Common Structural Patterns in the Maxicircle Divergent Region of Trypanosomatidae
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
19-74-10008
Russian Science Foundation
CZ.02.1.01/0.0/ 0.0/16_019/0000759
European Regional Development Fund
PubMed
32033466
PubMed Central
PMC7169413
DOI
10.3390/pathogens9020100
PII: pathogens9020100
Knihovny.cz E-zdroje
- Klíčová slova
- divergent region, genomic rearrangements, kinetoplast, maxicircle, mitochondrion, repeats, trypanosomatids,
- Publikační typ
- časopisecké články MeSH
Maxicircles of all kinetoplastid flagellates are functional analogs of mitochondrial genome of other eukaryotes. They consist of two distinct parts, called the coding region and the divergent region (DR). The DR is composed of highly repetitive sequences and, as such, remains the least explored segment of a trypanosomatid genome. It is extremely difficult to sequence and assemble, that is why very few full length maxicircle sequences were available until now. Using PacBio data, we assembled 17 complete maxicircles from different species of trypanosomatids. Here we present their large-scale comparative analysis and describe common patterns of DR organization in trypanosomatids.
Faculty of Biology M 5 Lomonosov Moscow State University Moscow 119991 Russia
Institute for Information Transmission Problems Russian Academy of Sciences Moscow 127051 Russia
Life Science Research Centre Faculty of Science University of Ostrava 710 00 Ostrava Czech Republic
Zobrazit více v PubMed
Maslov D.A., Opperdoes F.R., Kostygov A.Y., Hashimi H., Lukeš J., Yurchenko V. Recent advances in trypanosomatid research: Genome organization, expression, metabolism, taxonomy and evolution. Parasitology. 2019;146:1–27. doi: 10.1017/S0031182018000951. PubMed DOI
Lukeš J., Butenko A., Hashimi H., Maslov D.A., Votýpka J., Yurchenko V. Trypanosomatids are much more than just trypanosomes: Clues from the expanded family tree. Trends Parasitol. 2018;34:466–480. doi: 10.1016/j.pt.2018.03.002. PubMed DOI
Lukeš J., Guilbride D.L., Votýpka J., Zíková A., Benne R., Englund P.T. Kinetoplast DNA network: Evolution of an improbable structure. Eukaryot Cell. 2002;1:495–502. doi: 10.1128/EC.1.4.495-502.2002. PubMed DOI PMC
Aphasizhev R., Aphasizheva I. Mitochondrial RNA editing in trypanosomes: Small RNAs in control. Biochimie. 2014;100:125–131. doi: 10.1016/j.biochi.2014.01.003. PubMed DOI PMC
Simpson L., Sbicego S., Aphasizhev R. Uridine insertion/deletion RNA editing in trypanosome mitochondria: A complex business. RNA. 2003;9:265–276. doi: 10.1261/rna.2178403. PubMed DOI PMC
Yurchenko V., Kolesnikov A.A. [Minicircular kinetoplast DNA of Trypanosomatidae] Mol. Biol. (Mosk) 2001;35:3–13. doi: 10.1023/A:1004813414607. (In Russian) PubMed DOI
Thomas S., Martinez L.L., Westenberger S.J., Sturm N.R. A population study of the minicircles in Trypanosoma cruzi: Predicting guide RNAs in the absence of empirical RNA editing. BMC Genom. 2007;8:133. doi: 10.1186/1471-2164-8-133. PubMed DOI PMC
Hong M., Simpson L. Genomic organization of Trypanosoma brucei kinetoplast DNA minicircles. Protist. 2003;154:265–279. doi: 10.1078/143446103322166554. PubMed DOI
Shapiro T.A. Kinetoplast DNA maxicircles: Networks within networks. Proc. Natl. Acad. Sci. USA. 1993;90:7809–7813. doi: 10.1073/pnas.90.16.7809. PubMed DOI PMC
Flegontov P.N., Kolesnikov A.A. Radically different maxicircle classes within the same kinetoplast: An artefact or a novel feature of the kinetoplast genome? Kinetoplastid Biol. Dis. 2006;5:5. doi: 10.1186/1475-9292-5-5. PubMed DOI PMC
Messenger L.A., Llewellyn M.S., Bhattacharyya T., Franzen O., Lewis M.D., Ramirez J.D., Carrasco H.J., Andersson B., Miles M.A. Multiple mitochondrial introgression events and heteroplasmy in Trypanosoma cruzi revealed by maxicircle MLST and Next-Generation Sequencing. PLoS Negl. Trop. Dis. 2012;6:e1584. doi: 10.1371/journal.pntd.0001584. PubMed DOI PMC
Westenberger S.J., Cerqueira G.C., El-Sayed N.M., Zingales B., Campbell D.A., Sturm N.R. Trypanosoma cruzi mitochondrial maxicircles display species- and strain-specific variation and a conserved element in the non-coding region. BMC Genom. 2006;7:60. doi: 10.1186/1471-2164-7-60. PubMed DOI PMC
Carranza J.C., Valadares H.M., D’Avila D.A., Baptista R.P., Moreno M., Galvao L.M., Chiari E., Sturm N.R., Gontijo E.D., Macedo A.M., et al. Trypanosoma cruzi maxicircle heterogeneity in Chagas disease patients from Brazil. Int. J. Parasitol. 2009;39:963–973. doi: 10.1016/j.ijpara.2009.01.009. PubMed DOI
Cooper S., Wadsworth E.S., Ochsenreiter T., Ivens A., Savill N.J., Schnaufer A. Assembly and annotation of the mitochondrial minicircle genome of a differentiation-competent strain of Trypanosoma brucei. Nucleic Acids Res. 2019;47:11304–11325. doi: 10.1093/nar/gkz928. PubMed DOI PMC
Kleisen C.M., Borst P. Sequence heterogeneity of the mini-circles of kinetoplast DNA of Crithidia luciliae and evidence for the presence of a component more complex than mini-circle DNA in the kinetoplast network. Biochim. Biophys. Acta. 1975;407:473–478. doi: 10.1016/0005-2787(75)90301-9. PubMed DOI
Pestov D.G., Gladkaya L.A., Maslov D.A., Kolesnikov A.A. Characterization of kinetoplast minicircle DNA in the lower trypanosomatid Crithidia oncopelti. Mol. Biochem. Parasitol. 1990;41:135–145. doi: 10.1016/0166-6851(90)90104-T. PubMed DOI
Challberg S.S., Englund P.T. Heterogeneity of minicircles in kinetoplast DNA of Leishmania tarentolae. J. Mol. Biol. 1980;138:447–472. doi: 10.1016/S0022-2836(80)80012-X. PubMed DOI
Camacho E., Rastrojo A., Sanchiz A., Gonzalez-de la Fuente S., Aguado B., Requena J.M. Leishmania mitochondrial genomes: Maxicircle structure and heterogeneity of minicircles. Genes (Basel) 2019;10:758. doi: 10.3390/genes10100758. PubMed DOI PMC
Maslov D.A., Kolesnikov A.A., Zaitseva G.N. Conservative and divergent base sequence regions in the maxicircle kinetoplast DNA of several trypanosomatid flagellates. Mol. Biochem. Parasitol. 1984;12:351–364. doi: 10.1016/0166-6851(84)90091-4. PubMed DOI
Simpson L., Neckelmann N., de la Cruz V.F., Simpson A.M., Feagin J.E., Jasmer D.P., Stuart J.E. Comparison of the maxicircle (mitochondrial) genomes of Leishmania tarentolae and Trypanosoma brucei at the level of nucleotide sequence. J. Biol. Chem. 1987;262:6182–6196. PubMed
Kaufer A., Barratt J., Stark D., Ellis J. The complete coding region of the maxicircle as a superior phylogenetic marker for exploring evolutionary relationships between members of the Leishmaniinae. Infect. Genet. Evol. 2019;70:90–100. doi: 10.1016/j.meegid.2019.02.002. PubMed DOI
Myler P.J., Glick D., Feagin J.E., Morales T.H., Stuart K.D. Structural organization of the maxicircle variable region of Trypanosoma brucei: Identification of potential replication origins and topoisomerase II binding sites. Nucleic Acids Res. 1993;21:687–694. doi: 10.1093/nar/21.3.687. PubMed DOI PMC
Borst P., Weijers P.J., Brakenhoff G.J. Analysis by electron microscopy of the variable segment in the maxicircle of kinetoplast DNA from Trypanosoma brucei. Biochim. Biophys. Acta. 1982;699:272–280. doi: 10.1016/0167-4781(82)90117-8. PubMed DOI
Borst P., Fase-Fowler F., Hoeijmakers J.H., Frasch A.C. Variations in maxicircle and minicircle sequences in kinetoplast DNAs from different Trypanosoma brucei strains. Biochim. Biophys. Acta. 1980;610:197–210. doi: 10.1016/0005-2787(80)90001-5. PubMed DOI
Muhich M.L., Simpson L., Simpson A.M. Comparison of maxicircle DNAs of Leishmania tarentolae and Trypanosoma brucei. Proc. Natl. Acad. Sci. USA. 1983;80:4060–4064. doi: 10.1073/pnas.80.13.4060. PubMed DOI PMC
Muhich M.L., Neckelmann N., Simpson L. The divergent region of the Leishmania tarentolae kinetoplast maxicircle DNA contains a diverse set of repetitive sequences. Nucleic Acids Res. 1985;13:3241–3260. doi: 10.1093/nar/13.9.3241. PubMed DOI PMC
Sloof P., de Haan A., Eier W., van Iersel M., Boel E., van Steeg H., Benne R. The nucleotide sequence of the variable region in Trypanosoma brucei completes the sequence analysis of the maxicircle component of mitochondrial kinetoplast DNA. Mol. Biochem. Parasitol. 1992;56:289–299. doi: 10.1016/0166-6851(92)90178-M. PubMed DOI
Lee S.T., Liu H.Y., Chu T., Lin S.Y. Specific A+T-rich repetitive DNA sequences in maxicircles from wildtype Leishmania mexicana amazonensis and variants with DNA amplification. Exp. Parasitol. 1994;79:29–40. doi: 10.1006/expr.1994.1056. PubMed DOI
Borst P., Hoeijmakers J.H., Hajduk S. Structure, function and evolution of kinetoplast DNA. Parasitology. 1981;82:81–93. PubMed
Ruvalcaba-Trejo L.I., Sturm N.R. The Trypanosoma cruzi Sylvio X10 strain maxicircle sequence: The third musketeer. BMC Genom. 2011;12:58. doi: 10.1186/1471-2164-12-58. PubMed DOI PMC
Lin R.H., Lai D.H., Zheng L.L., Wu J., Lukes J., Hide G., Lun Z.R. Analysis of the mitochondrial maxicircle of Trypanosoma lewisi, a neglected human pathogen. Parasit Vectors. 2015;8:665. doi: 10.1186/s13071-015-1281-8. PubMed DOI PMC
Urrea D.A., Triana-Chavez O., Alzate J.F. Mitochondrial genomics of human pathogenic parasite Leishmania (Viannia) panamensis. PeerJ. 2019;7:e7235. doi: 10.7717/peerj.7235. PubMed DOI PMC
Lee S.T., Tarn C., Wang C.Y. Characterization of sequence changes in kinetoplast DNA maxicircles of drug-resistant Leishmania. Mol. Biochem. Parasitol. 1992;56:197–207. doi: 10.1016/0166-6851(92)90169-K. PubMed DOI
Flegontov P.N., Strelkova M.V., Kolesnikov A.A. The Leishmania major maxicircle divergent region is variable in different isolates and cell types. Mol. Biochem. Parasitol. 2006;146:173–179. doi: 10.1016/j.molbiopara.2005.12.005. PubMed DOI
Lee S.Y., Lee S.T., Chang K.P. Transkinetoplastidy—A novel phenomenon involving bulk alterations of mitochondrion-kinetoplast DNA of a trypanosomatid protozoan. J. Protozool. 1992;39:190–196. doi: 10.1111/j.1550-7408.1992.tb01300.x. PubMed DOI
Tørresen O.K., Star B., Mier P., Andrade-Navarro M.A., Bateman A., Jarnot P., Gruca A., Grynberg M., Kajava A.V., Promponas V.J., et al. Tandem repeats lead to sequence assembly errors and impose multi-level challenges for genome and protein databases. Nucleic Acids Res. 2019;47:10994–11006. doi: 10.1093/nar/gkz841. PubMed DOI PMC
Gerasimov E.S., Gasparyan A.A., Kaurov I., Tichy B., Logacheva M.D., Kolesnikov A.A., Lukes J., Yurchenko V., Zimmer S.L., Flegontov P. Trypanosomatid mitochondrial RNA editing: Dramatically complex transcript repertoires revealed with a dedicated mapping tool. Nucleic Acids Res. 2018;46:765–781. doi: 10.1093/nar/gkx1202. PubMed DOI PMC
Aravin A.A., Yurchenko V., Merzlyak E., Kolesnikov A.A. The mitochondrial ND8 gene from Crithidia oncopelti is not pan-edited. FEBS Lett. 1998;431:457–460. doi: 10.1016/S0014-5793(98)00813-8. PubMed DOI
Gerasimov E.S., Kostygov A.Y., Yan S., Kolesnikov A.A. From cryptogene to gene? ND8 editing domain reduction in insect trypanosomatids. Eur. J. Protistol. 2012;48:185–193. doi: 10.1016/j.ejop.2011.09.002. PubMed DOI
Flegontov P., Guo Q., Ren L., Strelkova M.V., Kolesnikov A.A. Conserved repeats in the kinetoplast maxicircle divergent region of Leishmania sp. and Leptomonas seymouri. Mol. Genet. Genom. 2006;276:322–333. doi: 10.1007/s00438-006-0145-5. PubMed DOI
Horváth A., Maslov D.A., Peters L.S., Haviernik P., Wuestenhagen T., Kolesnikov A.A. Analysis of the sequence repeats in the divergent region of maxicircle DNA from kinetoplasts of Crithidia oncopelti. Mol. Biol. (Mosk) 1990;24:1539–1548. (In Russian) PubMed
Flegontov P., Butenko A., Firsov S., Kraeva N., Eliáš M., Field M.C., Filatov D., Flegontova O., Gerasimov E.S., Hlaváčová J., et al. Genome of Leptomonas pyrrhocoris: A high-quality reference for monoxenous trypanosomatids and new insights into evolution of Leishmania. Sci. Rep. 2016;6:23704. doi: 10.1038/srep23704. PubMed DOI PMC
Gerasimov E., Zemp N., Schmid-Hempel R., Schmid-Hempel P., Yurchenko V. Genomic variation among strains of Crithidia bombi and C. expoeki. mSphere. 2019;4:e00482-19. doi: 10.1128/mSphere.00482-19. PubMed DOI PMC
Koren S., Walenz B.P., Berlin K., Miller J.R., Bergman N.H., Phillippy A.M. Canu: Scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 2017;27:722–736. doi: 10.1101/gr.215087.116. PubMed DOI PMC
Kurtz S., Phillippy A., Delcher A.L., Smoot M., Shumway M., Antonescu C., Salzberg S.L. Versatile and open software for comparing large genomes. Genome Biol. 2004;5:R12. doi: 10.1186/gb-2004-5-2-r12. PubMed DOI PMC
Li H., Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics. 2010;26:589–595. doi: 10.1093/bioinformatics/btp698. PubMed DOI PMC
Ramirez-Gonzalez R.H., Bonnal R., Caccamo M., Maclean D. Bio-SAMtools: Ruby bindings for SAMtools, a library for accessing BAM files containing high-throughput sequence alignments. Source Code Biol. Med. 2012;7:6. doi: 10.1186/1751-0473-7-6. PubMed DOI PMC
Langmead B., Salzberg S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods. 2012;9:357–359. doi: 10.1038/nmeth.1923. PubMed DOI PMC
Freese N.H., Norris D.C., Loraine A.E. Integrated genome browser: Visual analytics platform for genomics. Bioinformatics. 2016;32:2089–2095. doi: 10.1093/bioinformatics/btw069. PubMed DOI PMC
Kolpakov R., Bana G., Kucherov G. Mreps: Efficient and flexible detection of tandem repeats in DNA. Nucleic Acids Res. 2003;31:3672–3678. doi: 10.1093/nar/gkg617. PubMed DOI PMC
Rice P., Longden I., Bleasby A. EMBOSS: The European Molecular Biology Open Software Suite. Trends Genet. 2000;16:276–277. doi: 10.1016/S0168-9525(00)02024-2. PubMed DOI
Krzywinski M., Schein J., Birol I., Connors J., Gascoyne R., Horsman D., Jones S.J., Marra M.A. Circos: An information aesthetic for comparative genomics. Genome Res. 2009;19:1639–1645. doi: 10.1101/gr.092759.109. PubMed DOI PMC
Kinetoplast Genome of Leishmania spp. Is under Strong Purifying Selection
Mitochondrial RNA editing in Trypanoplasma borreli: New tools, new revelations