Complete minicircle genome of Leptomonas pyrrhocoris reveals sources of its non-canonical mitochondrial RNA editing events

. 2021 Apr 06 ; 49 (6) : 3354-3370.

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33660779

Uridine insertion/deletion (U-indel) editing of mitochondrial mRNA, unique to the protistan class Kinetoplastea, generates canonical as well as potentially non-productive editing events. While the molecular machinery and the role of the guide (g) RNAs that provide required information for U-indel editing are well understood, little is known about the forces underlying its apparently error-prone nature. Analysis of a gRNA:mRNA pair allows the dissection of editing events in a given position of a given mitochondrial transcript. A complete gRNA dataset, paired with a fully characterized mRNA population that includes non-canonically edited transcripts, would allow such an analysis to be performed globally across the mitochondrial transcriptome. To achieve this, we have assembled 67 minicircles of the insect parasite Leptomonas pyrrhocoris, with each minicircle typically encoding one gRNA located in one of two similar-sized units of different origin. From this relatively narrow set of annotated gRNAs, we have dissected all identified mitochondrial editing events in L. pyrrhocoris, the strains of which dramatically differ in the abundance of individual minicircle classes. Our results support a model in which a multitude of editing events are driven by a limited set of gRNAs, with individual gRNAs possessing an inherent ability to guide canonical and non-canonical editing.

Zobrazit více v PubMed

Reiter N.J., Osterman A., Torres-Larios A., Swinger K.K., Pan T., Mondragon A.. Structure of a bacterial ribonuclease P holoenzyme in complex with tRNA. Nature. 2010; 468:784–789. PubMed PMC

Sanford J.R., Caceres J.F.. Pre-mRNA splicing: life at the centre of the central dogma. J. Cell Sci. 2004; 117:6261–6263. PubMed

Shi Y. Mechanistic insights into precursor messenger RNA splicing by the spliceosome. Nat. Rev. Mol. Cell Biol. 2017; 18:655–670. PubMed

Lukeš J., Kaur B., Speijer D.. RNA editing in mitochondria and plastids: weird and widespread. Trends Genet. 2021; 37:99–102. PubMed

Kaur B., Záhonová K., Valach M., Faktorová D., Prokopchuk G., Burger G., Lukeš J.. Gene fragmentation and RNA editing without borders: eccentric mitochondrial genomes of diplonemids. Nucleic Acids Res. 2020; 48:2694–2708. PubMed PMC

Lukeš J., Butenko A., Hashimi H., Maslov D.A., Votýpka J., Yurchenko V.. Trypanosomatids are much more than just trypanosomes: clues from the expanded family tree. Trends Parasitol. 2018; 34:466–480. PubMed

Jensen R.E., Englund P.T.. Network news: the replication of kinetoplast DNA. Annu. Rev. Microbiol. 2012; 66:473–491. PubMed

Lukeš J., Guilbride D.L., Votýpka J., Zíková A., Benne R., Englund P.T.. Kinetoplast DNA network: evolution of an improbable structure. Eukaryot. Cell. 2002; 1:495–502. PubMed PMC

Shlomai J. The structure and replication of kinetoplast DNA. Curr. Mol. Med. 2004; 4:623–647. PubMed

Read L.K., Lukeš J., Hashimi H.. Trypanosome RNA editing: the complexity of getting U in and taking U out. Wiley Interdiscip. Rev. RNA. 2016; 7:33–51. PubMed PMC

Maslov D.A., Opperdoes F.R., Kostygov A.Y., Hashimi H., Lukeš J., Yurchenko V.. Recent advances in trypanosomatid research: genome organization, expression, metabolism, taxonomy and evolution. Parasitology. 2019; 146:1–27. PubMed

Sturm N.R., Simpson L.. Kinetoplast DNA minicircles encode guide RNAs for editing of cytochrome oxidase subunit III mRNA. Cell. 1990; 61:879–884. PubMed

Cruz-Reyes J., Mooers B.H.M., Doharey P.K., Meehan J., Gulati S. Dynamic RNA holo-editosomes with subcomplex variants: Insights into the control of trypanosome editing. Wiley Interdiscip. Rev. RNA. 2018; 9:e1502. PubMed PMC

Aphasizheva I., Alfonzo J., Carnes J., Cestari I., Cruz-Reyes J., Goringer H.U., Hajduk S., Lukeš J., Madison-Antenucci S., Maslov D.A.et al. .. Lexis and grammar of mitochondrial RNA processing in trypanosomes. Trends Parasitol. 2020; 36:337–355. PubMed PMC

Zimmer S.L., Simpson R.M., Read L.K.. High throughput sequencing revolution reveals conserved fundamentals of U-indel editing. Wiley Interdiscip. Rev. RNA. 2018; 9:e1487. PubMed PMC

Koslowsky D.J., Bhat G.J., Read L.K., Stuart K.. Cycles of progressive realignment of gRNA with mRNA in RNA editing. Cell. 1991; 67:537–546. PubMed

Ammerman M.L., Presnyak V., Fisk J.C., Foda B.M., Read L.K.. TbRGG2 facilitates kinetoplastid RNA editing initiation and progression past intrinsic pause sites. RNA. 2010; 16:2239–2251. PubMed PMC

Simpson R.M., Bruno A.E., Bard J.E., Buck M.J., Read L.K.. High-throughput sequencing of partially edited trypanosome mRNAs reveals barriers to editing progression and evidence for alternative editing. RNA. 2016; 22:677–695. PubMed PMC

Gerasimov E.S., Gasparyan A.A., Kaurov I., Tichý B., Logacheva M.D., Kolesnikov A.A., Lukeš J., Yurchenko V., Zimmer S.L., Flegontov P.. Trypanosomatid mitochondrial RNA editing: dramatically complex transcript repertoires revealed with a dedicated mapping tool. Nucleic Acids Res. 2018; 46:765–781. PubMed PMC

David V., Flegontov P., Gerasimov E., Tanifuji G., Hashimi H., Logacheva M.D., Maruyama S., Onodera N.T., Gray M.W., Archibald J.M.et al. .. Gene loss and error-prone RNA editing in the mitochondrion of Perkinsela, an endosymbiotic kinetoplastid. mBio. 2015; 6:e01498-15. PubMed PMC

Maslov D.A., Simpson L.. The polarity of editing within a multiple gRNA-mediated domain is due to formation of anchors for upstream gRNAs by downstream editing. Cell. 1992; 70:459–467. PubMed

Aravin A.A., Yurchenko V., Merzlyak E., Kolesnikov A.A.. The mitochondrial ND8 gene from Crithidia oncopelti is not pan-edited. FEBS Lett. 1998; 431:457–460. PubMed

Gerasimov E.S., Kostygov A.Y., Yan S., Kolesnikov A.A.. From cryptogene to gene? ND8 editing domain reduction in insect trypanosomatids. Eur. J. Protistol. 2012; 48:185–193. PubMed

Cooper S., Wadsworth E.S., Ochsenreiter T., Ivens A., Savill N.J., Schnaufer A.. Assembly and annotation of the mitochondrial minicircle genome of a differentiation-competent strain of Trypanosoma brucei. Nucleic Acids Res. 2019; 47:11304–11325. PubMed PMC

Simpson L., Douglass S.M., Lake J.A., Pellegrini M., Li F.. Comparison of the mitochondrial genomes and steady state transcriptomes of two strains of the trypanosomatid parasite, Leishmania tarentolae. PLoS Negl. Trop. Dis. 2015; 9:e0003841. PubMed PMC

Camacho E., Rastrojo A., Sanchiz A., Gonzalez-de la Fuente S., Aguado B., Requena J.M.. Leishmania mitochondrial genomes: maxicircle structure and heterogeneity of minicircles. Genes (Basel). 2019; 10:758. PubMed PMC

Yurchenko V., Kolesnikov A.A.. Minicircular kinetoplast DNA of Trypanosomatidae. Mol. Biol. (Mosk). 2001; 35:3–13. PubMed

Yurchenko V., Hobza R., Benada O., Lukeš J.. Trypanosoma avium: large minicircles in the kinetoplast DNA. Exp. Parasitol. 1999; 92:215–218. PubMed

Li S.J., Zhang X., Lukeš J., Li B.Q., Wang J.F., Qu L.H., Hide G., Lai D.H., Lun Z.R.. Novel organization of mitochondrial minicircles and guide RNAs in the zoonotic pathogen Trypanosoma lewisi. Nucleic Acids Res. 2020; 48:9747–9761. PubMed PMC

Blum B., Bakalara N., Simpson L.. A model for RNA editing in kinetoplastid mitochondria: “guide” RNA molecules transcribed from maxicircle DNA provide the edited information. Cell. 1990; 60:189–198. PubMed

Tylec B.L., Simpson R.M., Kirby L.E., Chen R., Sun Y., Koslowsky D.J., Read L.K.. Intrinsic and regulated properties of minimally edited trypanosome mRNAs. Nucleic Acids Res. 2019; 47:3640–3657. PubMed PMC

Carnes J., McDermott S., Anupama A., Oliver B.G., Sather D.N., Stuart K.. In vivo cleavage specificity of Trypanosoma brucei editosome endonucleases. Nucleic Acids Res. 2017; 45:4667–4686. PubMed PMC

Simpson R.M., Bruno A.E., Chen R., Lott K., Tylec B.L., Bard J.E., Sun Y., Buck M.J., Read L.K.. Trypanosome RNA Editing Mediator Complex proteins have distinct functions in gRNA utilization. Nucleic Acids Res. 2017; 45:7965–7983. PubMed PMC

Kirby L.E., Koslowsky D. Cell-line specific RNA editing patterns in Trypanosoma brucei suggest a unique mechanism to generate protein variation in a system intolerant to genetic mutations. Nucleic Acids Res. 2020; 48:1479–1493. PubMed PMC

Flegontov P., Butenko A., Firsov S., Kraeva N., Eliáš M., Field M.C., Filatov D., Flegontova O., Gerasimov E.S., Hlaváčová J.et al. .. Genome of Leptomonas pyrrhocoris: a high-quality reference for monoxenous trypanosomatids and new insights into evolution of Leishmania. Sci. Rep. 2016; 6:23704. PubMed PMC

Gerasimov E.S., Gasparyan A.A., Litus I.A., Logacheva M.D., Kolesnikov A.A.. Minicircle kinetoplast genome of insect trypanosomatidLeptomonas pyrrhocoris. Biochemistry (Mosc). 2017; 82:572–578. PubMed

Bolger A.M., Lohse M., Usadel B.. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014; 30:2114–2120. PubMed PMC

Bushnell B., Rood J., Singer E.. BBMerge - accurate paired shotgun read merging via overlap. PLoS One. 2017; 12:e0185056. PubMed PMC

Ray D.S. Conserved sequence blocks in kinetoplast minicircles from diverse species of trypanosomes. Mol. Cell. Biol. 1989; 9:1365–1367. PubMed PMC

Langmead B., Salzberg S.L.. Fast gapped-read alignment with Bowtie 2. Nat. Methods. 2012; 9:357–359. PubMed PMC

Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N., Marth G., Abecasis G., Durbin R.Genome Project Data Processing, S. . The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009; 25:2078–2079. PubMed PMC

Li W., Godzik A.. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics. 2006; 22:1658–1659. PubMed

Kraeva N., Butenko A., Hlaváčová J., Kostygov A., Myškova J., Grybchuk D., Leštinová T., Votýpka J., Volf P., Opperdoes F.et al. .. Leptomonas seymouri: adaptations to the dixenous life cycle analyzed by genome sequencing, transcriptome profiling and co-infection with Leishmania donovani. PLoS Pathog. 2015; 11:e1005127. PubMed PMC

Bankevich A., Nurk S., Antipov D., Gurevich A.A., Dvorkin M., Kulikov A.S., Lesin V.M., Nikolenko S.I., Pham S., Prjibelski A.D.et al. .. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012; 19:455–477. PubMed PMC

Bailey T.L., Boden M., Buske F.A., Frith M., Grant C.E., Clementi L., Ren J., Li W.W., Noble W.S.. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res. 2009; 37:W202–W208. PubMed PMC

Gerasimov E.S., Zamyatnina K.A., Matveeva N.S., Rudenskaya Y.A., Kraeva N., Kolesnikov A.A., Yurchenko V.. Common structural patterns in the maxicircle divergent region of Trypanosomatidae. Pathogens. 2020; 9:100. PubMed PMC

Kolpakov R., Bana G., Kucherov G.. Mreps: efficient and flexible detection of tandem repeats in DNA. Nucleic Acids Res. 2003; 31:3672–3678. PubMed PMC

Rice P., Longden I., Bleasby A.. EMBOSS: the European molecular biology open software suite. Trends Genet. 2000; 16:276–277. PubMed

Noé L., Kucherov G.. YASS: enhancing the sensitivity of DNA similarity search. Nucleic Acids Res. 2005; 33:W540–W543. PubMed PMC

Kurtz S., Phillippy A., Delcher A.L., Smoot M., Shumway M., Antonescu C., Salzberg S.L.. Versatile and open software for comparing large genomes. Genome Biol. 2004; 5:R12. PubMed PMC

Huerta-Cepas J., Serra F., Bork P.. ETE 3: reconstruction, analysis, and visualization of phylogenomic data. Mol. Biol. Evol. 2016; 33:1635–1638. PubMed PMC

Sievers F., Wilm A., Dineen D., Gibson T.J., Karplus K., Li W., Lopez R., McWilliam H., Remmert M., Soding J.et al. .. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 2011; 7:539. PubMed PMC

Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014; 30:1312–1313. PubMed PMC

Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J.. Basic local alignment search tool. J. Mol. Biol. 1990; 215:403–410. PubMed

Kostygov A., Dobáková E., Grybchuk-Ieremenko A., Váhala D., Maslov D.A., Votýpka J., Lukeš J., Yurchenko V.. Novel trypanosomatid - bacterium association: evolution of endosymbiosis in action. mBio. 2016; 7:e01985-15. PubMed PMC

Maslov D.A. Complete set of mitochondrial pan-edited mRNAs inLeishmania mexicana amazonensis LV78. Mol. Biochem. Parasitol. 2010; 173:107–114. PubMed PMC

Koslowsky D., Sun Y., Hindenach J., Theisen T., Lucas J.. The insect-phase gRNA transcriptome in Trypanosoma brucei. Nucleic Acids Res. 2014; 42:1873–1886. PubMed PMC

Yasuhira S., Simpson L.. Minicircle-encoded guide RNAs from Crithidia fasciculata. RNA. 1995; 1:634–643. PubMed PMC

Yurchenko V., Merzlyak E.M., Kolesnikov A.A., Martinkina L.P., Vengerov Y.Y.. Structure of Leishmania minicircle kinetoplast DNA classes. J. Clin. Microbiol. 1999; 37:1656–1657. PubMed PMC

Kostygov A.Y., Yurchenko V.. Revised classification of the subfamily Leishmaniinae (Trypanosomatidae). Folia Parasitol. 2017; 64:020. PubMed

Maruyama S.R., de Santana A.K.M., Takamiya N.T., Takahashi T.Y., Rogerio L.A., Oliveira C.A.B., Milanezi C.M., Trombela V.A., Cruz A.K., Jesus A.R.et al. .. Non-Leishmania parasite in fatal visceral leishmaniasis–like disease, Brazil. Emerg. Infect. Dis. 2019; 25:2088–2092. PubMed PMC

Yurchenko V., Kolesnikov A.A., Lukeš J.. Phylogenetic analysis of Trypanosomatina (Protozoa: Kinetoplastida) based on minicircle conserved regions. Folia Parasitol. 2000; 47:1–5. PubMed

Clement S.L., Mingler M.K., Koslowsky D.J.. An intragenic guide RNA location suggests a complex mechanism for mitochondrial gene expression in Trypanosoma brucei. Eukaryot. Cell. 2004; 3:862–869. PubMed PMC

van der Spek H., Arts G.J., Zwaal R.R., van den Burg J., Sloof P., Benne R.. Conserved genes encode guide RNAs in mitochondria of Crithidia fasciculata. EMBO J. 1991; 10:1217–1224. PubMed PMC

Sturm N.R., Maslov D.A., Blum B., Simpson L.. Generation of unexpected editing patterns inLeishmania tarentolae mitochondrial mRNAs: misediting produced by misguiding. Cell. 1992; 70:469–476. PubMed

Decker C.J., Sollner-Webb B.. RNA editing involves indiscriminate U changes throughout precisely defined editing domains. Cell. 1990; 61:1001–1011. PubMed

Ochsenreiter T., Cipriano M., Hajduk S.L.. Alternative mRNA editing in trypanosomes is extensive and may contribute to mitochondrial protein diversity. PLoS One. 2008; 3:e1566. PubMed PMC

Read L.K., Wilson K.D., Myler P.J., Stuart K.. Editing of Trypanosoma brucei maxicircle CR5 mRNA generates variable carboxy terminal predicted protein sequences. Nucleic Acids Res. 1994; 22:1489–1495. PubMed PMC

Lukeš J., Archibald J.M., Keeling P.J., Doolittle W.F., Gray M.W.. How a neutral evolutionary ratchet can build cellular complexity. IUBMB Life. 2011; 63:528–537. PubMed

Pollard V.W., Rohrer S.P., Michelotti E.F., Hancock K., Hajduk S.L.. Organization of minicircle genes for guide RNAs in Trypanosoma brucei. Cell. 1990; 63:783–790. PubMed

Suematsu T., Zhang L., Aphasizheva I., Monti S., Huang L., Wang Q., Costello C.E., Aphasizhev R.. Antisense transcripts delimit exonucleolytic activity of the mitochondrial 3′ processome to generate guide RNAs. Mol. Cell. 2016; 61:364–378. PubMed PMC

Simpson L., Thiemann O.H., Savill N.J., Alfonzo J.D., Maslov D.A.. Evolution of RNA editing in trypanosome mitochondria. Proc. Natl. Acad. Sci. USA. 2000; 97:6986–6993. PubMed PMC

Savill N.J., Higgs P.G.. A theoretical study of random segregation of minicircles in trypanosomatids. Proc. R Soc. Lond. [Biol.]. 1999; 266:611–620. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace