Somy evolution in the honey bee infecting trypanosomatid parasite Lotmaria passim
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články
Grantová podpora
2020-67013-31861
USDA-NIFA Pollinator Health
DEB-2225083
National Science Foundation
DGE-2236417
National Science Foundation Graduate Research Fellowship Program
PubMed
39501754
PubMed Central
PMC11708234
DOI
10.1093/g3journal/jkae258
PII: 7877230
Knihovny.cz E-zdroje
- Klíčová slova
- Lotmaria passim strain BRL, ATCC PRA-422, Hi-C, Leishmaniinae, PacBio, Trypanosomatidae, aneuploidy, monoxenous, polyploidy, trypanosomatid,
- MeSH
- anotace sekvence MeSH
- fylogeneze MeSH
- genom protozoální MeSH
- genomika metody MeSH
- molekulární evoluce * MeSH
- Trypanosomatina * genetika klasifikace MeSH
- včely parazitologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Lotmaria passim is a ubiquitous trypanosomatid parasite of honey bees nestled within the medically important subfamily Leishmaniinae. Although this parasite is associated with honey bee colony losses, the original draft genome-which was completed before its differentiation from the closely related Crithidia mellificae-has remained the reference for this species despite lacking improvements from newer methodologies. Here, we report the updated sequencing, assembly, and annotation of the BRL-type (Bee Research Laboratory) strain (ATCC PRA-422) of Lotmaria passim. The nuclear genome assembly has been resolved into 31 complete chromosomes and is paired with an assembled kinetoplast genome consisting of a maxicircle and 30 minicircle sequences. The assembly spans 33.7 Mb and contains very little repetitive content, from which our annotation of both the nuclear assembly and kinetoplast predicted 10,288 protein-coding genes. Analyses of the assembly revealed evidence of a recent chromosomal duplication event within chromosomes 5 and 6 and provided evidence for a high level of aneuploidy in this species, mirroring the genomic flexibility employed by other trypanosomatids as a means of adaptation to different environments. This high-quality reference can therefore provide insights into adaptations of trypanosomatids to the thermally regulated, acidic, and phytochemically rich honey bee hindgut niche, which offers parallels to the challenges faced by other Leishmaniinae during the challenges they undergo within insect vectors, during infection of mammals, and exposure to antiparasitic drugs throughout their multi-host life cycles. This reference will also facilitate investigations of strain-specific genomic polymorphisms, their role in pathogenicity, and the development of treatments for pollinator infection.
Czech Academy of Sciences Institute of Parasitology České Budějovice 370 05 Czech Republic
Department of Biology Fort Lewis College 1000 Rim Drive Durango CO 81301 USA
Department of Microbiology University of Massachusetts Fernald Hall Amherst MA 01003 USA
Faculty of Science University of South Bohemia České Budějovice 370 05 Czech Republic
Institute of Biotechnology University of Granada Granada 18071 Spain
Life Science Research Centre Faculty of Science University of Ostrava Ostrava 710 00 Czech Republic
Omics Bioinformatics S L Calle Senderos 2 Bajo Granada 18005 Spain
Zobrazit více v PubMed
Akdemir KC, Chin L. 2015. HiCPlotter integrates genomic data with interaction matrices. Genome Biol. 16(1):198. doi:10.1186/s13059-015-0767-1. PubMed DOI PMC
Albanaz ATS, Carrington M, Frolov AO, Ganyukova AI, Gerasimov ES, Kostygov AY, Lukeš J, Malysheva MN, Votýpka J, Zakharova A, et al. 2023. Shining the spotlight on the neglected: new high-quality genome assemblies as a gateway to understanding the evolution of trypanosomatidae. BMC Genomics. 24(1):471. doi:10.1186/s12864-023-09591-z. PubMed DOI PMC
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. J Mol Biol. 215(3):403–410. doi:10.1016/S0022-2836(05)80360-2. PubMed DOI
Andrews S, Kreuger F, Segonds-Pichon A, Biggins L, Kreuger C, Wingett S. 2012. FastQC A Quality Control tool for High Throughput Sequence Data. [accessed 2024 May 30]. Available from https://www.bioinformatics.babraham.ac.uk/projects/fastqc/.
Arismendi N, Bruna A, Zapata N, Vargas M. 2016. PCR-specific detection of recently described Lotmaria passim (Trypanosomatidae) in Chilean apiaries. J Invertebr Pathol. 134:1–5. doi:10.1016/j.jip.2015.12.008. PubMed DOI
Bao W, Kojima KK, Kohany O. 2015. Repbase update, a database of repetitive elements in eukaryotic genomes. Mob DNA. 6(1):11. doi:10.1186/s13100-015-0041-9. PubMed DOI PMC
Benson G. 1999. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 27(2):573–580. doi:10.1093/nar/27.2.573. PubMed DOI PMC
Buendía-Abad M, García-Palencia P, de Pablos LM, Alunda JM, Osuna A, Martín-Hernández R, Higes M. 2022. First description of Lotmaria passim and Crithidia mellificae haptomonad stages in the honeybee hindgut. Int J Parasitol. 52(1):65–75. doi:10.1016/j.ijpara.2021.06.005. PubMed DOI
Buendía-Abad M, Higes M, Martín-Hernández R, Barrios L, Meana A, Fernández A, Osuna A, De Pablos LM. 2021. Workflow of Lotmaria passim isolation: experimental infection with a low-passage strain causes higher honeybee mortality rates than the PRA-403 reference strain. Int J Parasitol Parasites Wildl. 14:68–74. doi:10.1016/j.ijppaw.2020.12.003. PubMed DOI PMC
Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL. 2009. BLAST+: architecture and applications. BMC Bioinformatics. 10(1):421. doi:10.1186/1471-2105-10-421. PubMed DOI PMC
Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. 2009. Trimal: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 25(15):1972–1973. doi:10.1093/bioinformatics/btp348. PubMed DOI PMC
Castelli L, Branchiccela B, Invernizzi C, Tomasco I, Basualdo M, Rodriguez M, Zunino P, Antúnez K. 2019. Detection of Lotmaria passim in Africanized and European honey bees from Uruguay, Argentina and Chile. J Invertebr Pathol. 160:95–97. doi:10.1016/j.jip.2018.11.004. PubMed DOI
Chen N. 2004. Using RepeatMasker to identify repetitive elements in genomic sequences. Curr Protoc Bioinformatics. 5(1):4.10.1–4.10.14. doi:10.1002/0471250953.bi0410s05. PubMed DOI
Chen S. 2023. Ultrafast one-pass FASTQ data preprocessing, quality control, and deduplication using fastp. iMeta. 2(2):e107. doi:10.1002/imt2.107. PubMed DOI PMC
Cheng H, Concepcion GT, Feng X, Zhang H, Li H. 2021. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat Methods. 18(2):170–175. doi:10.1038/s41592-020-01056-5. PubMed DOI PMC
Cornman RS, Tarpy DR, Chen Y, Jeffreys L, Lopez D, Pettis JS, vanEngelsdorp D, Evans JD. 2012. Pathogen webs in collapsing honey bee colonies. PLoS One. 7(8):e43562. doi:10.1371/journal.pone.0043562. PubMed DOI PMC
Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, Whitwham A, Keane T, McCarthy SA, Davies RM, et al. 2021. Twelve years of SAMtools and BCFtools. GigaScience. 10(2):giab008. doi:10.1093/gigascience/giab008. PubMed DOI PMC
de Paula JC, Olmedo PG, Gómez-Moracho T, Buendía-Abad M, Higes M, Martín-Hernández R, Osuna A, de Pablos LM. 2024. Promastigote EPS secretion and haptomonad biofilm formation as evolutionary adaptations of trypanosomatid parasites for colonizing honeybee hosts. NPJ Biofilms Microbiomes. 10(1):27. doi:10.1038/s41522-024-00492-x. PubMed DOI PMC
Dainat J, Hereñú D, Pucholt P. 2020. AGAT: Another Gff Analysis Toolkit to handle annotations in any GTF. doi:10.5281/zenodo.11106497. https://zenodo.org/records/11106497. DOI
Durand NC, Robinson JT, Shamim MS, Machol I, Mesirov JP, Lander ES, Aiden EL. 2016. Juicebox provides a visualization system for Hi-C. Contact Maps with Unlimited Zoom. cels. 3(1):99–101. doi:10.1016/j.cels.2015.07.012. PubMed DOI PMC
Eddy SR. 2011. Accelerated profile HMM searches. PLoS Comput Biol. 7(10):e1002195. doi:10.1371/journal.pcbi.1002195. PubMed DOI PMC
Emms DM, Kelly S. 2019. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 20(1):238. doi:10.1186/s13059-019-1832-y. PubMed DOI PMC
Flegontov P, Butenko A, Firsov S, Kraeva N, Eliáš M, Field MC, Filatov D, Flegontova O, Gerasimov ES, Hlaváčová J, et al. 2016. Genome of Leptomonas pyrrhocoris: a high-quality reference for monoxenous trypanosomatids and new insights into evolution of Leishmania. Sci Rep. 6(1):23704. doi:10.1038/srep23704. PubMed DOI PMC
Gerasimov ES, Gasparyan AA, Afonin DA, Zimmer SL, Kraeva N, Lukeš J, Yurchenko V, Kolesnikov A. 2021. Complete minicircle genome of Leptomonas pyrrhocoris reveals sources of its non-canonical mitochondrial RNA editing events. Nucleic Acids Res. 49(6):3354–3370. doi:10.1093/nar/gkab114. PubMed DOI PMC
Gómez-Moracho T, Buendía-Abad M, Benito M, García-Palencia P, Barrios L, Bartolomé C, Maside X, Meana A, Jiménez-Antón MD, Olías-Molero AI, et al. 2020. Experimental evidence of harmful effects of Crithidia mellificae and Lotmaria passim on honey bees. Int J Parasitol. 50(13):1117–1124. doi:10.1016/j.ijpara.2020.06.009. PubMed DOI
Haft DH, Selengut JD, Richter RA, Harkins D, Basu MK, Beck E. 2013. TIGRFAMs and genome properties in 2013. Nucleic Acids Res. 41(D1):D387–D395. doi:10.1093/nar/gks1234. PubMed DOI PMC
Hoff KJ, Stanke M. 2019. Predicting genes in single genomes with AUGUSTUS. Curr Protoc Bioinformatics. 65(1):e57. doi:10.1002/cpbi.57. PubMed DOI
Holt C, Yandell M. 2011. MAKER2: an annotation pipeline and genome-database management tool for second-generation genome projects. BMC Bioinformatics. 12(1):491. doi:10.1186/1471-2105-12-491. PubMed DOI PMC
Jones P, Binns D, Chang H-Y, Fraser M, Li W, McAnulla C, McWilliam H, Maslen J, Mitchell A, Nuka G, et al. 2014. InterProScan 5: genome-scale protein function classification. Bioinformatics. 30(9):1236–1240. doi:10.1093/bioinformatics/btu031. PubMed DOI PMC
Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 30(4):772–780. doi:10.1093/molbev/mst010. PubMed DOI PMC
Knaus BJ, Grünwald NJ. 2017. Vcfr: a package to manipulate and visualize variant call format data in R. Mol Ecol Resour. 17(1):44–53. doi:10.1111/1755-0998.12549. PubMed DOI
Knaus BJ, Grünwald NJ. 2018. Inferring variation in copy number using high throughput sequencing data in R. Front Genet. 9:123. doi:10.3389/fgene.2018.00123. PubMed DOI PMC
Koch H, Brown MJF, Stevenson PC. 2017. The role of disease in bee foraging ecology. Curr Opin Insect Sci. 21:60–67. doi:10.1016/j.cois.2017.05.008. PubMed DOI
Kostygov AY, Albanaz ATS, Butenko A, Gerasimov ES, Lukeš J, Yurchenko V. 2024. Phylogenetic framework to explore trait evolution in trypanosomatidae. Trends Parasitol. 40(2):96–99. doi:10.1016/j.pt.2023.11.009. PubMed DOI
Kriventseva EV, Kuznetsov D, Tegenfeldt F, Manni M, Dias R, Simão FA, Zdobnov EM. 2019. OrthoDB v10: sampling the diversity of animal, plant, fungal, protist, bacterial and viral genomes for evolutionary and functional annotations of orthologs. Nucleic Acids Res. 47(D1):D807–D811. doi:10.1093/nar/gky1053. PubMed DOI PMC
Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nat Methods. 9(4):357–359. doi:10.1038/nmeth.1923. PubMed DOI PMC
Larsson A. 2014. AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics. 30(22):3276–3278. doi:10.1093/bioinformatics/btu531. PubMed DOI PMC
Lartillot N, Philippe H. 2004. A Bayesian mixture model for across-site heterogeneities in the amino-acid replacement process. Mol Biol Evol. 21(6):1095–1109. doi:10.1093/molbev/msh112. PubMed DOI
Lartillot N, Rodrigue N, Stubbs D, Richer J. 2013. PhyloBayes MPI: phylogenetic reconstruction with infinite mixtures of profiles in a parallel environment. Syst Biol. 62(4):611–615. doi:10.1093/sysbio/syt022. PubMed DOI
Li H. 2013. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv:1303.3997. doi:10.48550/arXiv.1303.3997. DOI
Li H. 2018. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 34(18):3094–3100. doi:10.1093/bioinformatics/bty191. PubMed DOI PMC
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. 2009. The sequence alignment/map format and SAMtools. Bioinformatics. 25(16):2078–2079. doi:10.1093/bioinformatics/btp352. PubMed DOI PMC
Liu Q, Lei J, Darby AC, Kadowaki T. 2020. Trypanosomatid parasite dynamically changes the transcriptome during infection and modifies honey bee physiology. Commun Biol. 3(1):51. doi:10.1038/s42003-020-0775-x. PubMed DOI PMC
Lukeš J, Butenko A, Hashimi H, Maslov DA, Votýpka J, Yurchenko V. 2018. Trypanosomatids are much more than just trypanosomes: clues from the expanded family tree. Trends Parasitol. 34(6):466–480. doi:10.1016/j.pt.2018.03.002. PubMed DOI
MacInnis CI, Luong LT, Pernal SF. 2023. A tale of two parasites: responses of honey bees infected with Nosema ceranae and Lotmaria passim. Sci Rep. 13(1). doi:10.1038/s41598-023-49189-9. PubMed DOI PMC
Maslov DA, Opperdoes FR, Kostygov AY, Hashimi H, Lukeš J, Yurchenko V. 2019. Recent advances in trypanosomatid research: genome organization, expression, metabolism, taxonomy and evolution. Parasitology. 146(1):1–27. doi:10.1017/S0031182018000951. PubMed DOI
Matos GM, Lewis MD, Talavera-López C, Yeo M, Grisard EC, Messenger LA, Miles MA, Andersson B. 2022. Microevolution of Trypanosoma cruzi reveals hybridization and clonal mechanisms driving rapid genome diversification. eLife. 11:e75237. doi:10.7554/eLife.75237. PubMed DOI PMC
McGhee RB, Cosgrove WB. 1980. Biology and physiology of the lower Trypanosomatidae. Microbiol Rev. 44(1):140–173. doi:10.1128/mr.44.1.140-173.1980. PubMed DOI PMC
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, et al. 2010. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20(9):1297–1303. doi:10.1101/gr.107524.110. PubMed DOI PMC
Mistry J, Chuguransky S, Williams L, Qureshi M, Salazar GA, Sonnhammer ELL, Tosatto SCE, Paladin L, Raj S, Richardson LJ, et al. 2020. Pfam: the protein families database in 2021. Nucleic Acids Res. 49(D1):D412–D419. doi:10.1093/nar/gkaa913. PubMed DOI PMC
Morimoto T, Kojima Y, Yoshiyama M, Kimura K, Yang B, Peng G, Kadowaki T. 2013. Molecular detection of protozoan parasites infecting Apis mellifera colonies in Japan. Environ Microbiol Rep. 5(1):74–77. doi:10.1111/j.1758-2229.2012.00385.x. PubMed DOI
Nawrocki EP, Eddy SR. 2013. Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics. 29(22):2933–2935. doi:10.1093/bioinformatics/btt509. PubMed DOI PMC
Pagès H, Aboyoun P, Gentleman R, DebRoy S. 2024. Biostrings: Efficient manipulation of biological strings. [accessed 2024 May 30]. http://bioconductor.org/packages/Biostrings/.
Paradis E, Schliep K. 2019. Ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics. 35(3):526–528. doi:10.1093/bioinformatics/bty633. PubMed DOI
Pertea G, Pertea M. 2020. GFF utilities: GffRead and GffCompare. F1000Res. 9:ISCB Comm J-304. doi:10.12688/f1000research.23297.2. PubMed DOI PMC
Ponte-Sucre A, Gamarro F, Dujardin J-C, Barrett MP, López-Vélez R, García-Hernández R, Pountain AW, Mwenechanya R, Papadopoulou B. 2017. Drug resistance and treatment failure in leishmaniasis: a 21st century challenge. PLoS Negl Trop Dis. 11(12):e0006052. doi:10.1371/journal.pntd.0006052. PubMed DOI PMC
Ravoet J, Maharramov J, Meeus I, De Smet L, Wenseleers T, Smagghe G, de Graaf DC, Li Y. 2013. Comprehensive bee pathogen screening in Belgium reveals Crithidia mellificae as a new contributory factor to winter mortality. PLoS ONE. 8(8):e72443. doi:10.1371/journal.pone.0072443. PubMed DOI PMC
Ravoet J, Schwarz RS, Descamps T, Yañez O, Tozkar CO, Martin-Hernandez R, Bartolomé C, De Smet L, Higes M, Wenseleers T. 2015. Differential diagnosis of the honey bee trypanosomatids Crithidia mellificae and Lotmaria passim. J Invertebr Pathol. 130:21–27. doi:10.1016/j.jip.2015.06.007. PubMed DOI
R Development Core Team . 2009. R: A language and environment for statistical computing. http://www.R-project.org.
Reis-Cunha JL, Valdivia HO, Bartholomeu DC. 2018. Gene and chromosomal copy number variations as an adaptive mechanism towards a parasitic lifestyle in Trypanosomatids. Curr Genomics. 19(2):87–97. doi:10.2174/1389202918666170911161311. PubMed DOI PMC
Robinson JT, Thorvaldsdottir H, Turner D, Mesirov JP. 2023. Igv.js: an embeddable JavaScript implementation of the integrative genomics viewer (IGV). Bioinformatics. 39(1):btac830. doi:10.1093/bioinformatics/btac830. PubMed DOI PMC
Runckel C, DeRisi J, Flenniken ML. 2014. A draft genome of the honey bee trypanosomatid parasite Crithidia mellificae. PLoS One. 9(4):e95057. doi:10.1371/journal.pone.0095057. PubMed DOI PMC
Salathé R, Tognazzo M, Schmid-Hempel R, Schmid-Hempel P. 2012. Probing mixed-genotype infections I: extraction and cloning of infections from hosts of the Trypanosomatid Crithidia bombi. PLoS One. 7(11):e49046. doi:10.1371/journal.pone.0049046. PubMed DOI PMC
Schmid-Hempel P. 2001. On the evolutionary ecology of host–parasite interactions: addressing the question with regard to bumblebees and their parasites. Naturwissenschaften. 88(4):147–158. doi:10.1007/s001140100222. PubMed DOI
Schmid-Hempel P, Aebi M, Barribeau S, Kitajima T, du Plessis L, Schmid-Hempel R, Zoller S. 2018. The genomes of Crithidia bombi and C. expoeki, common parasites of bumblebees. PLoS One. 13(1):e0189738. doi:10.1371/journal.pone.0189738. PubMed DOI PMC
Schwarz RS, Bauchan GR, Murphy CA, Ravoet J, de Graaf DC, Evans JD. 2015. Characterization of two species of trypanosomatidae from the honey bee Apis mellifera: Crithidia mellificae Langridge and McGhee, and Lotmaria passim n. Gen., n. sp. J Eukaryot Microbiol. 62(5):567–583. doi:10.1111/jeu.12209. PubMed DOI
Seppey M, Manni M, Zdobnov EM. 2019. BUSCO: assessing genome assembly and annotation completeness. In: Kollmar M, editor. Gene Prediction: Methods and Protocols. New York, NY: Springer. p. 227–245. PubMed
Servant N, Varoquaux N, Lajoie BR, Viara E, Chen C-J, Vert J-P, Heard E, Dekker J, Barillot E. 2015. HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. Genome Biol. 16(1):259. doi:10.1186/s13059-015-0831-x. PubMed DOI PMC
Shanmugasundram A, Starns D, Böhme U, Amos B, Wilkinson PA, Harb OS, Warrenfeltz S, Kissinger JC, McDowell MA, Roos DS, et al. 2023. TriTrypDB: an integrated functional genomics resource for kinetoplastida. PLoS Negl Trop Dis. 17(1):e0011058. doi:10.1371/journal.pntd.0011058. PubMed DOI PMC
Sim SB, Corpuz RL, Simmonds TJ, Geib SM. 2022. HiFiAdapterFilt, a memory efficient read processing pipeline, prevents occurrence of adapter sequence in PacBio HiFi reads and their negative impacts on genome assembly. BMC Genomics. 23(1):157. doi:10.1186/s12864-022-08375-1. PubMed DOI PMC
Steinbiss S, Silva-Franco F, Brunk B, Foth B, Hertz-Fowler C, Berriman M, Otto TD. 2016. Companion: a web server for annotation and analysis of parasite genomes. Nucleic Acids Res. 44(W1):W29–W34. doi:10.1093/nar/gkw292. PubMed DOI PMC
Sterkers Y, Lachaud L, Bourgeois N, Crobu L, Bastien P, Pagès M. 2012. Novel insights into genome plasticity in Eukaryotes: mosaic aneuploidy in Leishmania. Mol Microbiol. 86(1):15–23. doi:10.1111/j.1365-2958.2012.08185.x. PubMed DOI
Storer J, Hubley R, Rosen J, Wheeler TJ, Smit AF. 2021. The Dfam community resource of transposable element families, sequence models, and genome annotations. Mob DNA. 12(1):2. doi:10.1186/s13100-020-00230-y. PubMed DOI PMC
Syberg-Olsen MJ, Garber AI, Keeling PJ, McCutcheon JP, Husnik F. 2022. Pseudofinder: detection of pseudogenes in prokaryotic genomes. Mol Biol Evol. 39(7):msac153. doi:10.1093/molbev/msac153. PubMed DOI PMC
Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L. 2010. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol. 28(5):511–515. doi:10.1038/nbt.1621. PubMed DOI PMC
UniProt Consortium . 2015. UniProt: a hub for protein information. Nucleic Acids Res. 43(D1):D204–D212. doi:10.1093/nar/gku989. PubMed DOI PMC
Vejnovic B, Stevanovic J, Schwarz RS, Aleksic N, Mirilovic M, Jovanovic NM, Stanimirovic Z. 2018. Quantitative PCR assessment of Lotmaria passim in Apis mellifera colonies co-infected naturally with Nosema ceranae. J Invertebr Pathol. 151:76–81. doi:10.1016/j.jip.2017.11.003. PubMed DOI
Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, Cuomo CA, Zeng Q, Wortman J, Young SK, et al. 2014. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One. 9(11):e112963. doi:10.1371/journal.pone.0112963. PubMed DOI PMC
Wickham H, Navarro D, Pederson TL. 2016. ggplot2: Elegant Graphics for Data Analysis. 3rd ed. Springer-Verlag New York.
Xu G, Palmer-Young E, Skyrm K, Daly T, Sylvia M, Averill A, Rich S. 2018. Triplex real-time PCR for detection of Crithidia mellificae and Lotmaria passim in honey bees. Parasitol Res. 117(2):623–628. doi:10.1007/s00436-017-5733-2. PubMed DOI
Yu G, Smith DK, Zhu H, Guan Y, Lam TT-Y. 2017. Ggtree: an r package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol Evol. 8(1):28–36. doi:10.1111/2041-210X.12628. DOI
Yuan X, Sun J, Kadowaki T. 2024. Aspartyl protease in the secretome of honey bee trypanosomatid parasite contributes to infection of bees. Parasit Vectors. 17(1):60. doi:10.1186/s13071-024-06126-7. PubMed DOI PMC
Zhou C, McCarthy SA, Durbin R. 2023. YaHS: yet another Hi-C scaffolding tool. Bioinformatics. 39(1):btac808. doi:10.1093/bioinformatics/btac808. PubMed DOI PMC