Influence of Inorganic Bases on the Structure of Titanium Dioxide-Based Microsheets
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
32984689
PubMed Central
PMC7513341
DOI
10.1021/acsomega.0c02570
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Laboratory synthesis of microsheets of titanium dioxide from titanyl sulfate involves the use of ammonia solution, whereas another inorganic base is most likely to be employed at the industrial level, as ammonia is a toxic agent and therefore should be avoided according to European Union (EU) regulations. Selected nontoxic bases such as sodium, potassium, and lithium hydroxides have been tested as an alternative to ammonia solution to obtain amorphous and crystalline TiO2-based microsheets. The final products obtained at each step of the procedure (samples lyophilized and annealed at 230 and 800 °C) were analyzed with electron and atomic force microscopy, X-ray powder diffraction, thermal analysis, and Fourier transform infrared (FTIR) and Raman spectroscopies to determine their morphology and phase composition. The differences in the morphology of the obtained products were described in detail as well as phase and structural composition throughout the process. It was found that, in the last step of the synthesis, microsheets annealed at 800 °C were built of small rods and oval or platy crystalline particles depending on the base used. The temperature of formation of anatase, rutile, and alkali-metal titanates in correlation with the ionic radius of the alkali metal present in the sample was discussed.
Department of Chemistry University of Ostrava 30 dubna 22 701 03 Ostrava Czech Republic
Institute of Inorganic Chemistry of the Czech Academy of Sciences 250 68 Husinec Řež Czech Republic
Zobrazit více v PubMed
Fujishima A.; Honda K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238, 37–38. 10.1038/238037a0. PubMed DOI
Fujishima A.; Zhang X. T. Titanium dioxide photocatalysis: present situation and future approaches. C. R. Chim. 2006, 9, 750–760. 10.1016/j.crci.2005.02.055. DOI
Verma R.; Gangwar J.; Srivastava A. K. Multiphase TiO2 nanostructures: a review of efficient synthesis, growth mechanism, probing capabilities, and applications in bio-safety and health. RSC Adv. 2017, 7, 44199–44224. 10.1039/C7RA06925A. DOI
Zhang Y.; Wu L. Z.; Zeng Q. H.; Zhi J. F. An Approach for Controllable Synthesis of Different-Phase Titanium Dioxide Nanocomposites with Peroxotitanium Complex as Precursor. J. Phys. Chem. C 2008, 112, 16457–16462. 10.1021/jp804524y. DOI
Cong S.; Xu Y. Explaining the High Photocatalytic Activity of a Mixed Phase TiO2: A Combined Effect of O2 and Crystallinity. J. Phys. Chem. C 2011, 115, 21161–21168. 10.1021/jp2055206. DOI
Carp O.; Huisman C. L.; Reller A. Photoinduced reactivity of titanium dioxide. Prog. Solid State Chem. 2004, 32, 33–177. 10.1016/j.progsolidstchem.2004.08.001. DOI
Hanaor D.; Sorrell C. Review of the Anatase to Rutile Phase Transformation. J. Mater. Sci. 2011, 46, 855–874. 10.1007/s10853-010-5113-0. DOI
Chen X.; Mao S. S. Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications. Chem. Rev. 2007, 107, 2891–2959. 10.1021/cr0500535. PubMed DOI
Gupta S. M.; Tripathi M. A review on the synthesis of TiO2 nanoparticles by solution route. Cent. Eur. J. Chem. 2012, 10, 279–294. 10.2478/s11532-011-0155-y. DOI
Wang Y.; Lai Q.; Fan M. Review of the progress in preparing nano TiO2: An important environmental engineering material. J. Environ. Sci. 2014, 26, 2139.10.1016/j.jes.2014.09.023. PubMed DOI
Sun X.; Chen X.; Li Y. Large-Scale Synthesis of Sodium and Potassium Titanate Nanobelts. Inorg. Chem. 2002, 41, 4996–4998. 10.1021/ic0257827. PubMed DOI
Sasaki T.; Kooli F.; Iida M.; Michiue Y.; Takenouchi S.; Yajima Y.; Izumi F.; Chakoumakos B. C.; Watanabe M. A Mixed Alkali Metal Titanate with the Lepidocrocite-like Layered Structure. Preparation, Crystal Structure, Protonic Form, and Acid–Base Intercalation Properties. Chem. Mater. 1998, 10, 4123–4128. 10.1021/cm980535f. DOI
Masaki N.; Uchida S.; Yamane H.; Sato T. Characterization of a New Potassium Titanate, KTiO2(OH) Synthesized via Hydrothermal Method. Chem. Mater. 2002, 14, 419–424. 10.1021/cm0107427. DOI
Zhang X. C.; Li W.; Yang Z. Toxicology of nanosized titanium dioxide: an update. Arch. Toxicol. 2015, 89, 2207–2217. 10.1007/s00204-015-1594-6. PubMed DOI
Akple M.; Low J.; Qin Z.; Wageh S.; Al-Ghamdi A.; Yu J.; Liu S. Nitrogen-doped TiO2 microsheets with enhanced visible light photocatalytic activity for CO2 reduction. Chin. J. Catal. 2015, 36, 2127–2134. 10.1016/S1872-2067(15)60989-5. DOI
Deng A.; Zhu Y.; Guo X.; Zhou L.; Jiang Q. Synthesis of Various TiO2 Micro-/Nano-Structures and Their Photocatalytic Performance. Materials 2018, 11, 99510.3390/ma11060995. PubMed DOI PMC
Klementová M.; Motlochova M.; Bohacek J.; Kupcik J.; Palatinus L.; Plizingrova E.; Szatmary L.; Subrt J. Metatitanic Acid Pseudomorphs after Titanyl Sulfates: Nanostructured Sorbents and Precursors for Crystalline Titania with Desired Particle Size and Shape. Cryst. Growth Des. 2017, 17, 6762–6769. 10.1021/acs.cgd.7b01349. DOI
Bakardjieva S.; Caplovicova M.; Mamon F.; Fajgar R.; Jandova V.; Brovdyova T. Nanostructured TiO2 Microrods with 3D Nanovoids for Green Photocatalysis - PEC Water Splitting. Microsc. Microanal. 2019, 25, 2136–2137. 10.1017/S1431927619011413. DOI
Amarjargal A.; Tijing L. D.; Pant H. R.; Park C.-H.; Kim C. S. Simultaneous synthesis of TiO2 microrods in situ decorated with Ag nanoparticles and their bactericidal efficiency. Curr. Appl. Phys. 2012, 12, 1106–1112. 10.1016/j.cap.2012.02.003. DOI
Šubrt J.; Pulisova P.; Bohacek J.; Bezdicka P.; Plizingrova E.; Volfova L.; Kupcik J. Highly photoactive 2D titanium dioxide nanostructures prepared from lyophilized aqueous colloids of peroxo-polytitanic acid. Mater. Res. Bull. 2014, 49, 405–412. 10.1016/j.materresbull.2013.09.028. DOI
Selvamurugan M.; Hirankumar G.; Karuppuchamy S. Synthesis and characterization of nanostructured lithium titanate by simple peroxo route. J. Mater. Sci.: Mater. Electron. 2016, 27, 9699–9703. 10.1007/s10854-016-5031-2. DOI
Palkovská M.; Slovak V.; Subrt J.; Bohacek J.; Havlin J. Thermal decomposition of a peroxopolytitanic acid cryogel: TA/MS study. Thermochim. Acta 2017, 647, 1–7. 10.1016/j.tca.2016.11.009. DOI
Zhang Y.; Wu W.; Zhang K.; Liu C. H.; Yu A. F.; Peng M. Z.; Zhai J. Y. Raman study of 2D anatase TiO2 nanosheets. Phys. Chem. Chem. Phys. 2016, 18, 32178–32184. 10.1039/C6CP05496J. PubMed DOI
Masterton W. L.; Bolocofsky D.; Lee T. P. Ionic radii from scaled particle theory of the salt effect. J. Phys. Chem. A 1971, 75, 2809–2815. 10.1021/j100687a017. DOI
Shannon R.; Prewitt C. T. Effective Ionic Radii in Oxides and Fluorides. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 1969, 25, 925–946. 10.1107/S0567740869003220. DOI
Yada M.; Goto Y.; Uota M.; Torikai T.; Watari T. Layered sodium titanate nanofiber and microsphere synthesized from peroxotitanic acid solution. J. Eur. Ceram. Soc. 2006, 26, 673–678. 10.1016/j.jeurceramsoc.2005.07.035. DOI
Motlochová M.; Slovak V.; Plizingrova E.; Klementova M.; Bezdicka P.; Subrt J. Thermal decomposition study of nanostructured amorphous lithium, sodium and potassium metatitanates. Thermochim. Acta 2018, 670, 148–154. 10.1016/j.tca.2018.10.028. DOI
Ryu Y.; Lee M.; Jeong E.; Kim H.; Jung W.; Baek S.; Lee G. D.; Park S.; Hong S.-S. Hydrothermal synthesis of titanium dioxides from peroxotitanate solution using different amine group-containing organics and their photocatalytic activity. Catal. Today 2007, 124, 88–93. 10.1016/j.cattod.2007.03.027. DOI
León A.; Reuquen P.; Garín C.; Segura R.; Vargas P.; Zapata P. A.; Orihuela P. FTIR and Raman Characterization of TiO2 Nanoparticles Coated with Polyethylene Glycol as Carrier for 2-Methoxyestradiol. Appl. Sci. 2017, 7, 4910.3390/app7010049. DOI
Bagheri S.; Kamyar S.; Abd Hamid S. B. Synthesis and Characterization of Anatase Titanium Dioxide Nanoparticles Using Egg White Solution via Sol-Gel Method. J. Chem. 2013, 84820510.1155/2013/848205. DOI
Azim Araghi M. E.; Shaban N.; Bahar M. Synthesis and characterization of nanocrystalline barium strontium titanate powder by a modified sol-gel processing. Mater. Sci.-Pol. 2016, 34, 63–68. 10.1515/msp-2016-0020. DOI
Zou J. A.; Gao J. C.; Xie F. Y. An amorphous TiO2 sol sensitized with H2O2 with the enhancement of photocatalytic activity. J. Alloys Compd. 2010, 497, 420–427. 10.1016/j.jallcom.2010.03.093. DOI
Moriguchi I.; Tsujigo Y.; Teraoka Y.; Kagawa S. Role of n-Octadecylacetoacetate as an Amphiphilic Chelating Agent in the Two-Dimensional Sol–Gel Synthesis of Ultrathin Films of Titania and Zirconia. J. Phys. Chem. B 2000, 104, 8101–8107. 10.1021/jp000484l. DOI
Shirpour M.; Cabana J.; Doeff M. New materials based on a layered sodium titanate for dual electrochemical Na and Li intercalation systems. Energy Environ. Sci. 2013, 6, 2538–2547. 10.1039/c3ee41037d. DOI
Mahadik M. A.; An G. W.; David S.; Choi S. H.; Cho M.; Jang J. S. Fabrication of A/R-TiO2 composite for enhanced photoelectrochemical performance: Solar hydrogen generation and dye degradation. Appl. Surf. Sci. 2017, 426, 833–843. 10.1016/j.apsusc.2017.07.179. DOI
Lan T.; Tang X.; Fultz B. Phonon anharmonicity of rutile TiO2 studied by Raman spectrometry and molecular dynamics simulations. Phys. Rev. B 2012, 85, 09430510.1103/PhysRevB.85.094305. DOI
Jo W. K.; Kumar S.; Isaacs M. A.; Lee A. F.; Karthikeyan S. Cobalt promoted TiO2/GO for the photocatalytic degradation of oxytetracycline and Congo Red. Appl. Catal., B 2017, 201, 159–168. 10.1016/j.apcatb.2016.08.022. DOI
Bamberger C. E.; Begun G. M. Sodium Titanates: Stoichiometry and Raman Spectra. J. Am. Ceram. Soc. 1987, 70, C-48–C-51. 10.1111/j.1151-2916.1987.tb04963.x. DOI
Bamberger C. E.; Begun G. M.; MacDougall C. S. Raman Spectroscopy of Potassium Titanates: Their Synthesis, Hydrolytic Reactions, and Thermal Stability. Appl. Spectrosc. 1990, 44, 30–37. 10.1366/0003702904085732. DOI
Liu X. Y.; Coville N. J. A Raman study of titanate nanotubes. S. Afr. J. Chem. 2005, 58, 110–115.
Zárate R. A.; Fuentes S.; Cabrera A.; Fuenzalida V. Structural characterization of single crystals of sodium titanate nanowires prepared by hydrothermal process. J. Cryst. Growth 2008, 310, 3630–3637. 10.1016/j.jcrysgro.2008.05.020. DOI
Zhang D. R.; Kim C. W.; Kang Y. S. A Study on the Crystalline Structure of Sodium Titanate Nanobelts Prepared by the Hydrothermal Method. J. Phys. Chem. C 2010, 114, 8294–8301. 10.1021/jp101482k. DOI
Pližingrová E.; Volfova L.; Svora P.; Labhsetwar N. K.; Klementova M.; Szatmary L.; Subrt J. Highly photoactive anatase foams prepared from lyophilized aqueous colloids of peroxo-polytitanic acid. Catal. Today 2015, 240, 107–113. 10.1016/j.cattod.2014.04.022. DOI
JCPDS PDF-4 Database; International Centre for Diffraction Data: Newtown Square, PA, 2019.
ICSD Database Fiz Karlsruhe, release 2019/1st ed.; Leibniz-Institut für Informationsinfrastruktur: Germany, 2019.
Study of Interactions between Titanium Dioxide Coating and Wood Cell Wall Ultrastructure