Complete minicircle genome of Leptomonas pyrrhocoris reveals sources of its non-canonical mitochondrial RNA editing events
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33660779
PubMed Central
PMC8034629
DOI
10.1093/nar/gkab114
PII: 6154491
Knihovny.cz E-zdroje
- MeSH
- editace RNA * MeSH
- fylogeneze MeSH
- genom protozoální * MeSH
- messenger RNA metabolismus MeSH
- RNA mitochondriální metabolismus MeSH
- transkriptom MeSH
- Trypanosomatina genetika metabolismus MeSH
- vodící RNA, systémy CRISPR-Cas MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- messenger RNA MeSH
- RNA mitochondriální MeSH
Uridine insertion/deletion (U-indel) editing of mitochondrial mRNA, unique to the protistan class Kinetoplastea, generates canonical as well as potentially non-productive editing events. While the molecular machinery and the role of the guide (g) RNAs that provide required information for U-indel editing are well understood, little is known about the forces underlying its apparently error-prone nature. Analysis of a gRNA:mRNA pair allows the dissection of editing events in a given position of a given mitochondrial transcript. A complete gRNA dataset, paired with a fully characterized mRNA population that includes non-canonically edited transcripts, would allow such an analysis to be performed globally across the mitochondrial transcriptome. To achieve this, we have assembled 67 minicircles of the insect parasite Leptomonas pyrrhocoris, with each minicircle typically encoding one gRNA located in one of two similar-sized units of different origin. From this relatively narrow set of annotated gRNAs, we have dissected all identified mitochondrial editing events in L. pyrrhocoris, the strains of which dramatically differ in the abundance of individual minicircle classes. Our results support a model in which a multitude of editing events are driven by a limited set of gRNAs, with individual gRNAs possessing an inherent ability to guide canonical and non-canonical editing.
Faculty of Biology M 5 Lomonosov Moscow State University Moscow 119991 Russia
Faculty of Science University of South Bohemia 370 05 České Budějovice Czech Republic
Institute for Information Transmission Problems Russian Academy of Sciences Moscow 127051 Russia
Life Science Research Centre Faculty of Science University of Ostrava 710 00 Ostrava Czech Republic
Zobrazit více v PubMed
Reiter N.J., Osterman A., Torres-Larios A., Swinger K.K., Pan T., Mondragon A.. Structure of a bacterial ribonuclease P holoenzyme in complex with tRNA. Nature. 2010; 468:784–789. PubMed PMC
Sanford J.R., Caceres J.F.. Pre-mRNA splicing: life at the centre of the central dogma. J. Cell Sci. 2004; 117:6261–6263. PubMed
Shi Y. Mechanistic insights into precursor messenger RNA splicing by the spliceosome. Nat. Rev. Mol. Cell Biol. 2017; 18:655–670. PubMed
Lukeš J., Kaur B., Speijer D.. RNA editing in mitochondria and plastids: weird and widespread. Trends Genet. 2021; 37:99–102. PubMed
Kaur B., Záhonová K., Valach M., Faktorová D., Prokopchuk G., Burger G., Lukeš J.. Gene fragmentation and RNA editing without borders: eccentric mitochondrial genomes of diplonemids. Nucleic Acids Res. 2020; 48:2694–2708. PubMed PMC
Lukeš J., Butenko A., Hashimi H., Maslov D.A., Votýpka J., Yurchenko V.. Trypanosomatids are much more than just trypanosomes: clues from the expanded family tree. Trends Parasitol. 2018; 34:466–480. PubMed
Jensen R.E., Englund P.T.. Network news: the replication of kinetoplast DNA. Annu. Rev. Microbiol. 2012; 66:473–491. PubMed
Lukeš J., Guilbride D.L., Votýpka J., Zíková A., Benne R., Englund P.T.. Kinetoplast DNA network: evolution of an improbable structure. Eukaryot. Cell. 2002; 1:495–502. PubMed PMC
Shlomai J. The structure and replication of kinetoplast DNA. Curr. Mol. Med. 2004; 4:623–647. PubMed
Read L.K., Lukeš J., Hashimi H.. Trypanosome RNA editing: the complexity of getting U in and taking U out. Wiley Interdiscip. Rev. RNA. 2016; 7:33–51. PubMed PMC
Maslov D.A., Opperdoes F.R., Kostygov A.Y., Hashimi H., Lukeš J., Yurchenko V.. Recent advances in trypanosomatid research: genome organization, expression, metabolism, taxonomy and evolution. Parasitology. 2019; 146:1–27. PubMed
Sturm N.R., Simpson L.. Kinetoplast DNA minicircles encode guide RNAs for editing of cytochrome oxidase subunit III mRNA. Cell. 1990; 61:879–884. PubMed
Cruz-Reyes J., Mooers B.H.M., Doharey P.K., Meehan J., Gulati S. Dynamic RNA holo-editosomes with subcomplex variants: Insights into the control of trypanosome editing. Wiley Interdiscip. Rev. RNA. 2018; 9:e1502. PubMed PMC
Aphasizheva I., Alfonzo J., Carnes J., Cestari I., Cruz-Reyes J., Goringer H.U., Hajduk S., Lukeš J., Madison-Antenucci S., Maslov D.A.et al. .. Lexis and grammar of mitochondrial RNA processing in trypanosomes. Trends Parasitol. 2020; 36:337–355. PubMed PMC
Zimmer S.L., Simpson R.M., Read L.K.. High throughput sequencing revolution reveals conserved fundamentals of U-indel editing. Wiley Interdiscip. Rev. RNA. 2018; 9:e1487. PubMed PMC
Koslowsky D.J., Bhat G.J., Read L.K., Stuart K.. Cycles of progressive realignment of gRNA with mRNA in RNA editing. Cell. 1991; 67:537–546. PubMed
Ammerman M.L., Presnyak V., Fisk J.C., Foda B.M., Read L.K.. TbRGG2 facilitates kinetoplastid RNA editing initiation and progression past intrinsic pause sites. RNA. 2010; 16:2239–2251. PubMed PMC
Simpson R.M., Bruno A.E., Bard J.E., Buck M.J., Read L.K.. High-throughput sequencing of partially edited trypanosome mRNAs reveals barriers to editing progression and evidence for alternative editing. RNA. 2016; 22:677–695. PubMed PMC
Gerasimov E.S., Gasparyan A.A., Kaurov I., Tichý B., Logacheva M.D., Kolesnikov A.A., Lukeš J., Yurchenko V., Zimmer S.L., Flegontov P.. Trypanosomatid mitochondrial RNA editing: dramatically complex transcript repertoires revealed with a dedicated mapping tool. Nucleic Acids Res. 2018; 46:765–781. PubMed PMC
David V., Flegontov P., Gerasimov E., Tanifuji G., Hashimi H., Logacheva M.D., Maruyama S., Onodera N.T., Gray M.W., Archibald J.M.et al. .. Gene loss and error-prone RNA editing in the mitochondrion of Perkinsela, an endosymbiotic kinetoplastid. mBio. 2015; 6:e01498-15. PubMed PMC
Maslov D.A., Simpson L.. The polarity of editing within a multiple gRNA-mediated domain is due to formation of anchors for upstream gRNAs by downstream editing. Cell. 1992; 70:459–467. PubMed
Aravin A.A., Yurchenko V., Merzlyak E., Kolesnikov A.A.. The mitochondrial ND8 gene from Crithidia oncopelti is not pan-edited. FEBS Lett. 1998; 431:457–460. PubMed
Gerasimov E.S., Kostygov A.Y., Yan S., Kolesnikov A.A.. From cryptogene to gene? ND8 editing domain reduction in insect trypanosomatids. Eur. J. Protistol. 2012; 48:185–193. PubMed
Cooper S., Wadsworth E.S., Ochsenreiter T., Ivens A., Savill N.J., Schnaufer A.. Assembly and annotation of the mitochondrial minicircle genome of a differentiation-competent strain of Trypanosoma brucei. Nucleic Acids Res. 2019; 47:11304–11325. PubMed PMC
Simpson L., Douglass S.M., Lake J.A., Pellegrini M., Li F.. Comparison of the mitochondrial genomes and steady state transcriptomes of two strains of the trypanosomatid parasite, Leishmania tarentolae. PLoS Negl. Trop. Dis. 2015; 9:e0003841. PubMed PMC
Camacho E., Rastrojo A., Sanchiz A., Gonzalez-de la Fuente S., Aguado B., Requena J.M.. Leishmania mitochondrial genomes: maxicircle structure and heterogeneity of minicircles. Genes (Basel). 2019; 10:758. PubMed PMC
Yurchenko V., Kolesnikov A.A.. Minicircular kinetoplast DNA of Trypanosomatidae. Mol. Biol. (Mosk). 2001; 35:3–13. PubMed
Yurchenko V., Hobza R., Benada O., Lukeš J.. Trypanosoma avium: large minicircles in the kinetoplast DNA. Exp. Parasitol. 1999; 92:215–218. PubMed
Li S.J., Zhang X., Lukeš J., Li B.Q., Wang J.F., Qu L.H., Hide G., Lai D.H., Lun Z.R.. Novel organization of mitochondrial minicircles and guide RNAs in the zoonotic pathogen Trypanosoma lewisi. Nucleic Acids Res. 2020; 48:9747–9761. PubMed PMC
Blum B., Bakalara N., Simpson L.. A model for RNA editing in kinetoplastid mitochondria: “guide” RNA molecules transcribed from maxicircle DNA provide the edited information. Cell. 1990; 60:189–198. PubMed
Tylec B.L., Simpson R.M., Kirby L.E., Chen R., Sun Y., Koslowsky D.J., Read L.K.. Intrinsic and regulated properties of minimally edited trypanosome mRNAs. Nucleic Acids Res. 2019; 47:3640–3657. PubMed PMC
Carnes J., McDermott S., Anupama A., Oliver B.G., Sather D.N., Stuart K.. In vivo cleavage specificity of Trypanosoma brucei editosome endonucleases. Nucleic Acids Res. 2017; 45:4667–4686. PubMed PMC
Simpson R.M., Bruno A.E., Chen R., Lott K., Tylec B.L., Bard J.E., Sun Y., Buck M.J., Read L.K.. Trypanosome RNA Editing Mediator Complex proteins have distinct functions in gRNA utilization. Nucleic Acids Res. 2017; 45:7965–7983. PubMed PMC
Kirby L.E., Koslowsky D. Cell-line specific RNA editing patterns in Trypanosoma brucei suggest a unique mechanism to generate protein variation in a system intolerant to genetic mutations. Nucleic Acids Res. 2020; 48:1479–1493. PubMed PMC
Flegontov P., Butenko A., Firsov S., Kraeva N., Eliáš M., Field M.C., Filatov D., Flegontova O., Gerasimov E.S., Hlaváčová J.et al. .. Genome of Leptomonas pyrrhocoris: a high-quality reference for monoxenous trypanosomatids and new insights into evolution of Leishmania. Sci. Rep. 2016; 6:23704. PubMed PMC
Gerasimov E.S., Gasparyan A.A., Litus I.A., Logacheva M.D., Kolesnikov A.A.. Minicircle kinetoplast genome of insect trypanosomatidLeptomonas pyrrhocoris. Biochemistry (Mosc). 2017; 82:572–578. PubMed
Bolger A.M., Lohse M., Usadel B.. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014; 30:2114–2120. PubMed PMC
Bushnell B., Rood J., Singer E.. BBMerge - accurate paired shotgun read merging via overlap. PLoS One. 2017; 12:e0185056. PubMed PMC
Ray D.S. Conserved sequence blocks in kinetoplast minicircles from diverse species of trypanosomes. Mol. Cell. Biol. 1989; 9:1365–1367. PubMed PMC
Langmead B., Salzberg S.L.. Fast gapped-read alignment with Bowtie 2. Nat. Methods. 2012; 9:357–359. PubMed PMC
Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N., Marth G., Abecasis G., Durbin R.Genome Project Data Processing, S. . The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009; 25:2078–2079. PubMed PMC
Li W., Godzik A.. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics. 2006; 22:1658–1659. PubMed
Kraeva N., Butenko A., Hlaváčová J., Kostygov A., Myškova J., Grybchuk D., Leštinová T., Votýpka J., Volf P., Opperdoes F.et al. .. Leptomonas seymouri: adaptations to the dixenous life cycle analyzed by genome sequencing, transcriptome profiling and co-infection with Leishmania donovani. PLoS Pathog. 2015; 11:e1005127. PubMed PMC
Bankevich A., Nurk S., Antipov D., Gurevich A.A., Dvorkin M., Kulikov A.S., Lesin V.M., Nikolenko S.I., Pham S., Prjibelski A.D.et al. .. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012; 19:455–477. PubMed PMC
Bailey T.L., Boden M., Buske F.A., Frith M., Grant C.E., Clementi L., Ren J., Li W.W., Noble W.S.. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res. 2009; 37:W202–W208. PubMed PMC
Gerasimov E.S., Zamyatnina K.A., Matveeva N.S., Rudenskaya Y.A., Kraeva N., Kolesnikov A.A., Yurchenko V.. Common structural patterns in the maxicircle divergent region of Trypanosomatidae. Pathogens. 2020; 9:100. PubMed PMC
Kolpakov R., Bana G., Kucherov G.. Mreps: efficient and flexible detection of tandem repeats in DNA. Nucleic Acids Res. 2003; 31:3672–3678. PubMed PMC
Rice P., Longden I., Bleasby A.. EMBOSS: the European molecular biology open software suite. Trends Genet. 2000; 16:276–277. PubMed
Noé L., Kucherov G.. YASS: enhancing the sensitivity of DNA similarity search. Nucleic Acids Res. 2005; 33:W540–W543. PubMed PMC
Kurtz S., Phillippy A., Delcher A.L., Smoot M., Shumway M., Antonescu C., Salzberg S.L.. Versatile and open software for comparing large genomes. Genome Biol. 2004; 5:R12. PubMed PMC
Huerta-Cepas J., Serra F., Bork P.. ETE 3: reconstruction, analysis, and visualization of phylogenomic data. Mol. Biol. Evol. 2016; 33:1635–1638. PubMed PMC
Sievers F., Wilm A., Dineen D., Gibson T.J., Karplus K., Li W., Lopez R., McWilliam H., Remmert M., Soding J.et al. .. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 2011; 7:539. PubMed PMC
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014; 30:1312–1313. PubMed PMC
Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J.. Basic local alignment search tool. J. Mol. Biol. 1990; 215:403–410. PubMed
Kostygov A., Dobáková E., Grybchuk-Ieremenko A., Váhala D., Maslov D.A., Votýpka J., Lukeš J., Yurchenko V.. Novel trypanosomatid - bacterium association: evolution of endosymbiosis in action. mBio. 2016; 7:e01985-15. PubMed PMC
Maslov D.A. Complete set of mitochondrial pan-edited mRNAs inLeishmania mexicana amazonensis LV78. Mol. Biochem. Parasitol. 2010; 173:107–114. PubMed PMC
Koslowsky D., Sun Y., Hindenach J., Theisen T., Lucas J.. The insect-phase gRNA transcriptome in Trypanosoma brucei. Nucleic Acids Res. 2014; 42:1873–1886. PubMed PMC
Yasuhira S., Simpson L.. Minicircle-encoded guide RNAs from Crithidia fasciculata. RNA. 1995; 1:634–643. PubMed PMC
Yurchenko V., Merzlyak E.M., Kolesnikov A.A., Martinkina L.P., Vengerov Y.Y.. Structure of Leishmania minicircle kinetoplast DNA classes. J. Clin. Microbiol. 1999; 37:1656–1657. PubMed PMC
Kostygov A.Y., Yurchenko V.. Revised classification of the subfamily Leishmaniinae (Trypanosomatidae). Folia Parasitol. 2017; 64:020. PubMed
Maruyama S.R., de Santana A.K.M., Takamiya N.T., Takahashi T.Y., Rogerio L.A., Oliveira C.A.B., Milanezi C.M., Trombela V.A., Cruz A.K., Jesus A.R.et al. .. Non-Leishmania parasite in fatal visceral leishmaniasis–like disease, Brazil. Emerg. Infect. Dis. 2019; 25:2088–2092. PubMed PMC
Yurchenko V., Kolesnikov A.A., Lukeš J.. Phylogenetic analysis of Trypanosomatina (Protozoa: Kinetoplastida) based on minicircle conserved regions. Folia Parasitol. 2000; 47:1–5. PubMed
Clement S.L., Mingler M.K., Koslowsky D.J.. An intragenic guide RNA location suggests a complex mechanism for mitochondrial gene expression in Trypanosoma brucei. Eukaryot. Cell. 2004; 3:862–869. PubMed PMC
van der Spek H., Arts G.J., Zwaal R.R., van den Burg J., Sloof P., Benne R.. Conserved genes encode guide RNAs in mitochondria of Crithidia fasciculata. EMBO J. 1991; 10:1217–1224. PubMed PMC
Sturm N.R., Maslov D.A., Blum B., Simpson L.. Generation of unexpected editing patterns inLeishmania tarentolae mitochondrial mRNAs: misediting produced by misguiding. Cell. 1992; 70:469–476. PubMed
Decker C.J., Sollner-Webb B.. RNA editing involves indiscriminate U changes throughout precisely defined editing domains. Cell. 1990; 61:1001–1011. PubMed
Ochsenreiter T., Cipriano M., Hajduk S.L.. Alternative mRNA editing in trypanosomes is extensive and may contribute to mitochondrial protein diversity. PLoS One. 2008; 3:e1566. PubMed PMC
Read L.K., Wilson K.D., Myler P.J., Stuart K.. Editing of Trypanosoma brucei maxicircle CR5 mRNA generates variable carboxy terminal predicted protein sequences. Nucleic Acids Res. 1994; 22:1489–1495. PubMed PMC
Lukeš J., Archibald J.M., Keeling P.J., Doolittle W.F., Gray M.W.. How a neutral evolutionary ratchet can build cellular complexity. IUBMB Life. 2011; 63:528–537. PubMed
Pollard V.W., Rohrer S.P., Michelotti E.F., Hancock K., Hajduk S.L.. Organization of minicircle genes for guide RNAs in Trypanosoma brucei. Cell. 1990; 63:783–790. PubMed
Suematsu T., Zhang L., Aphasizheva I., Monti S., Huang L., Wang Q., Costello C.E., Aphasizhev R.. Antisense transcripts delimit exonucleolytic activity of the mitochondrial 3′ processome to generate guide RNAs. Mol. Cell. 2016; 61:364–378. PubMed PMC
Simpson L., Thiemann O.H., Savill N.J., Alfonzo J.D., Maslov D.A.. Evolution of RNA editing in trypanosome mitochondria. Proc. Natl. Acad. Sci. USA. 2000; 97:6986–6993. PubMed PMC
Savill N.J., Higgs P.G.. A theoretical study of random segregation of minicircles in trypanosomatids. Proc. R Soc. Lond. [Biol.]. 1999; 266:611–620. PubMed PMC
Somy evolution in the honey bee infecting trypanosomatid parasite Lotmaria passim
Mitochondrial RNA editing in Trypanoplasma borreli: New tools, new revelations
Genomics of Trypanosomatidae: Where We Stand and What Needs to Be Done?