;33:967–971. doi: 10.1042/BST20050967. PubMed DOI

Opperdoes F., Michels P. The glycosomes of the Kinetoplastida. Biochimie. 1993;75:231–234. doi: 10.1016/0300-9084(93)90081-3. PubMed DOI

Molinas S.M., Altabe S.G., Opperdoes F., Rider M.H., Michels P.A.M., Uttaro A.D. The Multifunctional Isopropyl Alcohol Dehydrogenase of Phytomona ssp. Could Be the Result of a Horizontal Gene Transfer from a Bacterium to the Trypanosomatid Lineage. J. Biol. Chem. 2003;278:36169–36175. doi: 10.1074/jbc.M305666200. PubMed DOI

Muller M., Mentel M., Van Hellemond J., Henze K., Woehle C., Gould D., Yu R.-Y., Van Der Giezen M., Tielens A., Martin W. Biochemistry and Evolution of Anaerobic Energy Metabolism in Eukaryotes. Microbiol. Mol. Biol. Rev. 2012;76:444–495. doi: 10.1128/MMBR.05024-11. PubMed DOI PMC

Martin W.F., Tielens A.G.M., Mentel M. Mitochondria and Anaerobic Energy Metabolism in Eukaryotes: Biochemistry and Evolution. De Gruyter; Düsseldorf, Germany: 2021. p. 252.

Van Hellemond J.J., Klockiewicz M., Gaasenbeek C.P.H., Roos M.H., Tielens A.G.M. Rhodoquinone and Complex II of the Electron Transport Chain in Anaerobically Functioning Eukaryotes. J. Biol. Chem. 1995;270:31065–31070. doi: 10.1074/jbc.270.52.31065. PubMed DOI

Fairlamb A.H., Opperdoes F., Borst P. New approach to screening drugs for activity against African trypanosomes. Nature. 1977;265:270–271. doi: 10.1038/265270a0. PubMed DOI

Patterson S., Wyllie S. Nitro drugs for the treatment of trypanosomatid diseases: Past, present, and future prospects. Trends Parasitol. 2014;30:289–298. doi: 10.1016/j.pt.2014.04.003. PubMed DOI PMC

Lee S.H., Stephens J.L., Englund P.T. A fatty-acid synthesis mechanism specialized for parasitism. Nat. Rev. Genet. 2007;5:287–297. doi: 10.1038/nrmicro1617. PubMed DOI

Millerioux Y., Mazet M., Bouyssou G., Allmann S., Kiema T.-R., Bertiaux E., Fouillen L., Thapa C., Biran M., Plazolles N., et al. De novo biosynthesis of sterols and fatty acids in the Trypanosoma brucei procyclic form: Carbon source preferences and metabolic flux redistributions. PLoS Pathog. 2018;14:e1007116. doi: 10.1371/journal.ppat.1007116. PubMed DOI PMC

Kraeva N., Horáková E., Kostygov A., Kořený L., Butenko A., Yurchenko V., Lukeš J. Catalase in Leishmaniinae: With me or against me? Infect. Genet. Evol. 2017;50:121–127. doi: 10.1016/j.meegid.2016.06.054. PubMed DOI

Škodová-Sveráková I., Záhonová K., Bučková B., Füssy Z., Yurchenko V., Lukeš J. Catalase and ascorbate peroxidase in euglenozoan protists. Pathogens. 2020;9:317. doi: 10.3390/pathogens9040317. PubMed DOI PMC

Bianchi C., Kostygov A.Y., Kraeva N., Záhonová K., Horáková E., Sobotka R., Lukeš J., Yurchenko V. An enigmatic catalase of Blastocrithidia. Mol. Biochem. Parasitol. 2019;232:111199. doi: 10.1016/j.molbiopara.2019.111199. PubMed DOI

Kořený L., Oborník M., Lukeš J. Make It, Take It, or Leave It: Heme Metabolism of Parasites. PLoS Pathog. 2013;9:e1003088. doi: 10.1371/journal.ppat.1003088. PubMed DOI PMC

Škodová-Sveráková I., Verner Z., Skalický T., Votýpka J., Horváth A., Lukeš J. Lineage-specific activities of a multipotent mitochondrion of trypanosomatid flagellates. Mol. Microbiol. 2015;96:55–67. doi: 10.1111/mmi.12920. PubMed DOI

Rosenzweig D., Smith D., Opperdoes F., Stern S., Olafson R.W., Zilberstein D. Retooling Leishmania metabolism: From sand fly gut to human macrophage. FASEB J. 2008;22:590–602. doi: 10.1096/fj.07-9254com. PubMed DOI

Zikova A., Verner Z., Nenarokova A., Michels P.A.M., Lukeš J. A paradigm shift: The mitoproteomes of procyclic and bloodstream Trypanosoma brucei are comparably complex. PLoS Pathog. 2017;13:e1006679. doi: 10.1371/journal.ppat.1006679. PubMed DOI PMC

Mazet M., Morand P., Biran M., Bouyssou G., Courtois P., Daulouède S., Millerioux Y., Franconi J.-M., Vincendeau P., Moreau P., et al. Revisiting the Central Metabolism of the Bloodstream Forms of Trypanosoma brucei: Production of Acetate in the Mitochondrion Is Essential for Parasite Viability. PLoS Negl. Trop. Dis. 2013;7:e2587. doi: 10.1371/journal.pntd.0002587. PubMed DOI PMC

Van Hellemond J.J., Bakker B.M., Tielens A.G. Energy Metabolism and Its Compartmentation in Trypanosoma brucei. Adv. Microb. Physiol. 2005;50:199–226. doi: 10.1016/s0065-2911(05)50005-5. PubMed DOI

Lai D.-H., Hashimi H., Lun Z.-R., Ayala F.J., Lukeš J. Adaptations of Trypanosoma brucei to gradual loss of kinetoplast DNA: Trypanosoma equiperdum and Trypanosoma evansi are petite mutants of T. brucei. Proc. Natl. Acad. Sci. USA. 2008;105:1999–2004. doi: 10.1073/pnas.0711799105. PubMed DOI PMC

Jaskowska E., Butler C., Preston G., Kelly S. Phytomonas: Trypanosomatids adapted to plant environments. PLoS Pathog. 2015;11:e1004484. doi: 10.1371/journal.ppat.1004484. PubMed DOI PMC

Uttaro A.D., Opperdoes F. Purification and characterisation of a novel iso-propanol dehydrogenase from Phytomonas sp. Mol. Biochem. Parasitol. 1997;85:213–219. doi: 10.1016/S0166-6851(97)02830-2. PubMed DOI

Chaumont F., Schanck A.N., Blum J.J., Opperdoes F.R. Aerobic and anaerobic glucose metabolism of Phytomonas sp. isolated from Euphorbia characias. Mol. Biochem. Parasitol. 1994;67:321–331. doi: 10.1016/0166-6851(94)00141-3. PubMed DOI

Opperdoes F.R., Borst P. Localization of nine glycolytic enzymes in a microbody-like organelle in Trypanosoma brucei: The glycosome. FEBS Lett. 1977;80:360–364. doi: 10.1016/0014-5793(77)80476-6. PubMed DOI

Sanchez-Moreno M., Lasztity D., Coppens I., Opperdoes F. Characterization of carbohydrate metabolism and demonstration of glycosomes in a Phytomonas sp. isolated from Euphorbia characias. Mol. Biochem. Parasitol. 1992;54:185–199. doi: 10.1016/0166-6851(92)90111-V. PubMed DOI

Uttaro A.D., Sanchez-Moreno M., Opperdoes F. Genus-specific biochemical markers for Phytomonas spp. Mol. Biochem. Parasitol. 1997;90:337–342. doi: 10.1016/S0166-6851(97)00142-4. PubMed DOI

Zimin A.V., Marçais G., Puiu D., Roberts M., Salzberg S.L., Yorke J.A. The MaSuRCA genome assembler. Bioinformatics. 2013;29:2669–2677. doi: 10.1093/bioinformatics/btt476. PubMed DOI PMC

Li H., Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–1760. doi: 10.1093/bioinformatics/btp324. PubMed DOI PMC

Steinbiss S., Silva-Franco F., Brunk B., Foth B., Hertz-Fowler C., Berriman M., Otto T.D. Companion: A web server for annotation and analysis of parasite genomes. Nucleic Acids Res. 2016;44:W29–W34. doi: 10.1093/nar/gkw292. PubMed DOI PMC

Gurevich A., Saveliev V., Vyahhi N., Tesler G. QUAST: Quality assessment tool for genome assemblies. Bioinformatics. 2013;29:1072–1075. doi: 10.1093/bioinformatics/btt086. PubMed DOI PMC

Seppey M., Manni M., Zdobnov E.M. BUSCO: Assessing genome assembly and annotation completeness. In: Kollmar M., editor. Gene Prediction: Methods in Molecular Biology. Volume 1962. Humana; New York, NY, USA: 2019. pp. 227–245. PubMed

Bolger A.M., Lohse M., Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC

Langmead B., Salzberg S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods. 2012;9:357–359. doi: 10.1038/nmeth.1923. PubMed DOI PMC

Quinlan A. BEDTools: The Swiss-Army Tool for Genome Feature Analysis. Curr. Protoc. Bioinform. 2014;47:11.12.1–11.12.34. doi: 10.1002/0471250953.bi1112s47. PubMed DOI PMC

Butenko A., Kostygov A.Y., Sádlová J., Kleschenko Y., Bečvář T., Podešvová L., Macedo D.H., Žihala D., Lukeš J., Bates P.A., et al. Comparative genomics of Leishmania (Mundinia) BMC Genom. 2019;20:726. doi: 10.1186/s12864-019-6126-y. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Distribution and Functional Analysis of Isocitrate Dehydrogenases across Kinetoplastids

. 2024 Mar 02 ; 16 (3) : .

In silico prediction of the metabolism of Blastocrithidia nonstop, a trypanosomatid with non-canonical genetic code

. 2024 Feb 16 ; 25 (1) : 184. [epub] 20240216

Shining the spotlight on the neglected: new high-quality genome assemblies as a gateway to understanding the evolution of Trypanosomatidae

. 2023 Aug 21 ; 24 (1) : 471. [epub] 20230821

Kinetoplast Genome of Leishmania spp. Is under Strong Purifying Selection

. 2023 Jul 27 ; 8 (8) : . [epub] 20230727

Leishmania guyanensis M4147 as a new LRV1-bearing model parasite: Phosphatidate phosphatase 2-like protein controls cell cycle progression and intracellular lipid content

. 2022 Jun ; 16 (6) : e0010510. [epub] 20220624

Comparative Analysis of Three Trypanosomatid Catalases of Different Origin

. 2021 Dec 26 ; 11 (1) : . [epub] 20211226

Genomics of Trypanosomatidae: Where We Stand and What Needs to Be Done?

. 2021 Sep 02 ; 10 (9) : . [epub] 20210902

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace