Durability of the Exterior Transparent Coatings on Nano-Photostabilized English Oak Wood and Possibility of Its Prediction before Artificial Accelerated Weathering

. 2019 Nov 05 ; 9 (11) : . [epub] 20191105

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31694326

Changes in surface material characteristics can significantly affect the adhesion and overall life of coatings on wood. In order to increase the durability of transparent exterior coatings, it is possible to use the surface modification of wood with UV-stabilizing substances. In this work, selected types of surface modifications using benzotriazoles, HALS, ZnO and TiO2 nanoparticles, and their combinations were applied to oak wood (Quercus robur, L.). On such modified surfaces, the surface free energy, roughness, and contact wetting angle with three selected types of exterior transparent coatings were subsequently determined. An oil-based coating, waterborne acrylic thick layer coating, and thin-layer synthetic coating were tested and interaction with the aforementioned surface modifications was investigated after 6 weeks of accelerated artificial weathering. The results of changes in the initially measured surface characteristics of the modified oak wood were compared to the real results of degradation of coatings after artificial accelerated weathering. The positive effect of surface modification, in particular the mixture of benzotriazoles, HALS, and ZnO nanoparticles on all kinds of coatings was proven, and the best results were observed in thick-film waterborne acrylic coating. The changes in the measured surface characteristics corresponded to the observed durability of the coatings only when measured by wetting using drops of the tested coatings.

Zobrazit více v PubMed

De Meier M., Militz H. Wet adhesion of low-VOC Coatings on wood. A quantitative analysis. Prog. Org. Coat. 2000;38:223–240. doi: 10.1016/S0300-9440(00)00108-9. DOI

Ozdemir T., Hiziroglu S. Evaluation of surface quality and adhesion strength of treated solid wood. J. Mater. Proces. Technol. 2007;186:311–314. doi: 10.1016/j.jmatprotec.2006.12.049. DOI

Herrera R., Sandak J., Robles E., Krystofiak T., Labidi J. Weathering resistance of thermally modified wood finished with coatings of diverse formulations. Prog. Org. Coat. 2018;119:145–154. doi: 10.1016/j.porgcoat.2018.02.015. DOI

Ahola P. Adhesion between paints and wooden substrates: Effects on pre-treatment and weathering of wood. Mater. Struct. 1995;28:350–356. doi: 10.1007/BF02473151. DOI

Vitosyté J., Ukvalbergiené K., Keturakis G. The effect of surface roughness on adhesion strength of coated ash (Fraxinus excelsior L.) and birch (Betula L.) wood. Mater. Sci. 2012;4:347–351. doi: 10.5755/j01.ms.18.4.3094. DOI

De Meier M. A Review of Interfacial Aspects in Wood Coatings: Wetting, Surface Energy, Substrate Penetration and Adhesion. COST E18 Final Seminar 2005. 16pp. [(accessed on 9 March 2014)]; Available online: https://www.researchgate.net/publication/260601859.

Cogulet A., Blanchet P., Landry V. The multifactorial aspect of wood weathering: A review based on a holistic approach of wood degradation protected by clear coating. BioResources. 2018;13:2116–2138. doi: 10.15376/biores.13.1.Cogulet. DOI

Gobakken L.R., Høibø O.A., Solheim H. Mould growth on paints with different surface structures when applied to wooden claddings exposed outdoors. Int. Biodeterior. Biodegrad. 2010;64:339–345. doi: 10.1016/j.ibiod.2009.11.005. DOI

Gaylarde C.C., Morton L.H.G., Loh K., Shirakawa M.A. Biodeterioration of extrenal architectural paint films—A review. Int. Biodeterior. Biodegrad. 2011;65:1189–1198. doi: 10.1016/j.ibiod.2011.09.005. DOI

Reinprecht L., Pánek M. Effects of wood roughness, light pigments, and water repellent on the color stability of painted spruce subjected to natural and accelerated weathering. BioResources. 2015;10:7203–7219. doi: 10.15376/biores.10.4.7203-7219. DOI

Evans P.D., Haase J.G., Shakri A., Seman B.M., Kiguchi M. The search for durable exterior clear coatings for wood. Coatings. 2015;5:830–864. doi: 10.3390/coatings5040830. DOI

Ikei H., Song C., Miyazaki Y. Physiological effects of wood on humans: A review. J. Wood Sci. 2017;63:1–23. doi: 10.1007/s10086-016-1597-9. DOI

George B., Suttie E., Merlin A., Deglise X. Photodegradation and photostabilisation of wood—The state of the art. Polym. Degrad. Stab. 2005;88:268–274. doi: 10.1016/j.polymdegradstab.2004.10.018. DOI

Nair S., Giridhar B.N., Pandey K.K. UV stabilization of wood by nano metal oxides dispersed in propylene glycol. J. Photochem. Photobiol. B Biol. 2018;183:1–10. doi: 10.1016/j.jphotobiol.2018.04.007. PubMed DOI

Aloui F., Ahajji A., Irmouli Y., George B., Charrier B., Merlin A. Inorganic UV absorbers for the photostabilisation of wood-clearcoating systems: Comparison with organic UV absorbers. Appl. Surf. Sci. 2007;253:3737–3745. doi: 10.1016/j.apsusc.2006.08.029. DOI

Forsthuber B., Grüll G. The effects of HALS in the prevention of photodegradation of acrylic clear topcoats and wooden surfaces. Polym. Degrad. Stab. 2010;95:746–755. doi: 10.1016/j.polymdegradstab.2010.02.016. DOI

Saha S., Kocaefe D., Boluk Y., Pichette A. Surface degradation of CeO2 stabilized acrylic polyurethane coated thermally treated jack pine during accelerated weathering. Appl. Surf. Sci. 2013;276:86–94. doi: 10.1016/j.apsusc.2013.03.031. DOI

Forsthuber B., Schaller C., Grüll G. Evaluation of the photo stabilising efficiency of clear coatings comprising organic UV absorbers and mineral UV screeners on wood surfaces. Wood Sci. Technol. 2013;2:281–297. doi: 10.1007/s00226-012-0487-6. DOI

Pánek M., Reinprecht L. Effect of the number of UV-protective coats on the color stability and surface defects of painted black locust and Norway spruce woods subjected to natural weathering. BioResources. 2016;11:4663–4676. doi: 10.15376/biores.11.2.4663-4676. DOI

Pánek M., Dvořák O., Oberhofnerová E., Šimůnková K., Zeidler A. Effectiveness of two different hydrophobic topcoats for increasing of durability of exterior coating systems on oak wood. Coatings. 2019;9:280. doi: 10.3390/coatings9050280. DOI

Guo H., Michen B., Burgert I. Real test-bed studies at the ETH House of Natural Resources-wood surface protection for outdoor applications. Inf. De La Construcción. 2017;69:9. doi: 10.3989/id.55202. DOI

Yu Y., Jiang Z.H., Wang G., Song Y. Growth of ZnO nanofilms on wood with improved photostability. Holzforschung. 2010;64:385–390. doi: 10.1515/hf.2010.049. DOI

Wang X., Liu S., Chang H., Liu J. Sol-gel deposition of TiO2 nanocoatings on wood surfaces with enhanced hydrophobicity and photostability. Wood Fiber Sci. 2014;46:109–117.

Cataldi A., Corcione C.E., Frigione M., Pegoretti A. Photocurable resin/microcrystalline cellulose composites for wood protection: Physical-mechanical characterization. Prog. Org. Coat. 2016;99:230–239. doi: 10.1016/j.porgcoat.2016.05.015. DOI

Bulian F., Graystone J. Wood Coatings-Theory and Practice. Elsevier Science; Amsterdam, The Netherlands: 2009. p. 320.

Pizzi A., Mittal K.L. Wood Adhesives Hardcover. 1st ed. CRC Press; Boca Raton, FL, USA: 2011. p. 462.

Kúdela J. Wetting of wood surface by a liquids of a different polarity. Wood Res. 2014;59:11–24.

Petrič M., Oven P. Determination of wettability of wood and its significance in wood science and technology: A Critical Review. Rev. Adhes. Adhes. 2015;3:2–121. doi: 10.7569/RAA.2015.097304. DOI

Wang X., Wang F., Yu Z., Zhang Y., Qi C., Du L. Surface free energy and dynamic wettability of wood simultaneously treated with acidic dye and flame retardant. J. Wood. Sci. 2017;63:271–280. doi: 10.1007/s10086-017-1621-8. DOI

Ziglio A.C., Sardela M.R., Goncalves D. Wettability, surface free energy and cellulose crystallinity for pine wood (Pinus sp.) modified with chili pepper extracts as natural preservatives. Cellulose. 2018;25:6151–6160. doi: 10.1007/s10570-018-2007-9. DOI

Kalnins M.A., Feist W.C. Increase in wettability of wood with weathering. For. Prod. J. 1993;43:55–57.

Evans P.D., Owen N.L., Schmid S., Webster R.D. Weathering and photostability of benzoylated wood. Polym. Degrad. Stab. 2002;76:291–303. doi: 10.1016/S0141-3910(02)00026-5. DOI

Pandey K.K. A note on the influence of extractives on the photo-discoloration and photo-degradation of wood. Polym. Degrad. Stab. 2005;87:375–379. doi: 10.1016/j.polymdegradstab.2004.09.007. DOI

Volkmer T., Noël M., Arnold M., Strautmann J. Analysis of lignin degradation on wood surfaces to create a UV-protecting cellulose rich layer. Int. Wood Prod. J. 2016;7:156–164. doi: 10.1080/20426445.2016.1200826. DOI

Croituru C., Spirchez C., Lunguleasa A., Cristea D., Roata I.C., Pop M.A., Bedo T., Stanciu E.M., Pascu A. Surface properties of thermally treated composite wood panels. Appl. Surf. Sci. 2017;438:114–123. doi: 10.1016/j.apsusc.2017.08.193. DOI

Lin Y., Junhui H. Recent progress in antireflection and self-cleaning technology-From surface engineering to functional surfaces. Prog. Mater. Sci. 2014;61:94–143.

Pánek M., Oberhofnerová E., Hýsek Š., Šedivka P., Zeidler A. Colour stabilization of oak, spruce, larch and Douglas fir heartwood treated with mixtures of nanoparticles dispersions and UV-stabilizers after exposure to UV and VIS-radiation. Materials. 2018;11:1653. doi: 10.3390/ma11091653. PubMed DOI PMC

Salla J., Pandey K.K., Srinivas K. Improvement of UV resistance of wood surfaces by using ZnO nanoparticles. Polym. Degrad. Stab. 2012;97:592–596. doi: 10.1016/j.polymdegradstab.2012.01.013. DOI

Wagenführ R. Holzatlas. Fachbuchverlag; Leipzig, Germany: 2007. p. 816.

Evans P.D., Vollmer S., Kim J.D.W., Chan G., Gibson S.K. Improving the performance of clear coatings on wood through the aggregation of marginal gains. Coatings. 2016;6:66. doi: 10.3390/coatings6040066. DOI

Sivrikaya H., Hafizoglu H., Yasav A., Aydemir D. Natural weathering of oak (Quercus petrae) and chestnut (Castanea sativa) coated with various finishes. Color Res. Appl. 2011;36:72–78. doi: 10.1002/col.20581. DOI

Crewdson M.J., Ketola W.D. Best practices in weathering: Outdoor and accelerated testing compared. Eur. Coat. J. 2009;4:116–121.

Grüll G., Tscherne F., Spitaler I., Forsthuber B. Comparison of wood coating durability in natural weathering and artificial weathering using fluorescent UV-lamps and water. Eur. J. Wood Prod. 2014;72:367–376. doi: 10.1007/s00107-014-0791-y. DOI

Pánek M., Reinprecht L. Critical view on the possibility of colour changes prediction in the surfaces of painted wood exposed outdoor using accelerated weathering in Xenotest. J. Coat. Technol. Res. 2019;16:339–352. doi: 10.1007/s11998-018-0125-9. DOI

Cogulet A., Blanchet P., Landry V. Evaluation of the impacts of four weathering methods on two acrylic paints: Showcasing distinctions and particularities. Coatings. 2019;9:121. doi: 10.3390/coatings9020121. DOI

Coating Materials and Coating Systems for Exterior Wood. European Committee for Standardization; Brussels, Belgium: 2006. EN 927-6:2006 Paints and Varnishes. Part 6: Exposure of Wood Coatings to Artificial Weathering Using Fluorescent UV Lamps and Water.

Stearns E.I. Colorimetry. 2nd ed. Commission Internationale de l’Eclairage; Vienna, Austria: 1986. p. 74.

Paints and Varnishes, Determination of Gloss Value at 20°, 60° and 85°. European Committee for Standardization; Brussels, Belgium: 2015. EN ISO 2813:2015.

Wålinder M., Johansson I. Measurement of Wood Wettability by the Wilhelmy Method. Part 1. Contamination of Probe Liquids by Extractives. Holzforschung. 2001;55:21–32. doi: 10.1515/HFSG.2001.21. DOI

Bastani A., Adamopoulos S., Militz H. Water uptake and wetting behaviour of furfurylated, N-methylol melamine modified and heat-treated wood. Eur. J. Wood Wood Prod. 2015;73:627–634. doi: 10.1007/s00107-015-0919-8. DOI

Gonzalez de Cademartori P.H., Missio A.L., Dufau Mattos B., Gatto D.A. Natural weathering performance of three fast-growing Eucalypt woods. Maderas-Cienc. Y Tecnol. 2015;17:799–808. doi: 10.4067/S0718-221X2015005000069. DOI

Geometrical Product Specifications (GPS). Surface Texture. Profile Method. Terms, Definitions and Surface Texture Parameters. International Organization for Standardization; Geneva, Switzerland: 1997. EN ISO 4287:1997.

Geometrical Product Specifications (GPS). Surface Texture. Profile Method. Rules and Procedures for the Assessment of Surface Texture. International Organization for Standardization; Geneva, Switzerland: 1996. EN ISO 4288:1996.

Evans P.D., Cullis I., Kim J.D.W., Leung L.H., Hazneza S., Heady R.D. Microstructure and mechanism of grain raising in wood. Coatings. 2017;7:135. doi: 10.3390/coatings7090135. DOI

Jaić M., Palija T., Dordević M. The Impact of Surface Preparation of Wood on the Adhesion of Certain Types of Coatings. Zastita Mater. [(accessed on 16 January 2015)];J. Interv. Cardiol. 2014 55:163–169. Available online: http://idk.org.rs/wp-content/uploads/2015/01/2-2014/Jaic%20rad.pdf.

Eder M., Amini S., Fratzl P. Biological composites-complex structures for functional diversity. Science. 2018;362:543–547. doi: 10.1126/science.aat8297. PubMed DOI

Ghosh M., Gupta S., Kumar V.S.K. Studies on the loss of gloss of shellac and polyurethane finishes exposed to UV. Maderas Cienc. Tecnol. 2015;17:39–44. doi: 10.4067/S0718-221X2015005000004. DOI

Grüll G., Forsthuber B., Ecker M. Sensitivity of waterborne coatings to high acidity and content of arabinogalactan in larch heartwood. Prog. Org. Coat. 2016;101:367–378. doi: 10.1016/j.porgcoat.2016.08.015. DOI

Pánek M., Oberhofnerová E., Zeidler A., Šedivka P. Efficacy of hydrophobic coatings in protecting oak wood surfaces during accelerated weathering. Coatings. 2017;7:172. doi: 10.3390/coatings7100172. DOI

De Windt I., Van den Bulcke J., Wuijtens I., Coppens H., Van Acker J. Outdoor weathering performance parameters of exterior wood coating systems on tropical hardwood substrates. Eur. J. Wood Wood Prod. 2014;72:261–272. doi: 10.1007/s00107-014-0779-7. DOI

Oberhofnerová E., Pánek M., Böhm M. Effect of surface pretreatment with natural essential oils on the weathering performance of spruce wood. BioResources. 2018;13:7053–7070.

Oberhofnerová E., Pánek M. Surface wetting of selected wood species by water during initial stages of weathering. Wood Res. 2016;61:545–552.

Žlahtič M., Humar M. Influence of artificial and natural weathering on the hydrophobicity and surface properties of wood. BioResources. 2016;11:4964–4989. doi: 10.15376/biores.11.2.4964-4989. DOI

Pánek M., Reinprecht L. Color stability and surface defects of naturally aged wood treated with transparent paints for exterior constructions. Wood Res. 2014;59:421–430.

Moya R., Rodríguez-Zuniga A., Vega-Baudrit J., Puente-Urbina A. Effects of adding TiO2 nanoparticles to a water-based varnish for wood applied to nine tropical woods of Costa Rica exposed to natural and accelerated weathering. J. Coat. Technol. Res. 2016;14:141–152. doi: 10.1007/s11998-016-9848-7. DOI

Tu K., Wang X., Kong L., Guan H. Facile preparation of mechanically durable, self-healing and multifunctional superhydrophobic surfaces on solid wood. Mater. Des. 2018;140:30–36. doi: 10.1016/j.matdes.2017.11.029. DOI

Dawson B.S.W., Singh A.P., Kroese H.W., Schwitzer M.A., Gallagher S. Enhancing exterior performance of clear coatings through photostabilization of wood. Part 2: Coating and weathering performance. J. Coat. Technol. Res. 2008;5:207–219. doi: 10.1007/s11998-008-9090-z. DOI

Zahri S., Belloncle C., Charrier F., Pardon P., Quideau S., Charrier B. UV light impact on ellagitannins and wood surface colour of European oak (Quercus petraea and Quercus robur) Appl. Surf. Sci. 2007;253:4985–4989. doi: 10.1016/j.apsusc.2006.11.005. DOI

De Meijer M., Creemers J., Cobben W. Relationships between the performance of low-VOC wood coatings and the dimensional changes of the wooden substrate. Surf. Coat. Int. Pt. B C. 2001;84:77–85. doi: 10.1007/BF02699700. DOI

Cristea M.V., Riedl B., Blanchet P. Enhancing the performance of exterior waterborne coatings for wood by inorganic nanosized UV absorbers. Prog. Org. Coat. 2010;69:432–441. doi: 10.1016/j.porgcoat.2010.08.006. DOI

Papadopoulos A.N., Bikiaris D.N., Mitropoulos A.C., Kyzas G.Z. Nanomaterials and chemical modifications for enhanced key wood properties: A review. Nanomaterials. 2019;9:607. doi: 10.3390/nano9040607. PubMed DOI PMC

Rao F., Zhang Y., Bao M., Zhang Z., Bao Y., Li N., Chen Y., Yu W. Photostabilizing efficiency of acrylic-based bamboo exterior Coatings combining benzotriazole and zinc oxide nanoparticles. Coatings. 2019;9:533. doi: 10.3390/coatings9090533. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...