Study of Interactions between Titanium Dioxide Coating and Wood Cell Wall Ultrastructure
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
GA18-26297S
Czech Science Foundation
LM2018124
Ministry of Education, Youth and Sports of the Czech Republic
LM2018110
Ministry of Education, Youth and Sports of the Czech Republic
PubMed
35957110
PubMed Central
PMC9370405
DOI
10.3390/nano12152678
PII: nano12152678
Knihovny.cz E-zdroje
- Klíčová slova
- beech wood (Fagus sylvatica), photodegradation, pine wood (Pinus sylvestris), protective layer, titanium dioxide (TiO2), wood cell ultrastructure, wood preservation,
- Publikační typ
- časopisecké články MeSH
Titanium dioxide (TiO2) is used as a UV light absorber to protect wood matter from photodegradation. In this paper, interactions between wood and TiO2 coating are studied, and the efficiency of the coating is evaluated. For the experiments, two wood species were chosen: beech (Fagus sylvatica) and pine (Pinus sylvestris). Molecular and physical modifications in coated and uncoated wood exposed to UV radiation were investigated with Fourier transform infrared spectroscopy with attenuated total reflectance (FTIR-ATR) and transmission electron microscopy (TEM). UV-VIS spectroscopy was used to describe the absorption of UV light by the TiO2 planar particles chosen for the experiment. It was demonstrated that TiO2 coating protects wood against photodegradation to a limited extent. TEM micrographs showed fissures in the wood matter around clusters of TiO2 particles in beech wood.
Zobrazit více v PubMed
Donaldson L.A. Wood cell wall ultrastructure The key to understanding wood properties and behaviour. Iawa J. 2019;40:645–672. doi: 10.1163/22941932-40190258. DOI
Côté W.A. Wood Ultrastructure in Relation to Chemical Composition. In: Loewus F.A., Runeckles V.C., editors. The Structure, Biosynthesis, and Degradation of Wood. Springer; Boston, MA, USA: 1977. pp. 1–44.
Jirous-Rajkovic V., Turkulin H., Miller E.R. Depth profile of UV-induced wood surface degradation. Surf. Coat. Int. Part B Coat. Trans. 2004;87:241–247. doi: 10.1007/BF02699671. DOI
Teng T.J., Arip M.N.M., Sudesh K., Nemoikina A., Jalaludin Z., Ng E.P., Lee H.L. Conventional Technology and Nanotechnology in Wood Preservation: A Review. Bioresources. 2018;13:9220–9252. doi: 10.15376/biores.13.4.Teng. DOI
Blanchet P., Pepin S. Trends in Chemical Wood Surface Improvements and Modifications: A Review of the Last Five Years. Coatings. 2021;11:1514. doi: 10.3390/coatings11121514. DOI
Papadopoulos A.N., Bikiaris D.N., Mitropoulos A.C., Kyzas G.Z. Nanomaterials and Chemical Modifications for Enhanced Key Wood Properties: A Review. Nanomaterials. 2019;9:607. doi: 10.3390/nano9040607. PubMed DOI PMC
Zuccheri T., Colonna M., Stefanini I., Santini C., Di Gioia D. Bactericidal Activity of Aqueous Acrylic Paint Dispersion for Wooden Substrates Based on TiO2 Nanoparticles Activated by Fluorescent Light. Materials. 2013;6:3270–3283. doi: 10.3390/ma6083270. PubMed DOI PMC
Harandi D., Ahmadi H., Achachluei M.M. Comparison of TiO2 and ZnO nanoparticles for the improvement of consolidated wood with polyvinyl butyral against white rot. Int. Biodeter. Biodegr. 2016;108:142–148. doi: 10.1016/j.ibiod.2015.12.017. DOI
Zanatta P., Lazarotto M., de Cademartori P.H.G., Cava S.D., Moreira M.L., Gatto D.A. The effect of titanium dioxide nanoparticles obtained by microwave-assisted hydrothermal method on the color and decay resistance of pinewood. Maderas-Ciencia Y Tecnol. 2017;19:495–506. doi: 10.4067/S0718-221X2017005000901. DOI
Goffredo G.B., Citterio B., Biavasco F., Stazi F., Barcelli S., Munafo P. Nanotechnology on wood: The effect of photocatalytic nanocoatings against Aspergillus niger. J. Cult. Herit. 2017;27:125–136. doi: 10.1016/j.culher.2017.04.006. DOI
Hashimoto K., Irie H., Fujishima A. TiO2 Photocatalysis: A Historical Overview and Future Prospects. Jpn. J. Appl. Phys. 2005;44:8269–8285. doi: 10.1143/JJAP.44.8269. DOI
Taghiyari H.R., Moradi-Malek B., Kookandeh M.G., Bibalan O.F. Effects of silver and copper nanoparticles in particleboard to control Trametes versicolor fungus. Int. Biodeter. Biodegr. 2014;94:69–72. doi: 10.1016/j.ibiod.2014.05.029. DOI
Mantanis G., Terzi E., Kartal S.N., Papadopoulos A.N. Evaluation of mold, decay and termite resistance of pine wood treated with zinc- and copper-based nanocompounds. Int. Biodeter. Biodegr. 2014;90:140–144. doi: 10.1016/j.ibiod.2014.02.010. DOI
Sun Q.F., Yu H.P., Liu Y.X., Li J.A., Lu Y., Hunt J.F. Improvement of water resistance and dimensional stability of wood through titanium dioxide coating. Holzforschung. 2010;64:757–761. doi: 10.1515/hf.2010.114. DOI
Yang L., Wu Y., Yang F., Wang W. The Effect of Antibacterial and Waterproof Coating Prepared From Hexadecyltrimethoxysilane and Nano-Titanium Dioxide on Wood Properties. Front. Mater. 2021;8 doi: 10.3389/fmats.2021.699579. DOI
Godnjavec J., Znoj B., Venturini P., Znidarsic A. The application of rutile nano-crystalline titanium dioxide as UV absorber. Inform. Midem. 2010;40:6–9.
Veronovski N., Verhovsek D., Godnjavec J. The influence of surface-treated nano-TiO2 (rutile) incorporation in water-based acrylic coatings on wood protection. Wood Sci. Technol. 2013;47:317–328. doi: 10.1007/s00226-012-0498-3. DOI
Sun Q., Lu Y., Zhang H., Zhao H., Yu H., Xu J., Fu Y., Yang D., Liu Y. Hydrothermal fabrication of rutile TiO2 submicrospheres on wood surface: An efficient method to prepare UV-protective wood. Mater. Chem. Phys. 2012;133:253–258. doi: 10.1016/j.matchemphys.2012.01.018. DOI
Rassam G., Abdi Y., Abdi A. Deposition of TiO2 nano-particles on wood surfaces for UV and moisture protection. J. Exp. Nanosci. 2012;7:468–476. doi: 10.1080/17458080.2010.538086. DOI
Wang X., Liu S., Chang H., Liu J. Sol-gel deposition of TiO2 nanocoatings on wood surfaces with enhanced hydrophobicity and photostability. Wood Fiber Sci. 2014;46:109–117.
Zheng R.B., Tshabalala M.A., Li Q.Y., Wang H.Y. Photocatalytic Degradation of Wood Coated with a Combination of Rutile TiO2 Nanostructures and Low-Surface Free-Energy Materials. Bioresources. 2016;11:2393–2402. doi: 10.15376/biores.11.1.2393-2402. DOI
Panek M., Oberhofnerova E., Zeidler A., Sedivka P. Efficacy of Hydrophobic Coatings in Protecting Oak Wood Surfaces during Accelerated Weathering. Coatings. 2017;7:172. doi: 10.3390/coatings7100172. DOI
Pánek M., Oberhofnerová E., Hýsek Š., Šedivka P., Zeidler A. Colour Stabilization of Oak, Spruce, Larch and Douglas Fir Heartwood Treated with Mixtures of Nanoparticle Dispersions and UV-Stabilizers after Exposure to UV and VIS-Radiation. Materials. 2018;11:1653. doi: 10.3390/ma11091653. PubMed DOI PMC
Jnido G., Ohms G., Viol W. Deposition of TiO2 Thin Films on Wood Substrate by an Air Atmospheric Pressure Plasma Jet. Coatings. 2019;9:441. doi: 10.3390/coatings9070441. DOI
Zeljko M., Bulatovic V.O., Blazic R., Blagojevic S.L. The development of eco-friendly UV-protective polyacrylate/rutile TiO2 coating. J. Appl. Polym. Sci. 2022;139 doi: 10.1002/app.52393. DOI
Forsthuber B., Müller U., Teischinger A., Grüll G. Chemical and mechanical changes during photooxidation of an acrylic clear wood coat and its prevention using UV absorber and micronized TiO2. Polym. Degrad. Stabil. 2013;98:1329–1338. doi: 10.1016/j.polymdegradstab.2013.03.029. DOI
Svora P., Ecorchard P., Pližingrová E., Komárková B., Svorová Pawełkowicz S., Murafa N., Maříková M., Smržová D., Wagner B., Machálková A., et al. Influence of Inorganic Bases on the Structure of Titanium Dioxide-Based Microsheets. Acs Omega. 2020;5:23703–23717. doi: 10.1021/acsomega.0c02570. PubMed DOI PMC
Schaller C., Rogez D. New approaches in wood coating stabilization. J. Coat. Technol. Res. 2007;4:401–409. doi: 10.1007/s11998-007-9049-5. DOI
Daniel G. Chapter 15—Microscope Techniques for Understanding Wood Cell Structure and Biodegradation. In: Kim Y.S., Funada R., Singh A.P., editors. Secondary Xylem Biology. Academic Press; Boston, MA, USA: 2016. pp. 309–343.
Reza M., Kontturi E., Jääskeläinen A.-S., Vuorinen T., Ruokolainen J. Transmission electron microscopy for wood and fiber analysis−A review. BioResources. 2015;10:6230–6261. doi: 10.15376/biores.10.3.Reza. DOI
Zhou X., Ding D., Ma J., Ji Z., Zhang X., Xu F. The Transmission Electron Microscope–Theory and Applications. InTech; London, UK: 2015. Ultrastructure and topochemistry of plant cell wall by transmission electron microscopy; pp. 285–306.
Reinprecht L. Ochrana Dreva. Technická univerzita vo Zvolene; Zvolen, Slovacia: 2008.
Durability of Wood and Wood-Based Products—Test Method against Wood Destroying Basidiomycetes—Part 1: Assessment of Biocidal Efficacy of Wood Preservatives. SIST; Ljubljana, Slovenia: 2020.
Wood Preservatives—Determination Of The Protective Effectiveness against Wood Destroying Basidiomycetes—Application By Surface Treatment. SIST; Ljubljana, Slovenia: 2014.
Field Test Method for Determining The Relative Protective Effectiveness of a Wood Preservative in Ground Contact. SIST; Ljubljana, Slovenia: 2014.
Paints And Varnishes—Coating Materials And Coating Systems for Exterior Wood—Part 3: Natural Weathering Test. SIST; Ljubljana, Slovenia: 2019.
Paints and Varnishes—Coating Materials and Coating Systems for Exterior Wood—Part 6: Exposure of Wood Coatings to Artificial Weathering Using Fluorescent UV Lamps and Water. SIST; Ljubljana, Slovenia: 2018.
Amorim S.M., Suave J., Andrade L., Mendes A.M., Jose H.J., Moreira R. Towards an efficient and durable self-cleaning acrylic paint containing mesoporous TiO2 microspheres. Prog. Org. Coat. 2018;118:48–56. doi: 10.1016/j.porgcoat.2018.01.005. DOI
Subrt J., Pulisova P., Bohacek J., Bezdicka P., Plizingrova E., Volfova L., Kupcik J. Highly photoactive 2D titanium dioxide nanostructures prepared from lyophilized aqueous colloids of peroxo-polytitanic acid. Mater. Res. Bull. 2014;49:405–412. doi: 10.1016/j.materresbull.2013.09.028. DOI
Cogulet A., Blanchet P., Landry V. Wood degradation under UV irradiation: A lignin characterization. J. Photoch. Photobio. B. 2016;158:184–191. doi: 10.1016/j.jphotobiol.2016.02.030. PubMed DOI
Ozgenc O., Durmaz S., Boyaci I.H., Eksi-Kocak H. ATR-FTIR spectroscopic analysis of the thermally modified wood degraded by rot fungi. Drewno. 2018;61:91–105. doi: 10.12841/wood.1644-3985.247.02. DOI
Colom X., Carrillo F., Nogués F., Garriga P. Structural analysis of photodegraded wood by means of FTIR spectroscopy. Polym. Degrad. Stabil. 2003;80:543–549. doi: 10.1016/S0141-3910(03)00051-X. DOI
Cichosz S., Masek A. IR Study on Cellulose with the Varied Moisture Contents: Insight into the Supramolecular Structure. Materials. 2020;13:4573. doi: 10.3390/ma13204573. PubMed DOI PMC
Bari E., Ohno K., Yilgor N., Singh A.P., Morrell J.J., Pizzi A., Ghanbary M.A.T., Ribera J. Characterizing Fungal Decay of Beech Wood: Potential for Biotechnological Applications. Microorganisms. 2021;9:247. doi: 10.3390/microorganisms9020247. PubMed DOI PMC
Dirckx O., Triboulot-Trouy M., Merlin A., Deglise X. Modifications de la couleur du bois d’Abies grandis exposé à la lumière solaire. Ann. For. Sci. 1992;49:425–447. doi: 10.1051/forest:19920501. DOI
Pandey K.K. A study of chemical structure of soft and hardwood and wood polymers by FTIR spectroscopy. J. Appl. Polym. Sci. 1999;71:1969–1975. doi: 10.1002/(SICI)1097-4628(19990321)71:12<1969::AID-APP6>3.0.CO;2-D. DOI
Požgaj A.C.D., Kurjatko S., Babiak M. Štruktúra a Vlastnosti Dreva. Príroda; Bratislava, Slovakia: 1993.
Müller U., Rätzsch M., Schwanninger M., Steiner M., Zöbl H. Yellowing and IR-changes of spruce wood as result of UV-irradiation. J. Photochem. Photobiol. B. 2003;69:97–105. doi: 10.1016/S1011-1344(02)00412-8. PubMed DOI