Study of Interactions between Titanium Dioxide Coating and Wood Cell Wall Ultrastructure

. 2022 Aug 04 ; 12 (15) : . [epub] 20220804

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35957110

Grantová podpora
GA18-26297S Czech Science Foundation
LM2018124 Ministry of Education, Youth and Sports of the Czech Republic
LM2018110 Ministry of Education, Youth and Sports of the Czech Republic

Titanium dioxide (TiO2) is used as a UV light absorber to protect wood matter from photodegradation. In this paper, interactions between wood and TiO2 coating are studied, and the efficiency of the coating is evaluated. For the experiments, two wood species were chosen: beech (Fagus sylvatica) and pine (Pinus sylvestris). Molecular and physical modifications in coated and uncoated wood exposed to UV radiation were investigated with Fourier transform infrared spectroscopy with attenuated total reflectance (FTIR-ATR) and transmission electron microscopy (TEM). UV-VIS spectroscopy was used to describe the absorption of UV light by the TiO2 planar particles chosen for the experiment. It was demonstrated that TiO2 coating protects wood against photodegradation to a limited extent. TEM micrographs showed fissures in the wood matter around clusters of TiO2 particles in beech wood.

Zobrazit více v PubMed

Donaldson L.A. Wood cell wall ultrastructure The key to understanding wood properties and behaviour. Iawa J. 2019;40:645–672. doi: 10.1163/22941932-40190258. DOI

Côté W.A. Wood Ultrastructure in Relation to Chemical Composition. In: Loewus F.A., Runeckles V.C., editors. The Structure, Biosynthesis, and Degradation of Wood. Springer; Boston, MA, USA: 1977. pp. 1–44.

Jirous-Rajkovic V., Turkulin H., Miller E.R. Depth profile of UV-induced wood surface degradation. Surf. Coat. Int. Part B Coat. Trans. 2004;87:241–247. doi: 10.1007/BF02699671. DOI

Teng T.J., Arip M.N.M., Sudesh K., Nemoikina A., Jalaludin Z., Ng E.P., Lee H.L. Conventional Technology and Nanotechnology in Wood Preservation: A Review. Bioresources. 2018;13:9220–9252. doi: 10.15376/biores.13.4.Teng. DOI

Blanchet P., Pepin S. Trends in Chemical Wood Surface Improvements and Modifications: A Review of the Last Five Years. Coatings. 2021;11:1514. doi: 10.3390/coatings11121514. DOI

Papadopoulos A.N., Bikiaris D.N., Mitropoulos A.C., Kyzas G.Z. Nanomaterials and Chemical Modifications for Enhanced Key Wood Properties: A Review. Nanomaterials. 2019;9:607. doi: 10.3390/nano9040607. PubMed DOI PMC

Zuccheri T., Colonna M., Stefanini I., Santini C., Di Gioia D. Bactericidal Activity of Aqueous Acrylic Paint Dispersion for Wooden Substrates Based on TiO2 Nanoparticles Activated by Fluorescent Light. Materials. 2013;6:3270–3283. doi: 10.3390/ma6083270. PubMed DOI PMC

Harandi D., Ahmadi H., Achachluei M.M. Comparison of TiO2 and ZnO nanoparticles for the improvement of consolidated wood with polyvinyl butyral against white rot. Int. Biodeter. Biodegr. 2016;108:142–148. doi: 10.1016/j.ibiod.2015.12.017. DOI

Zanatta P., Lazarotto M., de Cademartori P.H.G., Cava S.D., Moreira M.L., Gatto D.A. The effect of titanium dioxide nanoparticles obtained by microwave-assisted hydrothermal method on the color and decay resistance of pinewood. Maderas-Ciencia Y Tecnol. 2017;19:495–506. doi: 10.4067/S0718-221X2017005000901. DOI

Goffredo G.B., Citterio B., Biavasco F., Stazi F., Barcelli S., Munafo P. Nanotechnology on wood: The effect of photocatalytic nanocoatings against Aspergillus niger. J. Cult. Herit. 2017;27:125–136. doi: 10.1016/j.culher.2017.04.006. DOI

Hashimoto K., Irie H., Fujishima A. TiO2 Photocatalysis: A Historical Overview and Future Prospects. Jpn. J. Appl. Phys. 2005;44:8269–8285. doi: 10.1143/JJAP.44.8269. DOI

Taghiyari H.R., Moradi-Malek B., Kookandeh M.G., Bibalan O.F. Effects of silver and copper nanoparticles in particleboard to control Trametes versicolor fungus. Int. Biodeter. Biodegr. 2014;94:69–72. doi: 10.1016/j.ibiod.2014.05.029. DOI

Mantanis G., Terzi E., Kartal S.N., Papadopoulos A.N. Evaluation of mold, decay and termite resistance of pine wood treated with zinc- and copper-based nanocompounds. Int. Biodeter. Biodegr. 2014;90:140–144. doi: 10.1016/j.ibiod.2014.02.010. DOI

Sun Q.F., Yu H.P., Liu Y.X., Li J.A., Lu Y., Hunt J.F. Improvement of water resistance and dimensional stability of wood through titanium dioxide coating. Holzforschung. 2010;64:757–761. doi: 10.1515/hf.2010.114. DOI

Yang L., Wu Y., Yang F., Wang W. The Effect of Antibacterial and Waterproof Coating Prepared From Hexadecyltrimethoxysilane and Nano-Titanium Dioxide on Wood Properties. Front. Mater. 2021;8 doi: 10.3389/fmats.2021.699579. DOI

Godnjavec J., Znoj B., Venturini P., Znidarsic A. The application of rutile nano-crystalline titanium dioxide as UV absorber. Inform. Midem. 2010;40:6–9.

Veronovski N., Verhovsek D., Godnjavec J. The influence of surface-treated nano-TiO2 (rutile) incorporation in water-based acrylic coatings on wood protection. Wood Sci. Technol. 2013;47:317–328. doi: 10.1007/s00226-012-0498-3. DOI

Sun Q., Lu Y., Zhang H., Zhao H., Yu H., Xu J., Fu Y., Yang D., Liu Y. Hydrothermal fabrication of rutile TiO2 submicrospheres on wood surface: An efficient method to prepare UV-protective wood. Mater. Chem. Phys. 2012;133:253–258. doi: 10.1016/j.matchemphys.2012.01.018. DOI

Rassam G., Abdi Y., Abdi A. Deposition of TiO2 nano-particles on wood surfaces for UV and moisture protection. J. Exp. Nanosci. 2012;7:468–476. doi: 10.1080/17458080.2010.538086. DOI

Wang X., Liu S., Chang H., Liu J. Sol-gel deposition of TiO2 nanocoatings on wood surfaces with enhanced hydrophobicity and photostability. Wood Fiber Sci. 2014;46:109–117.

Zheng R.B., Tshabalala M.A., Li Q.Y., Wang H.Y. Photocatalytic Degradation of Wood Coated with a Combination of Rutile TiO2 Nanostructures and Low-Surface Free-Energy Materials. Bioresources. 2016;11:2393–2402. doi: 10.15376/biores.11.1.2393-2402. DOI

Panek M., Oberhofnerova E., Zeidler A., Sedivka P. Efficacy of Hydrophobic Coatings in Protecting Oak Wood Surfaces during Accelerated Weathering. Coatings. 2017;7:172. doi: 10.3390/coatings7100172. DOI

Pánek M., Oberhofnerová E., Hýsek Š., Šedivka P., Zeidler A. Colour Stabilization of Oak, Spruce, Larch and Douglas Fir Heartwood Treated with Mixtures of Nanoparticle Dispersions and UV-Stabilizers after Exposure to UV and VIS-Radiation. Materials. 2018;11:1653. doi: 10.3390/ma11091653. PubMed DOI PMC

Jnido G., Ohms G., Viol W. Deposition of TiO2 Thin Films on Wood Substrate by an Air Atmospheric Pressure Plasma Jet. Coatings. 2019;9:441. doi: 10.3390/coatings9070441. DOI

Zeljko M., Bulatovic V.O., Blazic R., Blagojevic S.L. The development of eco-friendly UV-protective polyacrylate/rutile TiO2 coating. J. Appl. Polym. Sci. 2022;139 doi: 10.1002/app.52393. DOI

Forsthuber B., Müller U., Teischinger A., Grüll G. Chemical and mechanical changes during photooxidation of an acrylic clear wood coat and its prevention using UV absorber and micronized TiO2. Polym. Degrad. Stabil. 2013;98:1329–1338. doi: 10.1016/j.polymdegradstab.2013.03.029. DOI

Svora P., Ecorchard P., Pližingrová E., Komárková B., Svorová Pawełkowicz S., Murafa N., Maříková M., Smržová D., Wagner B., Machálková A., et al. Influence of Inorganic Bases on the Structure of Titanium Dioxide-Based Microsheets. Acs Omega. 2020;5:23703–23717. doi: 10.1021/acsomega.0c02570. PubMed DOI PMC

Schaller C., Rogez D. New approaches in wood coating stabilization. J. Coat. Technol. Res. 2007;4:401–409. doi: 10.1007/s11998-007-9049-5. DOI

Daniel G. Chapter 15—Microscope Techniques for Understanding Wood Cell Structure and Biodegradation. In: Kim Y.S., Funada R., Singh A.P., editors. Secondary Xylem Biology. Academic Press; Boston, MA, USA: 2016. pp. 309–343.

Reza M., Kontturi E., Jääskeläinen A.-S., Vuorinen T., Ruokolainen J. Transmission electron microscopy for wood and fiber analysis−A review. BioResources. 2015;10:6230–6261. doi: 10.15376/biores.10.3.Reza. DOI

Zhou X., Ding D., Ma J., Ji Z., Zhang X., Xu F. The Transmission Electron Microscope–Theory and Applications. InTech; London, UK: 2015. Ultrastructure and topochemistry of plant cell wall by transmission electron microscopy; pp. 285–306.

Reinprecht L. Ochrana Dreva. Technická univerzita vo Zvolene; Zvolen, Slovacia: 2008.

Durability of Wood and Wood-Based Products—Test Method against Wood Destroying Basidiomycetes—Part 1: Assessment of Biocidal Efficacy of Wood Preservatives. SIST; Ljubljana, Slovenia: 2020.

Wood Preservatives—Determination Of The Protective Effectiveness against Wood Destroying Basidiomycetes—Application By Surface Treatment. SIST; Ljubljana, Slovenia: 2014.

Field Test Method for Determining The Relative Protective Effectiveness of a Wood Preservative in Ground Contact. SIST; Ljubljana, Slovenia: 2014.

Paints And Varnishes—Coating Materials And Coating Systems for Exterior Wood—Part 3: Natural Weathering Test. SIST; Ljubljana, Slovenia: 2019.

Paints and Varnishes—Coating Materials and Coating Systems for Exterior Wood—Part 6: Exposure of Wood Coatings to Artificial Weathering Using Fluorescent UV Lamps and Water. SIST; Ljubljana, Slovenia: 2018.

Amorim S.M., Suave J., Andrade L., Mendes A.M., Jose H.J., Moreira R. Towards an efficient and durable self-cleaning acrylic paint containing mesoporous TiO2 microspheres. Prog. Org. Coat. 2018;118:48–56. doi: 10.1016/j.porgcoat.2018.01.005. DOI

Subrt J., Pulisova P., Bohacek J., Bezdicka P., Plizingrova E., Volfova L., Kupcik J. Highly photoactive 2D titanium dioxide nanostructures prepared from lyophilized aqueous colloids of peroxo-polytitanic acid. Mater. Res. Bull. 2014;49:405–412. doi: 10.1016/j.materresbull.2013.09.028. DOI

Cogulet A., Blanchet P., Landry V. Wood degradation under UV irradiation: A lignin characterization. J. Photoch. Photobio. B. 2016;158:184–191. doi: 10.1016/j.jphotobiol.2016.02.030. PubMed DOI

Ozgenc O., Durmaz S., Boyaci I.H., Eksi-Kocak H. ATR-FTIR spectroscopic analysis of the thermally modified wood degraded by rot fungi. Drewno. 2018;61:91–105. doi: 10.12841/wood.1644-3985.247.02. DOI

Colom X., Carrillo F., Nogués F., Garriga P. Structural analysis of photodegraded wood by means of FTIR spectroscopy. Polym. Degrad. Stabil. 2003;80:543–549. doi: 10.1016/S0141-3910(03)00051-X. DOI

Cichosz S., Masek A. IR Study on Cellulose with the Varied Moisture Contents: Insight into the Supramolecular Structure. Materials. 2020;13:4573. doi: 10.3390/ma13204573. PubMed DOI PMC

Bari E., Ohno K., Yilgor N., Singh A.P., Morrell J.J., Pizzi A., Ghanbary M.A.T., Ribera J. Characterizing Fungal Decay of Beech Wood: Potential for Biotechnological Applications. Microorganisms. 2021;9:247. doi: 10.3390/microorganisms9020247. PubMed DOI PMC

Dirckx O., Triboulot-Trouy M., Merlin A., Deglise X. Modifications de la couleur du bois d’Abies grandis exposé à la lumière solaire. Ann. For. Sci. 1992;49:425–447. doi: 10.1051/forest:19920501. DOI

Pandey K.K. A study of chemical structure of soft and hardwood and wood polymers by FTIR spectroscopy. J. Appl. Polym. Sci. 1999;71:1969–1975. doi: 10.1002/(SICI)1097-4628(19990321)71:12<1969::AID-APP6>3.0.CO;2-D. DOI

Požgaj A.C.D., Kurjatko S., Babiak M. Štruktúra a Vlastnosti Dreva. Príroda; Bratislava, Slovakia: 1993.

Müller U., Rätzsch M., Schwanninger M., Steiner M., Zöbl H. Yellowing and IR-changes of spruce wood as result of UV-irradiation. J. Photochem. Photobiol. B. 2003;69:97–105. doi: 10.1016/S1011-1344(02)00412-8. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...