Trypanosoma cruzi strain and starvation-driven mitochondrial RNA editing and transcriptome variability

. 2022 Jul ; 28 (7) : 993-1012. [epub] 20220425

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35470233

Trypanosoma cruzi is a unicellular protistan parasitic species that is comprised of strains and isolates exhibiting high levels of genetic and metabolic variability. In the insect vector, it is known to be highly responsive to starvation, a signal for progression to a life stage in which it can infect mammalian cells. Most mRNAs encoded in its mitochondrion require the targeted insertion and deletion of uridines to become translatable transcripts. This study defined differences in uridine-insertion/deletion RNA editing among three strains and established the mechanism whereby abundances of edited (and, thus, translatable) mitochondrial gene products increase during starvation. Our approach utilized our custom T-Aligner toolkit to describe transcriptome-wide editing events and reconstruct editing products from high-throughput sequencing data. We found that the relative abundance of mitochondrial transcripts and the proportion of mRNAs that are edited varies greatly between analyzed strains, a characteristic that could potentially impact metabolic capacity. Starvation typically led to an increase in overall editing activity rather than affecting a specific step in the process. We also determined that transcripts CR3, CR4, and ND3 produce multiple open reading frames that, if translated, would generate different proteins. Finally, we quantitated the inherent flexibility of editing in T. cruzi and found it to be higher relative to that in a related trypanosomatid lineage. Over time, new editing domains or patterns could prove advantageous to the organism and become more widespread within individual transcriptomes or among strains.

Zobrazit více v PubMed

Aphasizheva I, Alfonzo J, Carnes J, Cestari I, Cruz-Reyes J, Goringer HU, Hajduk S, Lukeš J, Madison-Antenucci S, Maslov DA, et al. 2020. Lexis and grammar of mitochondrial RNA processing in trypanosomes. Trends Parasitol 36: 337–355. 10.1016/j.pt.2020.01.006 PubMed DOI PMC

Benne R, Van den Burg J, Brakenhoff JP, Sloof P, Van Boom JH, Tromp MC. 1986. Major transcript of the frameshifted coxII gene from trypanosome mitochondria contains four nucleotides that are not encoded in the DNA. Cell 46: 819–826. 10.1016/0092-8674(86)90063-2 PubMed DOI

Brenière SF, Waleckx E, Brenière C. 2016. Over six thousand Trypanosoma cruzi strains classified into discrete typing units (DTUs): attempt at an inventory. PLoS Negl Trop Dis 10: e0004792. 10.1371/journal.pntd.0004792 PubMed DOI PMC

Callejas-Hernández F, Herreros-Cabello A, Del Moral-Salmoral J, Fresno M, Gironès N. 2021. The complete mitochondrial DNA of Trypanosoma cruzi: maxicircles and minicircles. Front Cell Infect Microbiol 11: 672448. 10.3389/fcimb.2021.672448 PubMed DOI PMC

Camacho E, Rastrojo A, Sanchiz A, Gonzalez-de la Fuente S, Aguado B, Requena JM. 2019. Leishmania mitochondrial genomes: maxicircle structure and heterogeneity of minicircles. Genes (Basel) 10: 758. 10.3390/genes10100758 PubMed DOI PMC

Castellani O, Ribeiro LV, Fernandes JF. 1967. Differentiation of Trypanosoma cruzi in culture. J Protozool 14: 447–451. 10.1111/j.1550-7408.1967.tb02024.x PubMed DOI

Contreras VT, Morel CM, Goldenberg S. 1985. Stage specific gene expression precedes morphological changes during Trypanosoma cruzi metacyclogenesis. Mol Biochem Parasitol 14: 83–96. 10.1016/0166-6851(85)90108-2 PubMed DOI

Cooper S, Wadsworth ES, Ochsenreiter T, Ivens A, Savill NJ, Schnaufer A. 2019. Assembly and annotation of the mitochondrial minicircle genome of a differentiation-competent strain of Trypanosoma brucei. Nucleic Acids Res 47: 11304–11325. 10.1093/nar/gkz928 PubMed DOI PMC

Cruz-Reyes J, Mooers BHM, Doharey PK, Meehan J, Gulati S. 2018. Dynamic RNA holo-editosomes with subcomplex variants: insights into the control of trypanosome editing. Wiley Interdiscip Rev RNA 9: e1502. 10.1002/wrna.1502 PubMed DOI PMC

Gerasimov ES, Gasparyan AA, Afonin DA, Zimmer SL, Kraeva N, Lukeš J, Yurchenko V, Kolesnikov A. 2021. Complete minicircle genome of Leptomonas pyrrhocoris reveals sources of its non-canonical mitochondrial RNA editing events. Nucleic Acids Res 49: 3354–3370. 10.1093/nar/gkab114 PubMed DOI PMC

Gerasimov ES, Gasparyan AA, Kaurov I, Tichý B, Logacheva MD, Kolesnikov AA, Lukeš J, Yurchenko V, Zimmer SL, Flegontov P. 2018. Trypanosomatid mitochondrial RNA editing: dramatically complex transcript repertoires revealed with a dedicated mapping tool. Nucleic Acids Res 46: 765–781. 10.1093/nar/gkx1202 PubMed DOI PMC

Golden DE, Hajduk SL. 2005. The 3′-untranslated region of cytochrome oxidase II mRNA functions in RNA editing of African trypanosomes exclusively as a cis guide RNA. RNA 11: 29–37. 10.1261/rna.7170705 PubMed DOI PMC

Golden DE, Hajduk SL. 2006. The importance of RNA structure in RNA editing and a potential proofreading mechanism for correct guide RNA:pre-mRNA binary complex formation. J Mol Biol 359: 585–596. 10.1016/j.jmb.2006.03.041 PubMed DOI

Goldenberg S, Avila AR. 2011. Aspects of Trypanosoma cruzi stage differentiation. Adv Parasitol 75: 285–305. 10.1016/B978-0-12-385863-4.00013-7 PubMed DOI

Greif G, Rodriguez M, Reyna-Bello A, Robello C, Alvarez-Valin F. 2015. Kinetoplast adaptations in American strains from Trypanosoma vivax. Mutat Res 773: 69–82. 10.1016/j.mrfmmm.2015.01.008 PubMed DOI

Kalem MC, Gerasimov ES, Vu PK, Zimmer SL. 2018. Gene expression to mitochondrial metabolism: variability among cultured Trypanosoma cruzi strains. PLoS ONE 13: e0197983. 10.1371/journal.pone.0197983 PubMed DOI PMC

Kim KS, Teixeira SM, Kirchhoff LV, Donelson JE. 1994. Transcription and editing of cytochrome oxidase II RNAs in Trypanosoma cruzi. J Biol Chem 269: 1206–1211. 10.1016/S0021-9258(17)42243-5 PubMed DOI

Kirby LE, Koslowsky D. 2017. Mitochondrial dual-coding genes in Trypanosoma brucei. PLoS Negl Trop Dis 11: e0005989. 10.1371/journal.pntd.0005989 PubMed DOI PMC

Kirby LE, Koslowsky D. 2020. Cell-line specific RNA editing patterns in Trypanosoma brucei suggest a unique mechanism to generate protein variation in a system intolerant to genetic mutations. Nucleic Acids Res 48: 1479–1493. 10.1093/nar/gkz1131 PubMed DOI PMC

Kostygov AY, Karnkowska A, Votýpka J, Tashyreva D, Maciszewski K, Yurchenko V, Lukeš J. 2021. Euglenozoa: taxonomy, diversity and ecology, symbioses and viruses. Open Biol 11: 200407. 10.1098/rsob.200407 PubMed DOI PMC

Lukeš J, Butenko A, Hashimi H, Maslov DA, Votýpka J, Yurchenko V. 2018. Trypanosomatids are much more than just trypanosomes: clues from the expanded family tree. Trends Parasitol 34: 466–480. 10.1016/j.pt.2018.03.002 PubMed DOI

Lukeš J, Kaur B, Speijer D. 2021. RNA editing in mitochondria and plastids: weird and widespread. Trends Genet 37: 99–102. 10.1016/j.tig.2020.10.004 PubMed DOI

Majeau A, Murphy L, Herrera C, Dumonteil E. 2021. Assessing Trypanosoma cruzi parasite diversity through comparative genomics: implications for disease epidemiology and diagnostics. Pathogens 10: 212. 10.3390/pathogens10020212 PubMed DOI PMC

Maslov DA, Opperdoes FR, Kostygov AY, Hashimi H, Lukeš J, Yurchenko V. 2019. Recent advances in trypanosomatid research: genome organization, expression, metabolism, taxonomy and evolution. Parasitology 146: 1–27. 10.1017/S0031182018000951 PubMed DOI

Ramirez-Barrios R, Susa EK, Smoniewski CM, Faacks SP, Liggett CK, Zimmer SL. 2020. A link between mitochondrial gene expression and life stage morphologies in Trypanosoma cruzi. Mol Microbiol 113: 1003–1021. 10.1111/mmi.14466 PubMed DOI

Robinson MD, McCarthy DJ, Smyth GK. 2010. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26: 139–140. 10.1093/bioinformatics/btp616 PubMed DOI PMC

Rusman F, Floridia-Yapur N, Tomasini N, Diosque P. 2021. Guide RNA repertoires in the main lineages of Trypanosoma cruzi: high diversity and variable redundancy among strains. Front Cell Infect Microbiol 11: 663416. 10.3389/fcimb.2021.663416 PubMed DOI PMC

Ruvalcaba-Trejo LI, Sturm NR. 2011. The Trypanosoma cruzi Sylvio X10 strain maxicircle sequence: the third musketeer. BMC Genomics 12: 58. 10.1186/1471-2164-12-58 PubMed DOI PMC

Shaw AK, Kalem MC, Zimmer SL. 2016. Mitochondrial gene expression is responsive to starvation stress and developmental transition in Trypanosoma cruzi. mSphere 1: e00051-00016. 10.1128/mSphere.00051-16 PubMed DOI PMC

Simpson RM, Bruno AE, Chen R, Lott K, Tylec BL, Bard JE, Sun Y, Buck MJ, Read LK. 2017. Trypanosome RNA editing mediator complex proteins have distinct functions in gRNA utilization. Nucleic Acids Res 45: 7965–7983. 10.1093/nar/gkx458 PubMed DOI PMC

Škodová-Sveráková I, Verner Z, Skalický T, Votýpka J, Horváth A, Lukeš J. 2015. Lineage-specific activities of a multipotent mitochondrion of trypanosomatid flagellates. Mol Microbiol 96: 55–67. 10.1111/mmi.12920 PubMed DOI

Sturm NR, Simpson L. 1990. Partially edited mRNAs for cytochrome b and subunit III of cytochrome oxidase from Leishmania tarentolae mitochondria: RNA editing intermediates. Cell 61: 871–878. 10.1016/0092-8674(90)90197-M PubMed DOI

Tylec BL, Simpson RM, Kirby LE, Chen R, Sun Y, Koslowsky DJ, Read LK. 2019. Intrinsic and regulated properties of minimally edited trypanosome mRNAs. Nucleic Acids Res 47: 3640–3657. 10.1093/nar/gkz012 PubMed DOI PMC

Tyler KM, Engman DM. 2001. The life cycle of Trypanosoma cruzi revisited. Int J Parasitol 31: 472–481. 10.1016/S0020-7519(01)00153-9 PubMed DOI

Vercellino I, Sazanov LA. 2021. The assembly, regulation and function of the mitochondrial respiratory chain. Nat Rev Mol Cell Biol 23: 141–161. 10.1038/s41580-021-00415-0 PubMed DOI

Westenberger SJ, Cerqueira GC, El-Sayed NM, Zingales B, Campbell DA, Sturm NR. 2006. Trypanosoma cruzi mitochondrial maxicircles display species- and strain-specific variation and a conserved element in the non-coding region. BMC Genomics 7: 60. 10.1186/1471-2164-7-60 PubMed DOI PMC

Zimmer SL, Simpson RM, Read LK. 2018. High throughput sequencing revolution reveals conserved fundamentals of U-indel editing. Wiley Interdiscip Rev RNA 9: e1487. 10.1002/wrna.1487 PubMed DOI PMC

Zingales B. 2018. Trypanosoma cruzi genetic diversity: something new for something known about Chagas disease manifestations, serodiagnosis and drug sensitivity. Acta Trop 184: 38–52. 10.1016/j.actatropica.2017.09.017 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...