Kinetoplast Genome of Leishmania spp. Is under Strong Purifying Selection

. 2023 Jul 27 ; 8 (8) : . [epub] 20230727

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37624322

Grantová podpora
19-74-10008 Russian Science Foundation

Instability is an intriguing characteristic of many protist genomes, and trypanosomatids are not an exception in this respect. Some regions of trypanosomatid genomes evolve fast. For instance, the trypanosomatid mitochondrial (kinetoplast) genome consists of fairly conserved maxicircle and minicircle molecules that can, nevertheless, possess high nucleotide substitution rates between closely related strains. Recent experiments have demonstrated that rapid laboratory evolution can result in the non-functionality of multiple genes of kinetoplast genomes due to the accumulation of mutations or loss of critical genomic components. An example of a loss of critical components is the reported loss of entire minicircle classes in Leishmania tarentolae during laboratory cultivation, which results in an inability to generate some correctly encoded genes. In the current work, we estimated the evolutionary rates of mitochondrial and nuclear genome regions of multiple natural Leishmania spp. We analyzed synonymous and non-synonymous substitutions and, rather unexpectedly, found that the coding regions of kinetoplast maxicircles are among the most variable regions of both genomes. In addition, we demonstrate that synonymous substitutions greatly predominate among maxicircle coding regions and that most maxicircle genes show signs of purifying selection. These results imply that maxicircles in natural Leishmania populations remain functional despite their high mutation rate.

Zobrazit více v PubMed

Burza S., Croft S.L., Boelaert M. Leishmaniasis. Lancet. 2018;392:951–970. doi: 10.1016/S0140-6736(18)31204-2. PubMed DOI

Steverding D. The history of leishmaniasis. Parasites Vectors. 2017;10:82. doi: 10.1186/s13071-017-2028-5. PubMed DOI PMC

Kostygov A.Y., Karnkowska A., Votýpka J., Tashyreva D., Maciszewski K., Yurchenko V., Lukeš J. Euglenozoa: Taxonomy, diversity and ecology, symbioses and viruses. Open Biol. 2021;11:200407. doi: 10.1098/rsob.200407. PubMed DOI PMC

Bruschi F., Gradoni L. The Leishmaniases: Old Neglected Tropical Diseases. Springer; Cham, Switzerland: 2018. 245p

WHO Leishmaniasis. 2023. [(accessed on 1 June 2023)]. Available online: https://www.who.int/en/news-room/fact-sheets/detail/leishmaniasis.

Alvar J., Velez I.D., Bern C., Herrero M., Desjeux P., Cano J., Jannin J., den Boer M. Leishmaniasis worldwide and global estimates of its incidence. PLoS ONE. 2012;7:e35671. PubMed PMC

Bussotti G., Piel L., Pescher P., Domagalska M.A., Rajan K.S., Cohen-Chalamish S., Doniger T., Hiregange D.G., Myler P.J., Unger R., et al. Genome instability drives epistatic adaptation in the human pathogen Leishmania. Proc. Natl. Acad. Sci. USA. 2021;118:e2113744118. doi: 10.1073/pnas.2113744118. PubMed DOI PMC

Bussotti G., Gouzelou E., Cortes Boite M., Kherachi I., Harrat Z., Eddaikra N., Mottram J.C., Antoniou M., Christodoulou V., Bali A., et al. Leishmania genome dynamics during environmental adaptation reveal strain-specific differences in gene copy number variation, karyotype instability, and telomeric amplification. mBio. 2018;9:e01399-01318. doi: 10.1128/mBio.01399-18. PubMed DOI PMC

Dumetz F., Imamura H., Sanders M., Seblová V., Myšková J., Pescher P., Vanaerschot M., Meehan C.J., Cuypers B., De Muylder G., et al. Modulation of aneuploidy in Leishmania donovani during adaptation to different in vitro and in vivo environments and its impact on gene expression. mBio. 2017;8:e00599-00517. doi: 10.1128/mBio.00599-17. PubMed DOI PMC

Clayton C. Regulation of gene expression in trypanosomatids: Living with polycistronic transcription. Open Biol. 2019;9:190072. doi: 10.1098/rsob.190072. PubMed DOI PMC

Maslov D.A., Opperdoes F.R., Kostygov A.Y., Hashimi H., Lukeš J., Yurchenko V. Recent advances in trypanosomatid research: Genome organization, expression, metabolism, taxonomy and evolution. Parasitology. 2019;146:1–27. doi: 10.1017/S0031182018000951. PubMed DOI

Iantorno S.A., Durrant C., Khan A., Sanders M.J., Beverley S.M., Warren W.C., Berriman M., Sacks D.L., Cotton J.A., Grigg M.E. Gene expression in Leishmania is regulated predominantly by gene dosage. mBio. 2017;8:e01393-01317. doi: 10.1128/mBio.01393-17. PubMed DOI PMC

Leprohon P., Légaré D., Raymond F., Madore E., Hardiman G., Corbeil J., Ouellette M. Gene expression modulation is associated with gene amplification, supernumerary chromosomes and chromosome loss in antimony-resistant Leishmania infantum. Nucleic Acids Res. 2009;37:1387–1399. doi: 10.1093/nar/gkn1069. PubMed DOI PMC

Rogers M.B., Hilley J.D., Dickens N.J., Wilkes J., Bates P.A., Depledge D.P., Harris D., Her Y., Herzyk P., Imamura H., et al. Chromosome and gene copy number variation allow major structural change between species and strains of Leishmania. Genome Res. 2011;21:2129–2142. doi: 10.1101/gr.122945.111. PubMed DOI PMC

Prieto Barja P., Pescher P., Bussotti G., Dumetz F., Imamura H., Kedra D., Domagalska M., Chaumeau V., Himmelbauer H., Pages M., et al. Haplotype selection as an adaptive mechanism in the protozoan pathogen Leishmania donovani. Nat. Ecol. Evol. 2017;1:1961–1969. doi: 10.1038/s41559-017-0361-x. PubMed DOI

Tosi L.R.O., Denny P.W., De Oliveira C.I., Damasceno J.D. Leishmania genome variability: Impacts on parasite evolution, parasitism and leishmaniases control. Front. Cell. Infect. Microbiol. 2023;13:1171962. doi: 10.3389/fcimb.2023.1171962. PubMed DOI PMC

Santi A.M.M., Murta S.M.F. Impact of genetic diversity and genome plasticity of Leishmania spp. in treatment and the search for novel chemotherapeutic targets. Front. Cell. Infect. Microbiol. 2022;12:826287. doi: 10.3389/fcimb.2022.826287. PubMed DOI PMC

Aphasizheva I., Alfonzo J., Carnes J., Cestari I., Cruz-Reyes J., Goringer H.U., Hajduk S., Lukeš J., Madison-Antenucci S., Maslov D.A., et al. Lexis and grammar of mitochondrial RNA processing in trypanosomes. Trends Parasitol. 2020;36:337–355. doi: 10.1016/j.pt.2020.01.006. PubMed DOI PMC

Read L.K., Lukeš J., Hashimi H. Trypanosome RNA editing: The complexity of getting U in and taking U out. Wiley Interdiscip. Rev. RNA. 2016;7:33–51. doi: 10.1002/wrna.1313. PubMed DOI PMC

Lynch M. Evolution of the mutation rate. Trends Genet. 2010;26:345–352. doi: 10.1016/j.tig.2010.05.003. PubMed DOI PMC

Sniegowski P.D., Gerrish P.J., Johnson T., Shaver A. The evolution of mutation rates: Separating causes from consequences. Bioessays. 2000;22:1057–1066. doi: 10.1002/1521-1878(200012)22:12<1057::AID-BIES3>3.0.CO;2-W. PubMed DOI

Novozhilova T.S., Chistyakov D.S., Akhmadishina L.V., Lukashev A.N., Gerasimov E.S., Yurchenko V. Genomic analysis of Leishmania turanica strains from different regions of Central Asia. PLoS Negl. Trop. Dis. 2023;17:e0011145. doi: 10.1371/journal.pntd.0011145. PubMed DOI PMC

Kostygov A.Y., Grybchuk D., Kleschenko Y., Chistyakov D.S., Lukashev A.N., Gerasimov E.S., Yurchenko V. Analyses of Leishmania-LRV co-phylogenetic patterns and evolutionary variability of viral proteins. Viruses. 2021;13:2305. doi: 10.3390/v13112305. PubMed DOI PMC

Franssen S.U., Durrant C., Stark O., Moser B., Downing T., Imamura H., Dujardin J.C., Sanders M.J., Mauricio I., Miles M.A., et al. Global genome diversity of the Leishmania donovani complex. eLife. 2020;9:e51243. doi: 10.7554/eLife.51243. PubMed DOI PMC

Imamura H., Downing T., van den Broeck F., Sanders M.J., Rijal S., Sundar S., Mannaert A., Vanaerschot M., Berg M., De Muylder G., et al. Evolutionary genomics of epidemic visceral leishmaniasis in the Indian subcontinent. eLife. 2016;5:e12613. doi: 10.7554/eLife.12613. PubMed DOI PMC

Aslett M., Aurrecoechea C., Berriman M., Brestelli J., Brunk B.P., Carrington M., Depledge D.P., Fischer S., Gajria B., Gao X., et al. TriTrypDB: A functional genomic resource for the Trypanosomatidae. Nucleic Acids Res. 2010;38:D457–D462. doi: 10.1093/nar/gkp851. PubMed DOI PMC

Andrews S. FastQC: A Quality Control Tool for High Throughput Sequence Data. 2019. [(accessed on 27 August 2022)]. Available online: http://www.bioinformatics.babraham.ac.uk/projects/fastqc.

Ewels P., Magnusson M., Lundin S., Käller M. MultiQC: Summarize analysis results for multiple tools and samples in a single report. Bioinformatics. 2016;32:3047–3048. doi: 10.1093/bioinformatics/btw354. PubMed DOI PMC

Bolger A.M., Lohse M., Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC

Li H., Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–1760. doi: 10.1093/bioinformatics/btp324. PubMed DOI PMC

Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N., Marth G., Abecasis G., Durbin R. Genome project data processing, S. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25:2078–2079. doi: 10.1093/bioinformatics/btp352. PubMed DOI PMC

Danecek P., Bonfield J.K., Liddle J., Marshall J., Ohan V., Pollard M.O., Whitwham A., Keane T., McCarthy S.A., Davies R.M., et al. Twelve years of SAMtools and BCFtools. Gigascience. 2021;10:giab008. doi: 10.1093/gigascience/giab008. PubMed DOI PMC

Yurchenko V., Kolesnikov A.A., Lukeš J. Phylogenetic analysis of Trypanosomatina (Protozoa: Kinetoplastida) based on minicircle conserved regions. Folia Parasitol. 2000;47:1–5. doi: 10.14411/fp.2000.001. PubMed DOI

Garrison E., Marth G. Haplotype-based variant detection from short-read sequencing. arXiv. 20121207.3907

Cingolani P., Platts A., Wang le L., Coon M., Nguyen T., Wang L., Land S.J., Lu X., Ruden D.M. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly. 2012;6:80–92. doi: 10.4161/fly.19695. PubMed DOI PMC

Quinlan A.R. BEDTools: The swiss-army tool for genome feature analysis. Curr. Protoc. Bioinform. 2014;47:11.12.11-11.12.34. doi: 10.1002/0471250953.bi1112s47. PubMed DOI PMC

Mistry J., Chuguransky S., Williams L., Qureshi M., Salazar G.A., Sonnhammer E.L.L., Tosatto S.C.E., Paladin L., Raj S., Richardson L.J., et al. Pfam: The protein families database in 2021. Nucleic Acids Res. 2021;49:D412–D419. doi: 10.1093/nar/gkaa913. PubMed DOI PMC

Johnson M., Zaretskaya I., Raytselis Y., Merezhuk Y., McGinnis S., Madden T.L. NCBI BLAST: A better web interface. Nucleic Acids Res. 2008;36:W5–W9. doi: 10.1093/nar/gkn201. PubMed DOI PMC

Alexa A., Rahnenfuhrer J. topGO: Enrichment Analysis for Gene Ontology. Bioconductor; Boston, MA, USA: 2021. R Package.

Kolberg L., Raudvere U., Kuzmin I., Vilo J., Peterson H. gprofiler2—An R package for gene list functional enrichment analysis and namespace conversion toolset g:Profiler. F1000Res. 2020;9:709. doi: 10.12688/f1000research.24956.2. PubMed DOI PMC

Yang Z. PAML 4: Phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 2007;24:1586–1591. doi: 10.1093/molbev/msm088. PubMed DOI

Price M.N., Dehal P.S., Arkin A.P. FastTree 2—Approximately maximum-likelihood trees for large alignments. PLoS ONE. 2010;5:e9490. doi: 10.1371/journal.pone.0009490. PubMed DOI PMC

Albanaz A.T.S., Gerasimov E.S., Shaw J.J., Sádlová J., Lukeš J., Volf P., Opperdoes F.R., Kostygov A.Y., Butenko A., Yurchenko V. Genome analysis of Endotrypanum and Porcisia spp., closest phylogenetic relatives of Leishmania, highlights the role of amastins in shaping pathogenicity. Genes. 2021;12:444. doi: 10.3390/genes12030444. PubMed DOI PMC

Espinosa O.A., Serrano M.G., Camargo E.P., Teixeira M.M.G., Shaw J.J. An appraisal of the taxonomy and nomenclature of trypanosomatids presently classified as Leishmania and Endotrypanum. Parasitology. 2018;145:430–442. doi: 10.1017/S0031182016002092. PubMed DOI

Liu J., Shen Q., Bao H. Comparison of seven SNP calling pipelines for the next-generation sequencing data of chickens. PLoS ONE. 2022;17:e0262574. doi: 10.1371/journal.pone.0262574. PubMed DOI PMC

Gerasimov E.S., Zamyatnina K.A., Matveeva N.S., Rudenskaya Y.A., Kraeva N., Kolesnikov A.A., Yurchenko V. Common structural patterns in the maxicircle divergent region of Trypanosomatidae. Pathogens. 2020;9:100. doi: 10.3390/pathogens9020100. PubMed DOI PMC

Opperdoes F.R., Butenko A., Zakharova A., Gerasimov E.S., Zimmer S.L., Lukeš J., Yurchenko V. The remarkable metabolism of Vickermania ingenoplastis: Genomic predictions. Pathogens. 2021;10:68. doi: 10.3390/pathogens10010068. PubMed DOI PMC

Maslov D.A., Nawathean P., Scheel J. Partial kinetoplast-mitochondrial gene organization and expression in the respiratory deficient plant trypanosomatid Phytomonas serpens. Mol. Biochem. Parasitol. 1999;99:207–221. doi: 10.1016/S0166-6851(99)00028-6. PubMed DOI

Verner Z., Čermáková P., Škodová I., Kováčová B., Lukeš J., Horváth A. Comparative analysis of respiratory chain and oxidative phosphorylation in Leishmania tarentolae, Crithidia fasciculata, Phytomonas serpens and procyclic stage of Trypanosoma brucei. Mol. Biochem. Parasitol. 2014;193:55–65. doi: 10.1016/j.molbiopara.2014.02.003. PubMed DOI

Porcel B.M., Denoeud F., Opperdoes F.R., Noel B., Madoui M.-A., Hammarton T.C., Field M.C., Da Silva C., Couloux A., Poulain J., et al. The streamlined genome of Phytomonas spp. relative to human pathogenic kinetoplastids reveals a parasite tailored for plants. PLoS Genet. 2014;10:e1004007. doi: 10.1371/journal.pgen.1004007. PubMed DOI PMC

Čermáková P., Maďarová A., Baráth P., Bellová J., Yurchenko V., Horváth A. Differences in mitochondrial NADH dehydrogenase activities in trypanosomatids. Parasitology. 2021;148:1161–1170. doi: 10.1017/S0031182020002425. PubMed DOI PMC

Thiemann O.H., Maslov D.A., Simpson L. Disruption of RNA editing in Leishmania tarentolae by the loss of minicircle-encoded guide RNA genes. EMBO J. 1994;13:5689–5700. doi: 10.1002/j.1460-2075.1994.tb06907.x. PubMed DOI PMC

Gerasimov E., Zemp N., Schmid-Hempel R., Schmid-Hempel P., Yurchenko V. Genomic variation among strains of Crithidia bombi and C. expoeki. mSphere. 2019;4:e00482-00419. doi: 10.1128/mSphere.00482-19. PubMed DOI PMC

Bailey S.F., Alonso Morales L.A., Kassen R. Effects of synonymous mutations beyond codon bias: The evidence for adaptive synonymous substitutions from microbial evolution experiments. Genome Biol. Evol. 2021;13:evab141. doi: 10.1093/gbe/evab141. PubMed DOI PMC

Downing T., Imamura H., Decuypere S., Clark T.G., Coombs G.H., Cotton J.A., Hilley J.D., de Doncker S., Maes I., Mottram J.C., et al. Whole genome sequencing of multiple Leishmania donovani clinical isolates provides insights into population structure and mechanisms of drug resistance. Genome Res. 2011;21:2143–2156. doi: 10.1101/gr.123430.111. PubMed DOI PMC

Glans H., Lind Karlberg M., Advani R., Bradley M., Alm E., Andersson B., Downing T. High genome plasticity and frequent genetic exchange in Leishmania tropica isolates from Afghanistan, Iran and Syria. PLoS Negl. Trop. Dis. 2021;15:e0010110. doi: 10.1371/journal.pntd.0010110. PubMed DOI PMC

Fiebig M., Kelly S., Gluenz E. Comparative life cycle transcriptomics revises Leishmania mexicana genome annotation and links a chromosome duplication with parasitism of vertebrates. PLoS Pathog. 2015;11:e1005186. doi: 10.1371/journal.ppat.1005186. PubMed DOI PMC

Hastings P.J., Lupski J.R., Rosenberg S.M., Ira G. Mechanisms of change in gene copy number. Nat. Rev. Genet. 2009;10:551–564. doi: 10.1038/nrg2593. PubMed DOI PMC

Mitra S., Ray S.K., Banerjee R. Synonymous codons influencing gene expression in organisms. Res. Rep. Biochem. 2016;6:57–65. doi: 10.2147/RRBC.S83483. DOI

Yurchenko V., Butenko A., Kostygov A.Y. Genomics of Trypanosomatidae: Where we stand and what needs to be done? Pathogens. 2021;10:1124. doi: 10.3390/pathogens10091124. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

A novel strain of Leishmania braziliensis harbors not a toti- but a bunyavirus

. 2024 Dec ; 18 (12) : e0012767. [epub] 20241227

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...