Trypanosoma cruzi strain and starvation-driven mitochondrial RNA editing and transcriptome variability
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35470233
PubMed Central
PMC9202582
DOI
10.1261/rna.079088.121
PII: rna.079088.121
Knihovny.cz E-zdroje
- Klíčová slova
- Chagas disease, RNA editing, electron transport chain, epimastigote, metabolism,
- MeSH
- editace RNA MeSH
- messenger RNA genetika metabolismus MeSH
- protozoální proteiny genetika metabolismus MeSH
- RNA mitochondriální genetika metabolismus MeSH
- RNA protozoální genetika metabolismus MeSH
- RNA metabolismus MeSH
- savci genetika MeSH
- transkriptom MeSH
- Trypanosoma brucei brucei * genetika MeSH
- Trypanosoma cruzi * genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- messenger RNA MeSH
- protozoální proteiny MeSH
- RNA mitochondriální MeSH
- RNA protozoální MeSH
- RNA MeSH
Trypanosoma cruzi is a unicellular protistan parasitic species that is comprised of strains and isolates exhibiting high levels of genetic and metabolic variability. In the insect vector, it is known to be highly responsive to starvation, a signal for progression to a life stage in which it can infect mammalian cells. Most mRNAs encoded in its mitochondrion require the targeted insertion and deletion of uridines to become translatable transcripts. This study defined differences in uridine-insertion/deletion RNA editing among three strains and established the mechanism whereby abundances of edited (and, thus, translatable) mitochondrial gene products increase during starvation. Our approach utilized our custom T-Aligner toolkit to describe transcriptome-wide editing events and reconstruct editing products from high-throughput sequencing data. We found that the relative abundance of mitochondrial transcripts and the proportion of mRNAs that are edited varies greatly between analyzed strains, a characteristic that could potentially impact metabolic capacity. Starvation typically led to an increase in overall editing activity rather than affecting a specific step in the process. We also determined that transcripts CR3, CR4, and ND3 produce multiple open reading frames that, if translated, would generate different proteins. Finally, we quantitated the inherent flexibility of editing in T. cruzi and found it to be higher relative to that in a related trypanosomatid lineage. Over time, new editing domains or patterns could prove advantageous to the organism and become more widespread within individual transcriptomes or among strains.
Faculty of Biology M 5 Lomonosov Moscow State University Moscow 119991 Russia
Institute for Information Transmission Problems Russian Academy of Sciences Moscow 127051 Russia
Life Science Research Centre Faculty of Science University of Ostrava 710 00 Ostrava Czech Republic
Zobrazit více v PubMed
Aphasizheva I, Alfonzo J, Carnes J, Cestari I, Cruz-Reyes J, Goringer HU, Hajduk S, Lukeš J, Madison-Antenucci S, Maslov DA, et al. 2020. Lexis and grammar of mitochondrial RNA processing in trypanosomes. Trends Parasitol 36: 337–355. 10.1016/j.pt.2020.01.006 PubMed DOI PMC
Benne R, Van den Burg J, Brakenhoff JP, Sloof P, Van Boom JH, Tromp MC. 1986. Major transcript of the frameshifted coxII gene from trypanosome mitochondria contains four nucleotides that are not encoded in the DNA. Cell 46: 819–826. 10.1016/0092-8674(86)90063-2 PubMed DOI
Brenière SF, Waleckx E, Brenière C. 2016. Over six thousand Trypanosoma cruzi strains classified into discrete typing units (DTUs): attempt at an inventory. PLoS Negl Trop Dis 10: e0004792. 10.1371/journal.pntd.0004792 PubMed DOI PMC
Callejas-Hernández F, Herreros-Cabello A, Del Moral-Salmoral J, Fresno M, Gironès N. 2021. The complete mitochondrial DNA of Trypanosoma cruzi: maxicircles and minicircles. Front Cell Infect Microbiol 11: 672448. 10.3389/fcimb.2021.672448 PubMed DOI PMC
Camacho E, Rastrojo A, Sanchiz A, Gonzalez-de la Fuente S, Aguado B, Requena JM. 2019. Leishmania mitochondrial genomes: maxicircle structure and heterogeneity of minicircles. Genes (Basel) 10: 758. 10.3390/genes10100758 PubMed DOI PMC
Castellani O, Ribeiro LV, Fernandes JF. 1967. Differentiation of Trypanosoma cruzi in culture. J Protozool 14: 447–451. 10.1111/j.1550-7408.1967.tb02024.x PubMed DOI
Contreras VT, Morel CM, Goldenberg S. 1985. Stage specific gene expression precedes morphological changes during Trypanosoma cruzi metacyclogenesis. Mol Biochem Parasitol 14: 83–96. 10.1016/0166-6851(85)90108-2 PubMed DOI
Cooper S, Wadsworth ES, Ochsenreiter T, Ivens A, Savill NJ, Schnaufer A. 2019. Assembly and annotation of the mitochondrial minicircle genome of a differentiation-competent strain of Trypanosoma brucei. Nucleic Acids Res 47: 11304–11325. 10.1093/nar/gkz928 PubMed DOI PMC
Cruz-Reyes J, Mooers BHM, Doharey PK, Meehan J, Gulati S. 2018. Dynamic RNA holo-editosomes with subcomplex variants: insights into the control of trypanosome editing. Wiley Interdiscip Rev RNA 9: e1502. 10.1002/wrna.1502 PubMed DOI PMC
Gerasimov ES, Gasparyan AA, Afonin DA, Zimmer SL, Kraeva N, Lukeš J, Yurchenko V, Kolesnikov A. 2021. Complete minicircle genome of Leptomonas pyrrhocoris reveals sources of its non-canonical mitochondrial RNA editing events. Nucleic Acids Res 49: 3354–3370. 10.1093/nar/gkab114 PubMed DOI PMC
Gerasimov ES, Gasparyan AA, Kaurov I, Tichý B, Logacheva MD, Kolesnikov AA, Lukeš J, Yurchenko V, Zimmer SL, Flegontov P. 2018. Trypanosomatid mitochondrial RNA editing: dramatically complex transcript repertoires revealed with a dedicated mapping tool. Nucleic Acids Res 46: 765–781. 10.1093/nar/gkx1202 PubMed DOI PMC
Golden DE, Hajduk SL. 2005. The 3′-untranslated region of cytochrome oxidase II mRNA functions in RNA editing of African trypanosomes exclusively as a cis guide RNA. RNA 11: 29–37. 10.1261/rna.7170705 PubMed DOI PMC
Golden DE, Hajduk SL. 2006. The importance of RNA structure in RNA editing and a potential proofreading mechanism for correct guide RNA:pre-mRNA binary complex formation. J Mol Biol 359: 585–596. 10.1016/j.jmb.2006.03.041 PubMed DOI
Goldenberg S, Avila AR. 2011. Aspects of Trypanosoma cruzi stage differentiation. Adv Parasitol 75: 285–305. 10.1016/B978-0-12-385863-4.00013-7 PubMed DOI
Greif G, Rodriguez M, Reyna-Bello A, Robello C, Alvarez-Valin F. 2015. Kinetoplast adaptations in American strains from Trypanosoma vivax. Mutat Res 773: 69–82. 10.1016/j.mrfmmm.2015.01.008 PubMed DOI
Kalem MC, Gerasimov ES, Vu PK, Zimmer SL. 2018. Gene expression to mitochondrial metabolism: variability among cultured Trypanosoma cruzi strains. PLoS ONE 13: e0197983. 10.1371/journal.pone.0197983 PubMed DOI PMC
Kim KS, Teixeira SM, Kirchhoff LV, Donelson JE. 1994. Transcription and editing of cytochrome oxidase II RNAs in Trypanosoma cruzi. J Biol Chem 269: 1206–1211. 10.1016/S0021-9258(17)42243-5 PubMed DOI
Kirby LE, Koslowsky D. 2017. Mitochondrial dual-coding genes in Trypanosoma brucei. PLoS Negl Trop Dis 11: e0005989. 10.1371/journal.pntd.0005989 PubMed DOI PMC
Kirby LE, Koslowsky D. 2020. Cell-line specific RNA editing patterns in Trypanosoma brucei suggest a unique mechanism to generate protein variation in a system intolerant to genetic mutations. Nucleic Acids Res 48: 1479–1493. 10.1093/nar/gkz1131 PubMed DOI PMC
Kostygov AY, Karnkowska A, Votýpka J, Tashyreva D, Maciszewski K, Yurchenko V, Lukeš J. 2021. Euglenozoa: taxonomy, diversity and ecology, symbioses and viruses. Open Biol 11: 200407. 10.1098/rsob.200407 PubMed DOI PMC
Lukeš J, Butenko A, Hashimi H, Maslov DA, Votýpka J, Yurchenko V. 2018. Trypanosomatids are much more than just trypanosomes: clues from the expanded family tree. Trends Parasitol 34: 466–480. 10.1016/j.pt.2018.03.002 PubMed DOI
Lukeš J, Kaur B, Speijer D. 2021. RNA editing in mitochondria and plastids: weird and widespread. Trends Genet 37: 99–102. 10.1016/j.tig.2020.10.004 PubMed DOI
Majeau A, Murphy L, Herrera C, Dumonteil E. 2021. Assessing Trypanosoma cruzi parasite diversity through comparative genomics: implications for disease epidemiology and diagnostics. Pathogens 10: 212. 10.3390/pathogens10020212 PubMed DOI PMC
Maslov DA, Opperdoes FR, Kostygov AY, Hashimi H, Lukeš J, Yurchenko V. 2019. Recent advances in trypanosomatid research: genome organization, expression, metabolism, taxonomy and evolution. Parasitology 146: 1–27. 10.1017/S0031182018000951 PubMed DOI
Ramirez-Barrios R, Susa EK, Smoniewski CM, Faacks SP, Liggett CK, Zimmer SL. 2020. A link between mitochondrial gene expression and life stage morphologies in Trypanosoma cruzi. Mol Microbiol 113: 1003–1021. 10.1111/mmi.14466 PubMed DOI
Robinson MD, McCarthy DJ, Smyth GK. 2010. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26: 139–140. 10.1093/bioinformatics/btp616 PubMed DOI PMC
Rusman F, Floridia-Yapur N, Tomasini N, Diosque P. 2021. Guide RNA repertoires in the main lineages of Trypanosoma cruzi: high diversity and variable redundancy among strains. Front Cell Infect Microbiol 11: 663416. 10.3389/fcimb.2021.663416 PubMed DOI PMC
Ruvalcaba-Trejo LI, Sturm NR. 2011. The Trypanosoma cruzi Sylvio X10 strain maxicircle sequence: the third musketeer. BMC Genomics 12: 58. 10.1186/1471-2164-12-58 PubMed DOI PMC
Shaw AK, Kalem MC, Zimmer SL. 2016. Mitochondrial gene expression is responsive to starvation stress and developmental transition in Trypanosoma cruzi. mSphere 1: e00051-00016. 10.1128/mSphere.00051-16 PubMed DOI PMC
Simpson RM, Bruno AE, Chen R, Lott K, Tylec BL, Bard JE, Sun Y, Buck MJ, Read LK. 2017. Trypanosome RNA editing mediator complex proteins have distinct functions in gRNA utilization. Nucleic Acids Res 45: 7965–7983. 10.1093/nar/gkx458 PubMed DOI PMC
Škodová-Sveráková I, Verner Z, Skalický T, Votýpka J, Horváth A, Lukeš J. 2015. Lineage-specific activities of a multipotent mitochondrion of trypanosomatid flagellates. Mol Microbiol 96: 55–67. 10.1111/mmi.12920 PubMed DOI
Sturm NR, Simpson L. 1990. Partially edited mRNAs for cytochrome b and subunit III of cytochrome oxidase from Leishmania tarentolae mitochondria: RNA editing intermediates. Cell 61: 871–878. 10.1016/0092-8674(90)90197-M PubMed DOI
Tylec BL, Simpson RM, Kirby LE, Chen R, Sun Y, Koslowsky DJ, Read LK. 2019. Intrinsic and regulated properties of minimally edited trypanosome mRNAs. Nucleic Acids Res 47: 3640–3657. 10.1093/nar/gkz012 PubMed DOI PMC
Tyler KM, Engman DM. 2001. The life cycle of Trypanosoma cruzi revisited. Int J Parasitol 31: 472–481. 10.1016/S0020-7519(01)00153-9 PubMed DOI
Vercellino I, Sazanov LA. 2021. The assembly, regulation and function of the mitochondrial respiratory chain. Nat Rev Mol Cell Biol 23: 141–161. 10.1038/s41580-021-00415-0 PubMed DOI
Westenberger SJ, Cerqueira GC, El-Sayed NM, Zingales B, Campbell DA, Sturm NR. 2006. Trypanosoma cruzi mitochondrial maxicircles display species- and strain-specific variation and a conserved element in the non-coding region. BMC Genomics 7: 60. 10.1186/1471-2164-7-60 PubMed DOI PMC
Zimmer SL, Simpson RM, Read LK. 2018. High throughput sequencing revolution reveals conserved fundamentals of U-indel editing. Wiley Interdiscip Rev RNA 9: e1487. 10.1002/wrna.1487 PubMed DOI PMC
Zingales B. 2018. Trypanosoma cruzi genetic diversity: something new for something known about Chagas disease manifestations, serodiagnosis and drug sensitivity. Acta Trop 184: 38–52. 10.1016/j.actatropica.2017.09.017 PubMed DOI
Mitochondrial RNA editing in Trypanoplasma borreli: New tools, new revelations