Somy evolution in the honey bee infecting trypanosomatid parasite Lotmaria passim

. 2025 Jan 08 ; 15 (1) : .

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39501754

Grantová podpora
2020-67013-31861 USDA-NIFA Pollinator Health
DEB-2225083 National Science Foundation
DGE-2236417 National Science Foundation Graduate Research Fellowship Program

Lotmaria passim is a ubiquitous trypanosomatid parasite of honey bees nestled within the medically important subfamily Leishmaniinae. Although this parasite is associated with honey bee colony losses, the original draft genome-which was completed before its differentiation from the closely related Crithidia mellificae-has remained the reference for this species despite lacking improvements from newer methodologies. Here, we report the updated sequencing, assembly, and annotation of the BRL-type (Bee Research Laboratory) strain (ATCC PRA-422) of Lotmaria passim. The nuclear genome assembly has been resolved into 31 complete chromosomes and is paired with an assembled kinetoplast genome consisting of a maxicircle and 30 minicircle sequences. The assembly spans 33.7 Mb and contains very little repetitive content, from which our annotation of both the nuclear assembly and kinetoplast predicted 10,288 protein-coding genes. Analyses of the assembly revealed evidence of a recent chromosomal duplication event within chromosomes 5 and 6 and provided evidence for a high level of aneuploidy in this species, mirroring the genomic flexibility employed by other trypanosomatids as a means of adaptation to different environments. This high-quality reference can therefore provide insights into adaptations of trypanosomatids to the thermally regulated, acidic, and phytochemically rich honey bee hindgut niche, which offers parallels to the challenges faced by other Leishmaniinae during the challenges they undergo within insect vectors, during infection of mammals, and exposure to antiparasitic drugs throughout their multi-host life cycles. This reference will also facilitate investigations of strain-specific genomic polymorphisms, their role in pathogenicity, and the development of treatments for pollinator infection.

Zobrazit více v PubMed

Akdemir  KC, Chin  L. 2015. HiCPlotter integrates genomic data with interaction matrices. Genome Biol.  16(1):198. doi:10.1186/s13059-015-0767-1. PubMed DOI PMC

Albanaz  ATS, Carrington  M, Frolov  AO, Ganyukova  AI, Gerasimov  ES, Kostygov  AY, Lukeš  J, Malysheva  MN, Votýpka  J, Zakharova  A, et al.  2023. Shining the spotlight on the neglected: new high-quality genome assemblies as a gateway to understanding the evolution of trypanosomatidae. BMC Genomics. 24(1):471. doi:10.1186/s12864-023-09591-z. PubMed DOI PMC

Altschul  SF, Gish  W, Miller  W, Myers  EW, Lipman  DJ. 1990. Basic local alignment search tool. J Mol Biol.  215(3):403–410. doi:10.1016/S0022-2836(05)80360-2. PubMed DOI

Andrews  S, Kreuger  F, Segonds-Pichon  A, Biggins  L, Kreuger  C, Wingett  S.  2012. FastQC A Quality Control tool for High Throughput Sequence Data. [accessed 2024 May 30]. Available from https://www.bioinformatics.babraham.ac.uk/projects/fastqc/.

Arismendi  N, Bruna  A, Zapata  N, Vargas  M. 2016. PCR-specific detection of recently described Lotmaria passim (Trypanosomatidae) in Chilean apiaries. J Invertebr Pathol. 134:1–5. doi:10.1016/j.jip.2015.12.008. PubMed DOI

Bao  W, Kojima  KK, Kohany  O. 2015. Repbase update, a database of repetitive elements in eukaryotic genomes. Mob DNA.  6(1):11. doi:10.1186/s13100-015-0041-9. PubMed DOI PMC

Benson  G. 1999. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res.  27(2):573–580. doi:10.1093/nar/27.2.573. PubMed DOI PMC

Buendía-Abad  M, García-Palencia  P, de Pablos  LM, Alunda  JM, Osuna  A, Martín-Hernández  R, Higes  M. 2022. First description of Lotmaria passim and Crithidia mellificae haptomonad stages in the honeybee hindgut. Int J Parasitol.  52(1):65–75. doi:10.1016/j.ijpara.2021.06.005. PubMed DOI

Buendía-Abad  M, Higes  M, Martín-Hernández  R, Barrios  L, Meana  A, Fernández  A, Osuna  A, De Pablos  LM. 2021. Workflow of Lotmaria passim isolation: experimental infection with a low-passage strain causes higher honeybee mortality rates than the PRA-403 reference strain. Int J Parasitol Parasites Wildl.  14:68–74. doi:10.1016/j.ijppaw.2020.12.003. PubMed DOI PMC

Camacho  C, Coulouris  G, Avagyan  V, Ma  N, Papadopoulos  J, Bealer  K, Madden  TL. 2009. BLAST+: architecture and applications. BMC Bioinformatics. 10(1):421. doi:10.1186/1471-2105-10-421. PubMed DOI PMC

Capella-Gutiérrez  S, Silla-Martínez  JM, Gabaldón  T. 2009. Trimal: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 25(15):1972–1973. doi:10.1093/bioinformatics/btp348. PubMed DOI PMC

Castelli  L, Branchiccela  B, Invernizzi  C, Tomasco  I, Basualdo  M, Rodriguez  M, Zunino  P, Antúnez  K. 2019. Detection of Lotmaria passim in Africanized and European honey bees from Uruguay, Argentina and Chile. J Invertebr Pathol. 160:95–97. doi:10.1016/j.jip.2018.11.004. PubMed DOI

Chen  N. 2004. Using RepeatMasker to identify repetitive elements in genomic sequences. Curr Protoc Bioinformatics.  5(1):4.10.1–4.10.14. doi:10.1002/0471250953.bi0410s05. PubMed DOI

Chen  S. 2023. Ultrafast one-pass FASTQ data preprocessing, quality control, and deduplication using fastp. iMeta. 2(2):e107. doi:10.1002/imt2.107. PubMed DOI PMC

Cheng  H, Concepcion  GT, Feng  X, Zhang  H, Li  H. 2021. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat Methods. 18(2):170–175. doi:10.1038/s41592-020-01056-5. PubMed DOI PMC

Cornman  RS, Tarpy  DR, Chen  Y, Jeffreys  L, Lopez  D, Pettis  JS, vanEngelsdorp  D, Evans  JD. 2012. Pathogen webs in collapsing honey bee colonies. PLoS One. 7(8):e43562. doi:10.1371/journal.pone.0043562. PubMed DOI PMC

Danecek  P, Bonfield  JK, Liddle  J, Marshall  J, Ohan  V, Pollard  MO, Whitwham  A, Keane  T, McCarthy  SA, Davies  RM, et al.  2021. Twelve years of SAMtools and BCFtools. GigaScience. 10(2):giab008. doi:10.1093/gigascience/giab008. PubMed DOI PMC

de Paula  JC, Olmedo  PG, Gómez-Moracho  T, Buendía-Abad  M, Higes  M, Martín-Hernández  R, Osuna  A, de Pablos  LM. 2024. Promastigote EPS secretion and haptomonad biofilm formation as evolutionary adaptations of trypanosomatid parasites for colonizing honeybee hosts. NPJ Biofilms Microbiomes. 10(1):27. doi:10.1038/s41522-024-00492-x. PubMed DOI PMC

Dainat  J, Hereñú  D, Pucholt  P.  2020. AGAT: Another Gff Analysis Toolkit to handle annotations in any GTF. doi:10.5281/zenodo.11106497. https://zenodo.org/records/11106497. DOI

Durand  NC, Robinson  JT, Shamim  MS, Machol  I, Mesirov  JP, Lander  ES, Aiden  EL. 2016. Juicebox provides a visualization system for Hi-C. Contact Maps with Unlimited Zoom. cels. 3(1):99–101. doi:10.1016/j.cels.2015.07.012. PubMed DOI PMC

Eddy  SR. 2011. Accelerated profile HMM searches. PLoS Comput Biol.  7(10):e1002195. doi:10.1371/journal.pcbi.1002195. PubMed DOI PMC

Emms  DM, Kelly  S. 2019. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol.  20(1):238. doi:10.1186/s13059-019-1832-y. PubMed DOI PMC

Flegontov  P, Butenko  A, Firsov  S, Kraeva  N, Eliáš  M, Field  MC, Filatov  D, Flegontova  O, Gerasimov  ES, Hlaváčová  J, et al.  2016. Genome of Leptomonas pyrrhocoris: a high-quality reference for monoxenous trypanosomatids and new insights into evolution of Leishmania. Sci Rep. 6(1):23704. doi:10.1038/srep23704. PubMed DOI PMC

Gerasimov  ES, Gasparyan  AA, Afonin  DA, Zimmer  SL, Kraeva  N, Lukeš  J, Yurchenko  V, Kolesnikov  A. 2021. Complete minicircle genome of Leptomonas pyrrhocoris reveals sources of its non-canonical mitochondrial RNA editing events. Nucleic Acids Res.  49(6):3354–3370. doi:10.1093/nar/gkab114. PubMed DOI PMC

Gómez-Moracho  T, Buendía-Abad  M, Benito  M, García-Palencia  P, Barrios  L, Bartolomé  C, Maside  X, Meana  A, Jiménez-Antón  MD, Olías-Molero  AI, et al.  2020. Experimental evidence of harmful effects of Crithidia mellificae and Lotmaria passim on honey bees. Int J Parasitol.  50(13):1117–1124. doi:10.1016/j.ijpara.2020.06.009. PubMed DOI

Haft  DH, Selengut  JD, Richter  RA, Harkins  D, Basu  MK, Beck  E. 2013. TIGRFAMs and genome properties in 2013. Nucleic Acids Res. 41(D1):D387–D395. doi:10.1093/nar/gks1234. PubMed DOI PMC

Hoff  KJ, Stanke  M. 2019. Predicting genes in single genomes with AUGUSTUS. Curr Protoc Bioinformatics. 65(1):e57. doi:10.1002/cpbi.57. PubMed DOI

Holt  C, Yandell  M. 2011. MAKER2: an annotation pipeline and genome-database management tool for second-generation genome projects. BMC Bioinformatics. 12(1):491. doi:10.1186/1471-2105-12-491. PubMed DOI PMC

Jones  P, Binns  D, Chang  H-Y, Fraser  M, Li  W, McAnulla  C, McWilliam  H, Maslen  J, Mitchell  A, Nuka  G, et al.  2014. InterProScan 5: genome-scale protein function classification. Bioinformatics. 30(9):1236–1240. doi:10.1093/bioinformatics/btu031. PubMed DOI PMC

Katoh  K, Standley  DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol.  30(4):772–780. doi:10.1093/molbev/mst010. PubMed DOI PMC

Knaus  BJ, Grünwald  NJ. 2017. Vcfr: a package to manipulate and visualize variant call format data in R. Mol Ecol Resour. 17(1):44–53. doi:10.1111/1755-0998.12549. PubMed DOI

Knaus  BJ, Grünwald  NJ. 2018. Inferring variation in copy number using high throughput sequencing data in R. Front Genet. 9:123. doi:10.3389/fgene.2018.00123. PubMed DOI PMC

Koch  H, Brown  MJF, Stevenson  PC. 2017. The role of disease in bee foraging ecology. Curr Opin Insect Sci. 21:60–67. doi:10.1016/j.cois.2017.05.008. PubMed DOI

Kostygov  AY, Albanaz  ATS, Butenko  A, Gerasimov  ES, Lukeš  J, Yurchenko  V. 2024. Phylogenetic framework to explore trait evolution in trypanosomatidae. Trends Parasitol.  40(2):96–99. doi:10.1016/j.pt.2023.11.009. PubMed DOI

Kriventseva  EV, Kuznetsov  D, Tegenfeldt  F, Manni  M, Dias  R, Simão  FA, Zdobnov  EM. 2019. OrthoDB v10: sampling the diversity of animal, plant, fungal, protist, bacterial and viral genomes for evolutionary and functional annotations of orthologs. Nucleic Acids Res. 47(D1):D807–D811. doi:10.1093/nar/gky1053. PubMed DOI PMC

Langmead  B, Salzberg  SL. 2012. Fast gapped-read alignment with Bowtie 2. Nat Methods. 9(4):357–359. doi:10.1038/nmeth.1923. PubMed DOI PMC

Larsson  A. 2014. AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics. 30(22):3276–3278. doi:10.1093/bioinformatics/btu531. PubMed DOI PMC

Lartillot  N, Philippe  H. 2004. A Bayesian mixture model for across-site heterogeneities in the amino-acid replacement process. Mol Biol Evol.  21(6):1095–1109. doi:10.1093/molbev/msh112. PubMed DOI

Lartillot  N, Rodrigue  N, Stubbs  D, Richer  J. 2013. PhyloBayes MPI: phylogenetic reconstruction with infinite mixtures of profiles in a parallel environment. Syst Biol.  62(4):611–615. doi:10.1093/sysbio/syt022. PubMed DOI

Li  H. 2013. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv:1303.3997. doi:10.48550/arXiv.1303.3997. DOI

Li  H. 2018. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 34(18):3094–3100. doi:10.1093/bioinformatics/bty191. PubMed DOI PMC

Li  H, Handsaker  B, Wysoker  A, Fennell  T, Ruan  J, Homer  N, Marth  G, Abecasis  G, Durbin  R. 2009. The sequence alignment/map format and SAMtools. Bioinformatics. 25(16):2078–2079. doi:10.1093/bioinformatics/btp352. PubMed DOI PMC

Liu  Q, Lei  J, Darby  AC, Kadowaki  T. 2020. Trypanosomatid parasite dynamically changes the transcriptome during infection and modifies honey bee physiology. Commun Biol. 3(1):51. doi:10.1038/s42003-020-0775-x. PubMed DOI PMC

Lukeš  J, Butenko  A, Hashimi  H, Maslov  DA, Votýpka  J, Yurchenko  V. 2018. Trypanosomatids are much more than just trypanosomes: clues from the expanded family tree. Trends Parasitol.  34(6):466–480. doi:10.1016/j.pt.2018.03.002. PubMed DOI

MacInnis  CI, Luong  LT, Pernal  SF. 2023. A tale of two parasites: responses of honey bees infected with Nosema ceranae and Lotmaria passim. Sci Rep. 13(1). doi:10.1038/s41598-023-49189-9. PubMed DOI PMC

Maslov  DA, Opperdoes  FR, Kostygov  AY, Hashimi  H, Lukeš  J, Yurchenko  V. 2019. Recent advances in trypanosomatid research: genome organization, expression, metabolism, taxonomy and evolution. Parasitology. 146(1):1–27. doi:10.1017/S0031182018000951. PubMed DOI

Matos  GM, Lewis  MD, Talavera-López  C, Yeo  M, Grisard  EC, Messenger  LA, Miles  MA, Andersson  B. 2022. Microevolution of Trypanosoma cruzi reveals hybridization and clonal mechanisms driving rapid genome diversification. eLife. 11:e75237. doi:10.7554/eLife.75237. PubMed DOI PMC

McGhee  RB, Cosgrove  WB. 1980. Biology and physiology of the lower Trypanosomatidae. Microbiol Rev. 44(1):140–173. doi:10.1128/mr.44.1.140-173.1980. PubMed DOI PMC

McKenna  A, Hanna  M, Banks  E, Sivachenko  A, Cibulskis  K, Kernytsky  A, Garimella  K, Altshuler  D, Gabriel  S, Daly  M, et al.  2010. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20(9):1297–1303. doi:10.1101/gr.107524.110. PubMed DOI PMC

Mistry  J, Chuguransky  S, Williams  L, Qureshi  M, Salazar  GA, Sonnhammer  ELL, Tosatto  SCE, Paladin  L, Raj  S, Richardson  LJ, et al.  2020. Pfam: the protein families database in 2021. Nucleic Acids Res. 49(D1):D412–D419. doi:10.1093/nar/gkaa913. PubMed DOI PMC

Morimoto  T, Kojima  Y, Yoshiyama  M, Kimura  K, Yang  B, Peng  G, Kadowaki  T. 2013. Molecular detection of protozoan parasites infecting Apis mellifera colonies in Japan. Environ Microbiol Rep. 5(1):74–77. doi:10.1111/j.1758-2229.2012.00385.x. PubMed DOI

Nawrocki  EP, Eddy  SR. 2013. Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics. 29(22):2933–2935. doi:10.1093/bioinformatics/btt509. PubMed DOI PMC

Pagès  H, Aboyoun  P, Gentleman  R, DebRoy  S.  2024. Biostrings: Efficient manipulation of biological strings. [accessed 2024 May 30]. http://bioconductor.org/packages/Biostrings/.

Paradis  E, Schliep  K. 2019. Ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics. 35(3):526–528. doi:10.1093/bioinformatics/bty633. PubMed DOI

Pertea  G, Pertea  M.  2020. GFF utilities: GffRead and GffCompare. F1000Res. 9:ISCB Comm J-304. doi:10.12688/f1000research.23297.2. PubMed DOI PMC

Ponte-Sucre  A, Gamarro  F, Dujardin  J-C, Barrett  MP, López-Vélez  R, García-Hernández  R, Pountain  AW, Mwenechanya  R, Papadopoulou  B. 2017. Drug resistance and treatment failure in leishmaniasis: a 21st century challenge. PLoS Negl Trop Dis.  11(12):e0006052. doi:10.1371/journal.pntd.0006052. PubMed DOI PMC

Ravoet  J, Maharramov  J, Meeus  I, De Smet  L, Wenseleers  T, Smagghe  G, de Graaf  DC, Li  Y. 2013. Comprehensive bee pathogen screening in Belgium reveals Crithidia mellificae as a new contributory factor to winter mortality. PLoS ONE. 8(8):e72443. doi:10.1371/journal.pone.0072443. PubMed DOI PMC

Ravoet  J, Schwarz  RS, Descamps  T, Yañez  O, Tozkar  CO, Martin-Hernandez  R, Bartolomé  C, De Smet  L, Higes  M, Wenseleers  T. 2015. Differential diagnosis of the honey bee trypanosomatids Crithidia mellificae and Lotmaria passim. J Invertebr Pathol. 130:21–27. doi:10.1016/j.jip.2015.06.007. PubMed DOI

R Development Core Team . 2009. R: A language and environment for statistical computing. http://www.R-project.org.

Reis-Cunha  JL, Valdivia  HO, Bartholomeu  DC. 2018. Gene and chromosomal copy number variations as an adaptive mechanism towards a parasitic lifestyle in Trypanosomatids. Curr Genomics.  19(2):87–97. doi:10.2174/1389202918666170911161311. PubMed DOI PMC

Robinson  JT, Thorvaldsdottir  H, Turner  D, Mesirov  JP. 2023. Igv.js: an embeddable JavaScript implementation of the integrative genomics viewer (IGV). Bioinformatics. 39(1):btac830. doi:10.1093/bioinformatics/btac830. PubMed DOI PMC

Runckel  C, DeRisi  J, Flenniken  ML. 2014. A draft genome of the honey bee trypanosomatid parasite Crithidia mellificae. PLoS One. 9(4):e95057. doi:10.1371/journal.pone.0095057. PubMed DOI PMC

Salathé  R, Tognazzo  M, Schmid-Hempel  R, Schmid-Hempel  P. 2012. Probing mixed-genotype infections I: extraction and cloning of infections from hosts of the Trypanosomatid Crithidia bombi. PLoS One. 7(11):e49046. doi:10.1371/journal.pone.0049046. PubMed DOI PMC

Schmid-Hempel  P. 2001. On the evolutionary ecology of host–parasite interactions: addressing the question with regard to bumblebees and their parasites. Naturwissenschaften. 88(4):147–158. doi:10.1007/s001140100222. PubMed DOI

Schmid-Hempel  P, Aebi  M, Barribeau  S, Kitajima  T, du Plessis  L, Schmid-Hempel  R, Zoller  S.  2018. The genomes of Crithidia bombi and C. expoeki, common parasites of bumblebees. PLoS One. 13(1):e0189738. doi:10.1371/journal.pone.0189738. PubMed DOI PMC

Schwarz  RS, Bauchan  GR, Murphy  CA, Ravoet  J, de Graaf  DC, Evans  JD. 2015. Characterization of two species of trypanosomatidae from the honey bee Apis mellifera: Crithidia mellificae Langridge and McGhee, and Lotmaria passim n. Gen., n. sp. J Eukaryot Microbiol.  62(5):567–583. doi:10.1111/jeu.12209. PubMed DOI

Seppey  M, Manni  M, Zdobnov  EM.  2019. BUSCO: assessing genome assembly and annotation completeness. In: Kollmar  M, editor. Gene Prediction: Methods and Protocols. New York, NY: Springer. p. 227–245. PubMed

Servant  N, Varoquaux  N, Lajoie  BR, Viara  E, Chen  C-J, Vert  J-P, Heard  E, Dekker  J, Barillot  E. 2015. HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. Genome Biol.  16(1):259. doi:10.1186/s13059-015-0831-x. PubMed DOI PMC

Shanmugasundram  A, Starns  D, Böhme  U, Amos  B, Wilkinson  PA, Harb  OS, Warrenfeltz  S, Kissinger  JC, McDowell  MA, Roos  DS, et al.  2023. TriTrypDB: an integrated functional genomics resource for kinetoplastida. PLoS Negl Trop Dis.  17(1):e0011058. doi:10.1371/journal.pntd.0011058. PubMed DOI PMC

Sim  SB, Corpuz  RL, Simmonds  TJ, Geib  SM. 2022. HiFiAdapterFilt, a memory efficient read processing pipeline, prevents occurrence of adapter sequence in PacBio HiFi reads and their negative impacts on genome assembly. BMC Genomics. 23(1):157. doi:10.1186/s12864-022-08375-1. PubMed DOI PMC

Steinbiss  S, Silva-Franco  F, Brunk  B, Foth  B, Hertz-Fowler  C, Berriman  M, Otto  TD. 2016. Companion: a web server for annotation and analysis of parasite genomes. Nucleic Acids Res. 44(W1):W29–W34. doi:10.1093/nar/gkw292. PubMed DOI PMC

Sterkers  Y, Lachaud  L, Bourgeois  N, Crobu  L, Bastien  P, Pagès  M. 2012. Novel insights into genome plasticity in Eukaryotes: mosaic aneuploidy in Leishmania. Mol Microbiol.  86(1):15–23. doi:10.1111/j.1365-2958.2012.08185.x. PubMed DOI

Storer  J, Hubley  R, Rosen  J, Wheeler  TJ, Smit  AF. 2021. The Dfam community resource of transposable element families, sequence models, and genome annotations. Mob DNA. 12(1):2. doi:10.1186/s13100-020-00230-y. PubMed DOI PMC

Syberg-Olsen  MJ, Garber  AI, Keeling  PJ, McCutcheon  JP, Husnik  F. 2022. Pseudofinder: detection of pseudogenes in prokaryotic genomes. Mol Biol Evol.  39(7):msac153. doi:10.1093/molbev/msac153. PubMed DOI PMC

Trapnell  C, Williams  BA, Pertea  G, Mortazavi  A, Kwan  G, van Baren  MJ, Salzberg  SL, Wold  BJ, Pachter  L. 2010. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol. 28(5):511–515. doi:10.1038/nbt.1621. PubMed DOI PMC

UniProt Consortium . 2015. UniProt: a hub for protein information. Nucleic Acids Res. 43(D1):D204–D212. doi:10.1093/nar/gku989. PubMed DOI PMC

Vejnovic  B, Stevanovic  J, Schwarz  RS, Aleksic  N, Mirilovic  M, Jovanovic  NM, Stanimirovic  Z. 2018. Quantitative PCR assessment of Lotmaria passim in Apis mellifera colonies co-infected naturally with Nosema ceranae. J Invertebr Pathol. 151:76–81. doi:10.1016/j.jip.2017.11.003. PubMed DOI

Walker  BJ, Abeel  T, Shea  T, Priest  M, Abouelliel  A, Sakthikumar  S, Cuomo  CA, Zeng  Q, Wortman  J, Young  SK, et al.  2014. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One. 9(11):e112963. doi:10.1371/journal.pone.0112963. PubMed DOI PMC

Wickham  H, Navarro  D, Pederson  TL. 2016. ggplot2: Elegant Graphics for Data Analysis. 3rd ed. Springer-Verlag New York.

Xu  G, Palmer-Young  E, Skyrm  K, Daly  T, Sylvia  M, Averill  A, Rich  S. 2018. Triplex real-time PCR for detection of Crithidia mellificae and Lotmaria passim in honey bees. Parasitol Res. 117(2):623–628. doi:10.1007/s00436-017-5733-2. PubMed DOI

Yu  G, Smith  DK, Zhu  H, Guan  Y, Lam  TT-Y. 2017. Ggtree: an r package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol Evol.  8(1):28–36. doi:10.1111/2041-210X.12628. DOI

Yuan  X, Sun  J, Kadowaki  T. 2024. Aspartyl protease in the secretome of honey bee trypanosomatid parasite contributes to infection of bees. Parasit Vectors.  17(1):60. doi:10.1186/s13071-024-06126-7. PubMed DOI PMC

Zhou  C, McCarthy  SA, Durbin  R. 2023. YaHS: yet another Hi-C scaffolding tool. Bioinformatics. 39(1):btac808. doi:10.1093/bioinformatics/btac808. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace