Common Structural Patterns in the Maxicircle Divergent Region of Trypanosomatidae

. 2020 Feb 05 ; 9 (2) : . [epub] 20200205

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32033466

Grantová podpora
19-74-10008 Russian Science Foundation
CZ.02.1.01/0.0/ 0.0/16_019/0000759 European Regional Development Fund

Maxicircles of all kinetoplastid flagellates are functional analogs of mitochondrial genome of other eukaryotes. They consist of two distinct parts, called the coding region and the divergent region (DR). The DR is composed of highly repetitive sequences and, as such, remains the least explored segment of a trypanosomatid genome. It is extremely difficult to sequence and assemble, that is why very few full length maxicircle sequences were available until now. Using PacBio data, we assembled 17 complete maxicircles from different species of trypanosomatids. Here we present their large-scale comparative analysis and describe common patterns of DR organization in trypanosomatids.

Zobrazit více v PubMed

Maslov D.A., Opperdoes F.R., Kostygov A.Y., Hashimi H., Lukeš J., Yurchenko V. Recent advances in trypanosomatid research: Genome organization, expression, metabolism, taxonomy and evolution. Parasitology. 2019;146:1–27. doi: 10.1017/S0031182018000951. PubMed DOI

Lukeš J., Butenko A., Hashimi H., Maslov D.A., Votýpka J., Yurchenko V. Trypanosomatids are much more than just trypanosomes: Clues from the expanded family tree. Trends Parasitol. 2018;34:466–480. doi: 10.1016/j.pt.2018.03.002. PubMed DOI

Lukeš J., Guilbride D.L., Votýpka J., Zíková A., Benne R., Englund P.T. Kinetoplast DNA network: Evolution of an improbable structure. Eukaryot Cell. 2002;1:495–502. doi: 10.1128/EC.1.4.495-502.2002. PubMed DOI PMC

Aphasizhev R., Aphasizheva I. Mitochondrial RNA editing in trypanosomes: Small RNAs in control. Biochimie. 2014;100:125–131. doi: 10.1016/j.biochi.2014.01.003. PubMed DOI PMC

Simpson L., Sbicego S., Aphasizhev R. Uridine insertion/deletion RNA editing in trypanosome mitochondria: A complex business. RNA. 2003;9:265–276. doi: 10.1261/rna.2178403. PubMed DOI PMC

Yurchenko V., Kolesnikov A.A. [Minicircular kinetoplast DNA of Trypanosomatidae] Mol. Biol. (Mosk) 2001;35:3–13. doi: 10.1023/A:1004813414607. (In Russian) PubMed DOI

Thomas S., Martinez L.L., Westenberger S.J., Sturm N.R. A population study of the minicircles in Trypanosoma cruzi: Predicting guide RNAs in the absence of empirical RNA editing. BMC Genom. 2007;8:133. doi: 10.1186/1471-2164-8-133. PubMed DOI PMC

Hong M., Simpson L. Genomic organization of Trypanosoma brucei kinetoplast DNA minicircles. Protist. 2003;154:265–279. doi: 10.1078/143446103322166554. PubMed DOI

Shapiro T.A. Kinetoplast DNA maxicircles: Networks within networks. Proc. Natl. Acad. Sci. USA. 1993;90:7809–7813. doi: 10.1073/pnas.90.16.7809. PubMed DOI PMC

Flegontov P.N., Kolesnikov A.A. Radically different maxicircle classes within the same kinetoplast: An artefact or a novel feature of the kinetoplast genome? Kinetoplastid Biol. Dis. 2006;5:5. doi: 10.1186/1475-9292-5-5. PubMed DOI PMC

Messenger L.A., Llewellyn M.S., Bhattacharyya T., Franzen O., Lewis M.D., Ramirez J.D., Carrasco H.J., Andersson B., Miles M.A. Multiple mitochondrial introgression events and heteroplasmy in Trypanosoma cruzi revealed by maxicircle MLST and Next-Generation Sequencing. PLoS Negl. Trop. Dis. 2012;6:e1584. doi: 10.1371/journal.pntd.0001584. PubMed DOI PMC

Westenberger S.J., Cerqueira G.C., El-Sayed N.M., Zingales B., Campbell D.A., Sturm N.R. Trypanosoma cruzi mitochondrial maxicircles display species- and strain-specific variation and a conserved element in the non-coding region. BMC Genom. 2006;7:60. doi: 10.1186/1471-2164-7-60. PubMed DOI PMC

Carranza J.C., Valadares H.M., D’Avila D.A., Baptista R.P., Moreno M., Galvao L.M., Chiari E., Sturm N.R., Gontijo E.D., Macedo A.M., et al. Trypanosoma cruzi maxicircle heterogeneity in Chagas disease patients from Brazil. Int. J. Parasitol. 2009;39:963–973. doi: 10.1016/j.ijpara.2009.01.009. PubMed DOI

Cooper S., Wadsworth E.S., Ochsenreiter T., Ivens A., Savill N.J., Schnaufer A. Assembly and annotation of the mitochondrial minicircle genome of a differentiation-competent strain of Trypanosoma brucei. Nucleic Acids Res. 2019;47:11304–11325. doi: 10.1093/nar/gkz928. PubMed DOI PMC

Kleisen C.M., Borst P. Sequence heterogeneity of the mini-circles of kinetoplast DNA of Crithidia luciliae and evidence for the presence of a component more complex than mini-circle DNA in the kinetoplast network. Biochim. Biophys. Acta. 1975;407:473–478. doi: 10.1016/0005-2787(75)90301-9. PubMed DOI

Pestov D.G., Gladkaya L.A., Maslov D.A., Kolesnikov A.A. Characterization of kinetoplast minicircle DNA in the lower trypanosomatid Crithidia oncopelti. Mol. Biochem. Parasitol. 1990;41:135–145. doi: 10.1016/0166-6851(90)90104-T. PubMed DOI

Challberg S.S., Englund P.T. Heterogeneity of minicircles in kinetoplast DNA of Leishmania tarentolae. J. Mol. Biol. 1980;138:447–472. doi: 10.1016/S0022-2836(80)80012-X. PubMed DOI

Camacho E., Rastrojo A., Sanchiz A., Gonzalez-de la Fuente S., Aguado B., Requena J.M. Leishmania mitochondrial genomes: Maxicircle structure and heterogeneity of minicircles. Genes (Basel) 2019;10:758. doi: 10.3390/genes10100758. PubMed DOI PMC

Maslov D.A., Kolesnikov A.A., Zaitseva G.N. Conservative and divergent base sequence regions in the maxicircle kinetoplast DNA of several trypanosomatid flagellates. Mol. Biochem. Parasitol. 1984;12:351–364. doi: 10.1016/0166-6851(84)90091-4. PubMed DOI

Simpson L., Neckelmann N., de la Cruz V.F., Simpson A.M., Feagin J.E., Jasmer D.P., Stuart J.E. Comparison of the maxicircle (mitochondrial) genomes of Leishmania tarentolae and Trypanosoma brucei at the level of nucleotide sequence. J. Biol. Chem. 1987;262:6182–6196. PubMed

Kaufer A., Barratt J., Stark D., Ellis J. The complete coding region of the maxicircle as a superior phylogenetic marker for exploring evolutionary relationships between members of the Leishmaniinae. Infect. Genet. Evol. 2019;70:90–100. doi: 10.1016/j.meegid.2019.02.002. PubMed DOI

Myler P.J., Glick D., Feagin J.E., Morales T.H., Stuart K.D. Structural organization of the maxicircle variable region of Trypanosoma brucei: Identification of potential replication origins and topoisomerase II binding sites. Nucleic Acids Res. 1993;21:687–694. doi: 10.1093/nar/21.3.687. PubMed DOI PMC

Borst P., Weijers P.J., Brakenhoff G.J. Analysis by electron microscopy of the variable segment in the maxicircle of kinetoplast DNA from Trypanosoma brucei. Biochim. Biophys. Acta. 1982;699:272–280. doi: 10.1016/0167-4781(82)90117-8. PubMed DOI

Borst P., Fase-Fowler F., Hoeijmakers J.H., Frasch A.C. Variations in maxicircle and minicircle sequences in kinetoplast DNAs from different Trypanosoma brucei strains. Biochim. Biophys. Acta. 1980;610:197–210. doi: 10.1016/0005-2787(80)90001-5. PubMed DOI

Muhich M.L., Simpson L., Simpson A.M. Comparison of maxicircle DNAs of Leishmania tarentolae and Trypanosoma brucei. Proc. Natl. Acad. Sci. USA. 1983;80:4060–4064. doi: 10.1073/pnas.80.13.4060. PubMed DOI PMC

Muhich M.L., Neckelmann N., Simpson L. The divergent region of the Leishmania tarentolae kinetoplast maxicircle DNA contains a diverse set of repetitive sequences. Nucleic Acids Res. 1985;13:3241–3260. doi: 10.1093/nar/13.9.3241. PubMed DOI PMC

Sloof P., de Haan A., Eier W., van Iersel M., Boel E., van Steeg H., Benne R. The nucleotide sequence of the variable region in Trypanosoma brucei completes the sequence analysis of the maxicircle component of mitochondrial kinetoplast DNA. Mol. Biochem. Parasitol. 1992;56:289–299. doi: 10.1016/0166-6851(92)90178-M. PubMed DOI

Lee S.T., Liu H.Y., Chu T., Lin S.Y. Specific A+T-rich repetitive DNA sequences in maxicircles from wildtype Leishmania mexicana amazonensis and variants with DNA amplification. Exp. Parasitol. 1994;79:29–40. doi: 10.1006/expr.1994.1056. PubMed DOI

Borst P., Hoeijmakers J.H., Hajduk S. Structure, function and evolution of kinetoplast DNA. Parasitology. 1981;82:81–93. PubMed

Ruvalcaba-Trejo L.I., Sturm N.R. The Trypanosoma cruzi Sylvio X10 strain maxicircle sequence: The third musketeer. BMC Genom. 2011;12:58. doi: 10.1186/1471-2164-12-58. PubMed DOI PMC

Lin R.H., Lai D.H., Zheng L.L., Wu J., Lukes J., Hide G., Lun Z.R. Analysis of the mitochondrial maxicircle of Trypanosoma lewisi, a neglected human pathogen. Parasit Vectors. 2015;8:665. doi: 10.1186/s13071-015-1281-8. PubMed DOI PMC

Urrea D.A., Triana-Chavez O., Alzate J.F. Mitochondrial genomics of human pathogenic parasite Leishmania (Viannia) panamensis. PeerJ. 2019;7:e7235. doi: 10.7717/peerj.7235. PubMed DOI PMC

Lee S.T., Tarn C., Wang C.Y. Characterization of sequence changes in kinetoplast DNA maxicircles of drug-resistant Leishmania. Mol. Biochem. Parasitol. 1992;56:197–207. doi: 10.1016/0166-6851(92)90169-K. PubMed DOI

Flegontov P.N., Strelkova M.V., Kolesnikov A.A. The Leishmania major maxicircle divergent region is variable in different isolates and cell types. Mol. Biochem. Parasitol. 2006;146:173–179. doi: 10.1016/j.molbiopara.2005.12.005. PubMed DOI

Lee S.Y., Lee S.T., Chang K.P. Transkinetoplastidy—A novel phenomenon involving bulk alterations of mitochondrion-kinetoplast DNA of a trypanosomatid protozoan. J. Protozool. 1992;39:190–196. doi: 10.1111/j.1550-7408.1992.tb01300.x. PubMed DOI

Tørresen O.K., Star B., Mier P., Andrade-Navarro M.A., Bateman A., Jarnot P., Gruca A., Grynberg M., Kajava A.V., Promponas V.J., et al. Tandem repeats lead to sequence assembly errors and impose multi-level challenges for genome and protein databases. Nucleic Acids Res. 2019;47:10994–11006. doi: 10.1093/nar/gkz841. PubMed DOI PMC

Gerasimov E.S., Gasparyan A.A., Kaurov I., Tichy B., Logacheva M.D., Kolesnikov A.A., Lukes J., Yurchenko V., Zimmer S.L., Flegontov P. Trypanosomatid mitochondrial RNA editing: Dramatically complex transcript repertoires revealed with a dedicated mapping tool. Nucleic Acids Res. 2018;46:765–781. doi: 10.1093/nar/gkx1202. PubMed DOI PMC

Aravin A.A., Yurchenko V., Merzlyak E., Kolesnikov A.A. The mitochondrial ND8 gene from Crithidia oncopelti is not pan-edited. FEBS Lett. 1998;431:457–460. doi: 10.1016/S0014-5793(98)00813-8. PubMed DOI

Gerasimov E.S., Kostygov A.Y., Yan S., Kolesnikov A.A. From cryptogene to gene? ND8 editing domain reduction in insect trypanosomatids. Eur. J. Protistol. 2012;48:185–193. doi: 10.1016/j.ejop.2011.09.002. PubMed DOI

Flegontov P., Guo Q., Ren L., Strelkova M.V., Kolesnikov A.A. Conserved repeats in the kinetoplast maxicircle divergent region of Leishmania sp. and Leptomonas seymouri. Mol. Genet. Genom. 2006;276:322–333. doi: 10.1007/s00438-006-0145-5. PubMed DOI

Horváth A., Maslov D.A., Peters L.S., Haviernik P., Wuestenhagen T., Kolesnikov A.A. Analysis of the sequence repeats in the divergent region of maxicircle DNA from kinetoplasts of Crithidia oncopelti. Mol. Biol. (Mosk) 1990;24:1539–1548. (In Russian) PubMed

Flegontov P., Butenko A., Firsov S., Kraeva N., Eliáš M., Field M.C., Filatov D., Flegontova O., Gerasimov E.S., Hlaváčová J., et al. Genome of Leptomonas pyrrhocoris: A high-quality reference for monoxenous trypanosomatids and new insights into evolution of Leishmania. Sci. Rep. 2016;6:23704. doi: 10.1038/srep23704. PubMed DOI PMC

Gerasimov E., Zemp N., Schmid-Hempel R., Schmid-Hempel P., Yurchenko V. Genomic variation among strains of Crithidia bombi and C. expoeki. mSphere. 2019;4:e00482-19. doi: 10.1128/mSphere.00482-19. PubMed DOI PMC

Koren S., Walenz B.P., Berlin K., Miller J.R., Bergman N.H., Phillippy A.M. Canu: Scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 2017;27:722–736. doi: 10.1101/gr.215087.116. PubMed DOI PMC

Kurtz S., Phillippy A., Delcher A.L., Smoot M., Shumway M., Antonescu C., Salzberg S.L. Versatile and open software for comparing large genomes. Genome Biol. 2004;5:R12. doi: 10.1186/gb-2004-5-2-r12. PubMed DOI PMC

Li H., Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics. 2010;26:589–595. doi: 10.1093/bioinformatics/btp698. PubMed DOI PMC

Ramirez-Gonzalez R.H., Bonnal R., Caccamo M., Maclean D. Bio-SAMtools: Ruby bindings for SAMtools, a library for accessing BAM files containing high-throughput sequence alignments. Source Code Biol. Med. 2012;7:6. doi: 10.1186/1751-0473-7-6. PubMed DOI PMC

Langmead B., Salzberg S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods. 2012;9:357–359. doi: 10.1038/nmeth.1923. PubMed DOI PMC

Freese N.H., Norris D.C., Loraine A.E. Integrated genome browser: Visual analytics platform for genomics. Bioinformatics. 2016;32:2089–2095. doi: 10.1093/bioinformatics/btw069. PubMed DOI PMC

Kolpakov R., Bana G., Kucherov G. Mreps: Efficient and flexible detection of tandem repeats in DNA. Nucleic Acids Res. 2003;31:3672–3678. doi: 10.1093/nar/gkg617. PubMed DOI PMC

Rice P., Longden I., Bleasby A. EMBOSS: The European Molecular Biology Open Software Suite. Trends Genet. 2000;16:276–277. doi: 10.1016/S0168-9525(00)02024-2. PubMed DOI

Krzywinski M., Schein J., Birol I., Connors J., Gascoyne R., Horsman D., Jones S.J., Marra M.A. Circos: An information aesthetic for comparative genomics. Genome Res. 2009;19:1639–1645. doi: 10.1101/gr.092759.109. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...