Colour Stabilization of Oak, Spruce, Larch and Douglas Fir Heartwood Treated with Mixtures of Nanoparticle Dispersions and UV-Stabilizers after Exposure to UV and VIS-Radiation

. 2018 Sep 07 ; 11 (9) : . [epub] 20180907

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30205474

Grantová podpora
TH02020873 Technologická Agentura České Republiky

Colour changes and associated wood degradation in exterior and interior applications influenced by ultraviolet (UV) and visible radiation (VIS) decreases the aesthetic value of the products and shortens the overall life of transparent coatings. The aim of the paper is to achieve colour stabilization of oak, larch, Douglas fir and spruce heartwood via surface treatment with UV stabilizers, hindered amine light stabilizers (HALS), nanoparticles TiO₂, ZnO, and mixtures thereof, during exposure to UV and VIS radiation. Colour changes were evaluated during accelerated artificial ageing testing in Xenotest. The distinctly individual character of colour changes in surface treatments due to the underlying wood species was confirmed. A synergistic effect was found when using a combination of active substances compared to substances used individually. The mixture of benzotriazoles with HALS (Tinuvin 5151) in combination with TiO₂ and ZnO nanoparticles was confirmed as one of the most effective treatments for colour stabilization of wood due to UV and VIS spectrums.

Zobrazit více v PubMed

Evans P.D., Haase J.G., Shakri A., Seman B.M., Kiguchi M. The search for durable exterior clear coatings for wood. Coatings. 2015;5:830–864. doi: 10.3390/coatings5040830. DOI

Cogulet A., Blanchet P., Landry V. The multifactorial aspect of wood weathering: A review based on a holistic approach of wood degradation protected by clear coating. BioResources. 2018;13:2116–2138. doi: 10.15376/biores.13.1.Cogulet. DOI

Rosu D., Rosu L., Cascaval C.N. IR-change and yellowing of polyurethane as a result of UV irradiation. Polym. Degrad. Stab. 2009;94:591–596. doi: 10.1016/j.polymdegradstab.2009.01.013. DOI

Pánek M., Reinprecht L. Colour stability and surface defects of naturally aged wood treated with transparent paints for exterior constructions. Wood Res. 2014;59:421–430.

Oltean L., Teischinger A., Hansmann C. Wood surface discolouration due to simulated indoor sunlight exposure. Holz Roh Werkst. 2008;66:51–56. doi: 10.1007/s00107-007-0201-9. DOI

Gobakenn L.R., Westin M. Surface moulds growth on five modified wood substrates coated with three different coating systems when exposed outdoors. Int. Biodeterior. Biodegrad. 2008;62:397–402. doi: 10.1016/j.ibiod.2008.03.004. DOI

Volkmer T., Arietano L., Plummer C., Strautmann J., Noel M. Loss of tensile strength in cellulose tissue on the surface of spruce (Picea abies) caused by natural photodegradation and delignification. Polym. Degrad. Stab. 2013;98:1118–1125. doi: 10.1016/j.polymdegradstab.2013.03.019. DOI

Ikei H., Song C., Miyazaki Y. Physiological effects of wood on humans: A review. J. Wood Sci. 2017;63 doi: 10.1007/s10086-016-1597-9. DOI

European Committee for Standardization . (EN) 335:2013 Durability of Wood and Wood-Based Products—Use Classes: Definitions, Application to Solid Wood and Wood-Based Products. European Committee for Standardization; Brussels, Belgium: 2013.

George B., Suttie E., Merlin A., Deglise X. Photodegradation and photostabilisation of wood—The state of the art. Polym. Degrad. Stab. 2005;88:268–274. doi: 10.1016/j.polymdegradstab.2004.10.018. DOI

Feist W.C., Hon D.N.S. Chemistry of weathering and protection. In: Rowell R.M., editor. The Chemistry of Solid Wood. American Chemical Society’s; Washington, DC, USA: 1984. pp. 401–451. (Advances in Chemistry Series 207).

Gobakken L.R., Lebow P.K. Modelling mould growth on coated modified and unmodified wood substrates exposed outdoors. Wood Sci. Technol. 2010;44:315–333. doi: 10.1007/s00226-009-0283-0. DOI

Kržišnik D., Lesar B., Thaler N., Humar M. Influence of natural and artificial weathering on the colour change of different wood and wood-based materials. Forests. 2018;9:488. doi: 10.3390/f9080488. DOI

Anderson E.L., Pawlak Z., Owen N.L., Feist W.C. Infrared studies of wood weathering. Part I: Softwoods. Appl. Spectrosc. 1991;45:641–647. doi: 10.1366/0003702914336930. DOI

Shenoy M.A., Marathe Y.D. Studies on synergistic effect of UV absorbers and hindered amine light stabilizers. Pigment Resin Technol. 2007;36:83–89. doi: 10.1108/03699420710733510. DOI

Scrinzi E., Rossi S., Deflorian F., Zanella C. Evaluation of aesthetic durability of waterborne polyurethane coatings applied on wood for interior applications. Prog. Org. Coat. 2011;72:81–87. doi: 10.1016/j.porgcoat.2011.03.013. DOI

Moya R., Rodríguez-Zúñiga A., Vega-Baudrit J., Puente-Urbina A. Effects of adding TiO2 nanoparticles to a water-based varnish for wood applied to nine tropical woods of Costa Rica exposed to natural and accelerated weathering. J. Coat. Technol. Res. 2016;14:141–152. doi: 10.1007/s11998-016-9848-7. DOI

Reinprecht L., Pánek M. Effects of wood roughness, light pigments, and water repellent on the color stability of painted spruce subjected to natural and accelerated weathering. BioResources. 2015;10:7203–7219. doi: 10.15376/biores.10.4.7203-7219. DOI

Hill C.A.S. Wood Modification—Chemical, Thermal and Other Processes. John Wiley and Sons Ltd.; Chichester, UK: 2006. p. 239.

Passauer L., Prieto J., Müller M., Rössler M., Schubert J., Beyer M. Novel color stabilization concepts for decorative surfaces of native dark wood and thermally modified timber. Prog. Org. Coat. 2015;89:314–322. doi: 10.1016/j.porgcoat.2015.06.017. DOI

Pánek M., Oberhofnerová E., Zeidler A., Šedivka P. Efficacy of hydrophobic coatings in protecting oak wood surfaces during accelerated weathering. Coatings. 2017;7:172. doi: 10.3390/coatings7100172. DOI

Kutnik M., Montibus M., Derocker S., Salivati S., Lecomte J.P. Assesment of the biological durability of wood treated with organosilicon compounds, In Proceedings of the The International Research Group on Wood Protection, Lisbon, Portugal, 15–19 May 2016; IRG/WP 16-30685, 15p;

Chou P.L., Chang H.T., Yeh T.F., Chang S.T. Characterizing the conservation effect of clear coatings on photodegradation of wood. Bioresour. Technol. 2008;99:1073–1079. doi: 10.1016/j.biortech.2007.02.027. PubMed DOI

Šimůnková K., Pánek M., Zeidler A. Comparison of selected properties of shellac varnish for restoration and polyurethane varnish for reconstruction of historical artefacts. Coatings. 2018;8:119. doi: 10.3390/coatings8040119. DOI

Schaller C., Rogez D. Defended from the sun. Eur. Coat. J. 2006;12:22–27.

Forsthuber B., Grüll G. The effects of HALS in the prevention of photodegradation of acrylic clear topcoats and wooden surfaces. Polym. Degrad. Stab. 2010;95:746–755. doi: 10.1016/j.polymdegradstab.2010.02.016. DOI

Nair S., Giridhar B.N., Pandey K.K. UV stabilization of wood by nano metal oxides dispersed in propylene glycol. J. Photochem. Photobiol. B. 2018;183:1–10. doi: 10.1016/j.jphotobiol.2018.04.007. PubMed DOI

Dawson B.S.W., Singh A.P., Kroese H.W., Schwitzer M.A., Gallagher S. Enhancing exterior performance of clear coatings through photostabilization of wood. Part 2: Coating and weathering performance. J. Coat. Technol. Res. 2008;5:207–219. doi: 10.1007/s11998-008-9090-z. DOI

Tolvaj L., Faix O. Artifical ageing of wood monitored by DRIFT spectroscopy and CIE L* a* b* color measurements. I. Effect of UV light. Holzforschung. 1995;49:397–404. doi: 10.1515/hfsg.1995.49.5.397. DOI

Pandey K.K. A study of chemical structure of soft and hardwood and wood polymers by FTIR spectroscopy. J. Appl. Polym. Sci. 1999;71:1969–1975. doi: 10.1002/(SICI)1097-4628(19990321)71:12<1969::AID-APP6>3.0.CO;2-D. DOI

Müller U., Ratzsch M., Schwanninger M., Steiner M., Zobl H. Yellowing and IR-changes of spruce wood as result of UV-irradiation. J. Photochem. Photobiol. B. 2003;69:97–105. doi: 10.1016/S1011-1344(02)00412-8. PubMed DOI

Liu Y., Shao L., Gao J., Guo H., Chen Y., Cheng Q., Via B.K. Surface photo-discoloration and degradation of dyed wood veneer exposed to different wavelengths of artificial light. Appl. Surf. Sci. 2015;331:353–361. doi: 10.1016/j.apsusc.2015.01.091. DOI

Aloui F., Ahajji A., Irmouli Y., George B., Charrier B., Merlin A. Inorganic UV absorbers for the photostabilisation of wood-clearcoating systems: Comparison with organic UV absorbers. Appl. Surf. Sci. 2007;253:3737–3745. doi: 10.1016/j.apsusc.2006.08.029. DOI

Cristea M.V., Riedl B., Blanchet P. Effect of addition of nanosized UV absorbers on the physico-mechanical and thermal properties of an exterior waterborne stain for wood. Prog. Org. Coat. 2011;72:755–762. doi: 10.1016/j.porgcoat.2011.08.007. DOI

Forsthuber B., Müller U., Teischinger A., Grüll G. Chemical and mechanical changes during photooxidation of an acrylic clear wood coat and its prevention using UV absorber and micronized TiO2. Polym. Degrad. Stab. 2013;98:1329–1338. doi: 10.1016/j.polymdegradstab.2013.03.029. DOI

Fufa S.M., Jelle B.P., Hoyde P.J. Effects of TiO2 and clay nanoparticles loading on weathering performance of coated wood. Prog. Org. Coat. 2013;76:1425–1429. doi: 10.1016/j.porgcoat.2013.05.001. DOI

Nikolic M., Lawther J.M., Sanadi A.R. Use of nanofillers in wood coatings: A scientific review. J. Coat. Technol. Res. 2015;12:445–461. doi: 10.1007/s11998-015-9659-2. DOI

Forsthuber B., Schaller C., Grüll G. Evaluation of the photo stabilising efficiency of clear coatings comprising organic UV absorbers and mineral UV screeners on wood surfaces. Wood Sci. Technol. 2013;2:281–297. doi: 10.1007/s00226-012-0487-6. DOI

Teacà C.A., Rosu D., Bodîrlàu R., Rosu L. Structural changes in wood under artificial UV light irradiation by FTIR spectroscopy and color measurements—A brief review. BioResources. 2013;8:1478–1507. doi: 10.15376/biores.8.1.1478-1507. DOI

Kiguchi M., Evans P.D. Photostabilisation of wood surfaces using a grafted benzophenone UV absorber. Polym. Degrad. Stab. 1998;61:33–45. doi: 10.1016/S0141-3910(97)00124-9. DOI

Chang S.T., Wang S.Y., Su Y.C. Retention of red color in Taiwania (Taiwania cryptomeriodes Hay.) heartwood. Holzforschung. 1998;52:13–17. doi: 10.1515/hfsg.1998.52.1.13. DOI

Schaller C., Rogez D. New approaches in wood coating stabilization. J. Coat. Technol. Res. 2007;4:401–409. doi: 10.1007/s11998-007-9049-5. DOI

Clausen C.A., Green F., Kartal S.N. Weatherability and leach resistence of wood impregnated with nano-zinc oxide. Nanoscale Res. Lett. 2010;5:1464–1467. doi: 10.1007/s11671-010-9662-6. PubMed DOI PMC

Sahin H.T., Mantanis G.I. Colour changes of wood surfaces modified by a nanoparticulate based treatment. Wood Res. 2011;56:525–532.

Mishra P.K., Giagli K., Tsalagkas D., Mishra H., Talegaonkar S., Gryc V., Wimmer R. Changing face of wood science in modern era: Contribution of nanotechnology. Recent Pat. Nanotechnol. 2018;12:13–21. doi: 10.2174/1872210511666170808111512. PubMed DOI

Kataoka Y., Kiguchi M., Williams R.S., Evans P.D. Violet light causes photodegradation of wood beyond the zone affected by ultraviolet radiation. Holzforschung. 2007;61:23–27. doi: 10.1515/HF.2007.005. DOI

Olsson S. Ph.D. Thesis. KTH Royal Institute of Technology; Stockholm, Sweden: 2014. Dec, Enhancing UV Protection of Clear Coated Exterior Wood by Reactive UV Absorber and Epoxy Functional Vegetable Oil.

Salla J., Pandey K.K., Srinivas K. Improvement of UV resistance of wood surfaces by using ZnO nanoparticles. Polym. Degrad. Stab. 2012;97:592–596.

Tuong V.M., Chu T.V. Improvement of Colour Stability of Acacia hybrid Wood by TiO2 nano sol impregnation. BioResources. 2015;10:5417–5425. doi: 10.15376/biores.10.3.5417-5425. DOI

Auclair N., Riedl B., Blanchard V., Blanchet P. Improvement of photoprotection of wood coatings by using inorganic nanoparticles as ultraviolet absorbers. For. Prod. J. 2011;61:20–27. doi: 10.13073/0015-7473-61.1.20. DOI

Gao H., Liang D.X., Li J., Pang G.S., Fang Z.X. Preparation and properties of nano TiO2-ZnO binary collaborative wood. Chem. J. Chin. Univ. 2016;37:1075–1081. doi: 10.7503/cjcu20150829. (In Chinese) DOI

Wagenführ R. Holzatlas. Fachbuchverlag; Leipzig, Germany: 2007. p. 816.

Yalcin M., Pelit H., Akcay C., Cakicier N. Surface properties of tannin-impregnated and varnished beech wood after exposure to accelerated weathering. Color. Technol. 2017;133:334–340. doi: 10.1111/cote.12287. DOI

Zahri S., Belloncle C., Charrier F., Pardon P., Quideau S., Charrier B. UV light impact on ellagitannins and wood surface colour of European oak (Quercus petraea and Quercus robur) Appl. Surf. Sci. 2007;253:4985–4989. doi: 10.1016/j.apsusc.2006.11.005. DOI

Timar M.C., Varodi A.M., Gurau L. Comparative study of photodegradation of six wood species after short-time UV exposure. Wood Sci. Technol. 2016;50:135–163. doi: 10.1007/s00226-015-0771-3. DOI

Robinson S.C., Tudor D., Mansourian Y., Cooper P.A. The effects of several commercial wood coatings on the deterioration of biological pigments in wood exposed to UV light. Wood Sci. Technol. 2013;47:457–466. doi: 10.1007/s00226-012-0502-y. DOI

De Windt I., Van den Bulcke J., Wuijtens I., Coppens H., Van Acker J. Outdoor weathering performance parameters of exterior wood coating systems on tropical hardwood substrates. Eur. J. Wood Wood Prod. 2014;72:261–272. doi: 10.1007/s00107-014-0779-7. DOI

European Committee for Standardization . (EN) 350: 2016 Durability of Wood and Wood-Based Products—Testing and Classification of the Durability to Biological Agents of Wood and Wood-Based Materials. European Committee for Standardization; Brussels, Belgium: 2016.

Ayadi N. Ph.D. Thesis. Université de Nantes; Nantes, France: December 2004. Vieillissement Climatique d’un Systéme Bois-Vernis-Absorbeur UV Inorganique.

Grabner M., Müller U., Gierlinger N., Wimmer R. Effects of heartwood extractives on mechanical properties of larch. IAWA J. 2005;26:211–220. doi: 10.1163/22941932-90000113. DOI

Grüll G., Forsthuber B., Ecker M. Sensitivity of waterborne coatings materials to high acidity and high content of arabinobalactan in larch heartwood. Prog. Org. Coat. 2016;101:367–378. doi: 10.1016/j.porgcoat.2016.08.015. DOI

Remeš J., Zeidler A. Production potential and wood quality of Douglas fir from selected sites in the Czech Republic. Wood Res. 2014;59:509–520.

Mbakidi-Ngouaby H., Pinault E., Gloaguen V., Costa G., Sol V., Millot M., Mambu L. Profiling and seasonal variation of chemical constituents from Pseudotsuga menziesii wood. Ind. Crops Prod. 2018;117:34–49. doi: 10.1016/j.indcrop.2018.02.069. DOI

Zeidler A., Borůvka V., Schönfelder O. Comparison of wood quality of Douglas fir and spruce from afforested agricultural land and permanent forest land in the Czech Republic. Forests. 2018;9:13. doi: 10.3390/f9010013. DOI

American Society for Testing and Materials . D2244-16:2016—Standard Practice for Calculation of Color Tolerances and Color Differences from Instrumentally Measured Color Coordinates. ASTM International; West Conshohocken, PA, USA: 2016.

Kataoka Y., Kiguchi M. Depth profiling of photo-induced degradation in wood by FT-IR microspectroscopy. J. Wood Sci. 2001;47:325–327. doi: 10.1007/BF00766722. DOI

Tolvaj L., Mitsui K. Light source dependence of the photodegradation of wood. J Wood Sci. 2005;51:468–473. doi: 10.1007/s10086-004-0693-4. DOI

International Organization for Standardization . (EN ISO) 4287:1997 Geometrical Product Specifications (GPS), Surface Texture, Profile Method: Terms, Definitions and Surface Texture Parameters. (EN ISO); Geneva, Switzerland: 1997.

International Organization for Standardization . (EN ISO) 4288:1996 Geometrical Product Specifications (GPS). Surface Texture, Profile Method: Rules and Procedures for the Assessment of Surface Texture. (EN ISO); Geneva, Switzerland: 1996.

Wang X., Liu S., Chang H., Liu J. Sol-gel deposition of TiO2 nanocoatings on wood surfaces with enhanced hydrophobicity and photostability. Wood Fiber Sci. 2014;46:109–117.

Guo H., Michen B., Burgert I. Real test-bed studies at the ETH House of Natural Resources—Wood surface protection for outdoor applications. Informes de la Construcción. 2017;69:e220. doi: 10.3989/id.55202. DOI

Blanchard V., Blanchet P. Color stability for wood products during use: Effects of inorganic nanoparticles. BioResources. 2011;6:1219–1229.

Mclaren A., Valdes-Solis T., Li G.Q., Tsang S.C. Shape and size effects of ZnO nanocrystals on photocatalytic activity. J. Am. Chem. Soc. 2009;131:12540–12541. doi: 10.1021/ja9052703. PubMed DOI

Yu Y., Jiang Z.H., Wang G., Song Y. Growth of ZnO nanofilms on wood with improved photostability. Holzforschung. 2010;64:385–390. doi: 10.1515/hf.2010.049. DOI

Vitosyté J., Ukvalbergiené K., Keturakis G. The effect of surface roughness on adhesion strength of coated ash (Fraxinus excelsior L.) and birch (Betula L.) wood. Mater. Sci. 2012;4:347–351. doi: 10.5755/j01.ms.18.4.3094. DOI

Ozdemir T., Hiziroglu S., Kocapinar M. Adhesion strength of cellulosic varnish coated wood species as function of their surface roughness. Adv. Mater. Sci. Eng. 2015;2015:525496. doi: 10.1155/2015/525496. DOI

Pandey K.K. A note on the influence of extractives on the photo-discoloration and photo-degradation of wood. Polym. Degrad. Stab. 2005;87:375–379. doi: 10.1016/j.polymdegradstab.2004.09.007. DOI

Zivkovic V., Arnold M., Radmanovic K., Richter K., Turkulin H. Spectral sensitivity in the photodegradation of fir wood (Abies alba Mill.) surfaces: Colour changes in ral weathering. Wood Sci. Technol. 2014;48:239–252. doi: 10.1007/s00226-013-0601-4. DOI

Evans P.D., Owen N.L., Schmid S., Webster R.D. Weathering and photostability of benzoylated wood. Polym. Degrad. Stab. 2002;76:291–303. doi: 10.1016/S0141-3910(02)00026-5. DOI

Schmalzl K.J., Evans P.D. Wood surface protection with some titanium, zirconium and manganese compounds. Polym. Degrad. Stab. 2003;82:409–419. doi: 10.1016/S0141-3910(03)00193-9. DOI

Rosu D., Teacà C.A., Bodirlau R., Rosu L. FTIR and colour changes of modified wood as result of artificial light irradiation. J. Photochem. Photobiol. B. 2010;99:144–149. doi: 10.1016/j.jphotobiol.2010.03.010. PubMed DOI

Wallenhorst L., Gurau L., Gellerich A., Militz H., Ohms G., Viol W. UV-blocking properties of Zn/ZnO coatings on wood deposited by cold plasma spraying at atmospheric pressure. Appl. Surf. Sci. 2018;434:1183–1192. doi: 10.1016/j.apsusc.2017.10.214. DOI

Tolvaj L., Popescu C.M., Molnar Z., Preklet E. Effects of air relative humidity and temperature on photodegradation process in beech and spruce wood. BioResources. 2016;11:296–305. doi: 10.15376/biores.11.1.296-305. DOI

Lionetto F., Del Sole R., Cannoletta D., Vasapollo G., Maffezzoli A. Monitoring wood degradation during weathering by cellulose crystallinity. Materials. 2012;5:1910–1922. doi: 10.3390/ma5101910. DOI

Mantanis G., Terzi E., Kartal S.N., Papadopoulos A.N. Evaluation of mold, decay and termite resistence of pine wood treated with zinc- and copper-based nanocompounds. Int. Biodeterior. Biodegrad. 2014;90:140–144. doi: 10.1016/j.ibiod.2014.02.010. DOI

De Filpo G., Palermo A.M., Rachiele F., Nicoletta F.P. Preventing fungal growth in wood by titanium dioxide nanoparticles. Int. Biodeterior. Biodegrad. 2013;85:217–222. doi: 10.1016/j.ibiod.2013.07.007. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...