Trypanosoma cruzi is a unicellular protistan parasitic species that is comprised of strains and isolates exhibiting high levels of genetic and metabolic variability. In the insect vector, it is known to be highly responsive to starvation, a signal for progression to a life stage in which it can infect mammalian cells. Most mRNAs encoded in its mitochondrion require the targeted insertion and deletion of uridines to become translatable transcripts. This study defined differences in uridine-insertion/deletion RNA editing among three strains and established the mechanism whereby abundances of edited (and, thus, translatable) mitochondrial gene products increase during starvation. Our approach utilized our custom T-Aligner toolkit to describe transcriptome-wide editing events and reconstruct editing products from high-throughput sequencing data. We found that the relative abundance of mitochondrial transcripts and the proportion of mRNAs that are edited varies greatly between analyzed strains, a characteristic that could potentially impact metabolic capacity. Starvation typically led to an increase in overall editing activity rather than affecting a specific step in the process. We also determined that transcripts CR3, CR4, and ND3 produce multiple open reading frames that, if translated, would generate different proteins. Finally, we quantitated the inherent flexibility of editing in T. cruzi and found it to be higher relative to that in a related trypanosomatid lineage. Over time, new editing domains or patterns could prove advantageous to the organism and become more widespread within individual transcriptomes or among strains.
- MeSH
- editace RNA MeSH
- messenger RNA genetika metabolismus MeSH
- protozoální proteiny genetika metabolismus MeSH
- RNA mitochondriální genetika metabolismus MeSH
- RNA protozoální genetika metabolismus MeSH
- RNA metabolismus MeSH
- savci genetika MeSH
- transkriptom MeSH
- Trypanosoma brucei brucei * genetika MeSH
- Trypanosoma cruzi * genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Uridine insertion/deletion (U-indel) editing of mitochondrial mRNA, unique to the protistan class Kinetoplastea, generates canonical as well as potentially non-productive editing events. While the molecular machinery and the role of the guide (g) RNAs that provide required information for U-indel editing are well understood, little is known about the forces underlying its apparently error-prone nature. Analysis of a gRNA:mRNA pair allows the dissection of editing events in a given position of a given mitochondrial transcript. A complete gRNA dataset, paired with a fully characterized mRNA population that includes non-canonically edited transcripts, would allow such an analysis to be performed globally across the mitochondrial transcriptome. To achieve this, we have assembled 67 minicircles of the insect parasite Leptomonas pyrrhocoris, with each minicircle typically encoding one gRNA located in one of two similar-sized units of different origin. From this relatively narrow set of annotated gRNAs, we have dissected all identified mitochondrial editing events in L. pyrrhocoris, the strains of which dramatically differ in the abundance of individual minicircle classes. Our results support a model in which a multitude of editing events are driven by a limited set of gRNAs, with individual gRNAs possessing an inherent ability to guide canonical and non-canonical editing.
- MeSH
- editace RNA * MeSH
- fylogeneze MeSH
- genom protozoální * MeSH
- guide RNA, Kinetoplastida chemie metabolismus MeSH
- messenger RNA metabolismus MeSH
- RNA mitochondriální metabolismus MeSH
- transkriptom MeSH
- Trypanosomatina genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Maxicircles of all kinetoplastid flagellates are functional analogs of mitochondrial genome of other eukaryotes. They consist of two distinct parts, called the coding region and the divergent region (DR). The DR is composed of highly repetitive sequences and, as such, remains the least explored segment of a trypanosomatid genome. It is extremely difficult to sequence and assemble, that is why very few full length maxicircle sequences were available until now. Using PacBio data, we assembled 17 complete maxicircles from different species of trypanosomatids. Here we present their large-scale comparative analysis and describe common patterns of DR organization in trypanosomatids.
- Publikační typ
- časopisecké články MeSH
RNA editing by targeted insertion and deletion of uridine is crucial to generate translatable mRNAs from the cryptogenes of the mitochondrial genome of kinetoplastids. This type of editing consists of a stepwise cascade of reactions generally proceeding from 3' to 5' on a transcript, resulting in a population of partially edited as well as pre-edited and completely edited molecules for each mitochondrial cryptogene of these protozoans. Often, the number of uridines inserted and deleted exceed the number of nucleotides that are genome-encoded. Thus, analysis of kinetoplastid mitochondrial transcriptomes has proven frustratingly complex. Here we present our analysis of Leptomonas pyrrhocoris mitochondrial cDNA deep sequencing reads using T-Aligner, our new tool which allows comprehensive characterization of RNA editing, not relying on targeted transcript amplification and on prior knowledge of final edited products. T-Aligner implements a pipeline of read mapping, visualization of all editing states and their coverage, and assembly of canonical and alternative translatable mRNAs. We also assess T-Aligner functionality on a more challenging deep sequencing read input from Trypanosoma cruzi. The analysis reveals that transcripts of cryptogenes of both species undergo very complex editing that includes the formation of alternative open reading frames and whole categories of truncated editing products.
- MeSH
- editace RNA * MeSH
- genom mitochondriální genetika MeSH
- genom protozoální genetika MeSH
- izoformy RNA genetika metabolismus MeSH
- mitochondrie genetika metabolismus MeSH
- RNA mitochondriální genetika metabolismus MeSH
- RNA protozoální genetika metabolismus MeSH
- sestřih RNA MeSH
- stanovení celkové genové exprese metody MeSH
- Trypanosoma brucei brucei genetika metabolismus MeSH
- Trypanosomatina genetika metabolismus MeSH
- výpočetní biologie metody MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH