Leptomonas seymouri: Adaptations to the Dixenous Life Cycle Analyzed by Genome Sequencing, Transcriptome Profiling and Co-infection with Leishmania donovani

. 2015 Aug ; 11 (8) : e1005127. [epub] 20150828

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid26317207
Odkazy

PubMed 26317207
PubMed Central PMC4552786
DOI 10.1371/journal.ppat.1005127
PII: PPATHOGENS-D-15-01150
Knihovny.cz E-zdroje

The co-infection cases involving dixenous Leishmania spp. (mostly of the L. donovani complex) and presumably monoxenous trypanosomatids in immunocompromised mammalian hosts including humans are well documented. The main opportunistic parasite has been identified as Leptomonas seymouri of the sub-family Leishmaniinae. The molecular mechanisms allowing a parasite of insects to withstand elevated temperature and substantially different conditions of vertebrate tissues are not understood. Here we demonstrate that L. seymouri is well adapted for the environment of the warm-blooded host. We sequenced the genome and compared the whole transcriptome profiles of this species cultivated at low and high temperatures (mimicking the vector and the vertebrate host, respectively) and identified genes and pathways differentially expressed under these experimental conditions. Moreover, Leptomonas seymouri was found to persist for several days in two species of Phlebotomus spp. implicated in Leishmania donovani transmission. Despite of all these adaptations, L. seymouri remains a predominantly monoxenous species not capable of infecting vertebrate cells under normal conditions.

Zobrazit více v PubMed

Podlipaev SA (2001) The more insect trypanosomatids under study-the more diverse Trypanosomatidae appears. Int J Parasitol 31: 648–652. PubMed

Maslov DA, Votýpka J, Yurchenko V, Lukeš J (2013) Diversity and phylogeny of insect trypanosomatids: all that is hidden shall be revealed. Trends Parasitol 29: 43–52. 10.1016/j.pt.2012.11.001 PubMed DOI

Simpson AG, Stevens JR, Lukeš J (2006) The evolution and diversity of kinetoplastid flagellates. Trends Parasitol 22: 168–174. PubMed

Lukeš J, Skalický T, Týč J, Votýpka J, Yurchenko V (2014) Evolution of parasitism in kinetoplastid flagellates. Mol Biochem Parasitol 195: 115–122. 10.1016/j.molbiopara.2014.05.007 PubMed DOI

Laveran A, Franchini G (1920) Infections experimentales de chiens et de cobayes a l'aide de cultures d'Herpetomonas d'insects. Bull Soc Pathol Exot 13: 569–576.

McGhee RB, Cosgrove WB (1980) Biology and physiology of the lower Trypanosomatidae. Microbiol Rev 44: 140–173. PubMed PMC

Pacheco RS, Marzochi MC, Pires MQ, Brito CM, Madeira Md, et al. (1998) Parasite genotypically related to a monoxenous trypanosomatid of dog's flea causing opportunistic infection in an HIV positive patient. Mem Inst Oswaldo Cruz 93: 531–537. PubMed

Morio F, Reynes J, Dollet M, Pratlong F, Dedet JP, et al. (2008) Isolation of a protozoan parasite genetically related to the insect trypanosomatid Herpetomonas samuelpessoai from a human immunodeficiency virus-positive patient. J Clin Microbiol 46: 3845–3847. 10.1128/JCM.01098-08 PubMed DOI PMC

Ferreira MS, Borges AS (2002) Some aspects of protozoan infections in immunocompromised patients- a review. Mem Inst Oswaldo Cruz 97: 443–457. PubMed

Dedet JP, Pratlong F (2000) Leishmania, Trypanosoma and monoxenous trypanosomatids as emerging opportunistic agents. J Eukaryot Microbiol 47: 37–39. PubMed

Sundar S, Chakravarty J (2012) Recent advances in the diagnosis and treatment of kala-azar. Natl Med J India 25: 85–89. PubMed

Wallace FG, Hertig M (1968) Ultrastructural comparison of promastigote flagellates (leptomonads) of wild-caught Panamanian Phlebotomus . J Parasitol 54: 606–612. PubMed

Bhattarai NR, Das ML, Rijal S, van der Auwera G, Picado A, et al. (2009) Natural infection of Phlebotomus argentipes with Leishmania and other trypanosomatids in a visceral leishmaniasis endemic region of Nepal. Trans R Soc Trop Med Hyg 103: 1087–1092. 10.1016/j.trstmh.2009.03.008 PubMed DOI

Ghosh S, Banerjee P, Sarkar A, Datta S, Chatterjee M (2012) Coinfection of Leptomonas seymouri and Leishmania donovani in Indian leishmaniasis. J Clin Microbiol 50: 2774–2778. 10.1128/JCM.00966-12 PubMed DOI PMC

Jirků M, Yurchenko VY, Lukeš J, Maslov DA (2012) New species of insect trypanosomatids from Costa Rica and the proposal for a new subfamily within the Trypanosomatidae. J Eukaryot Microbiol 59: 537–547. 10.1111/j.1550-7408.2012.00636.x PubMed DOI

Wallace FG (1977) Leptomonas seymouri sp. n. from the cotton stainer Dysdercus suturellus . J Protozool 24: 483–484. PubMed

Votýpka J, Klepetková H, Yurchenko VY, Horák A, Lukeš J, et al. (2012) Cosmopolitan distribution of a trypanosomatid Leptomonas pyrrhocoris . Protist 163: 616–631. 10.1016/j.protis.2011.12.004 PubMed DOI

Conchon I, Campaner M, Sbravate C, Camargo EP (1989) Trypanosomatids, other than Phytomonas spp., isolated and cultured from fruit. J Protozool 36: 412–414.

Singh N, Chikara S, Sundar S (2013) SOLiD sequencing of genomes of clinical isolates of Leishmania donovani from India confirm Leptomonas co-infection and raise some key questions. PLOS One 8: e55738 10.1371/journal.pone.0055738 PubMed DOI PMC

Srivastava P, Prajapati VK, Vanaerschot M, Van der Auwera G, Dujardin JC, et al. (2010) Detection of Leptomonas sp. parasites in clinical isolates of Kala-azar patients from India. Infect Genet Evol 10: 1145–1150. 10.1016/j.meegid.2010.07.009 PubMed DOI PMC

De Sa MF, De Sa CM, Veronese MA, Filho SA, Gander ES (1980) Morphologic and biochemical characterization of Crithidia brasiliensis sp. n. J Protozool 27: 253–257. PubMed

Roitman I, Mundim MH, De Azevedo HP, Kitajima EW (1977) Growth of Crithidia at high temperature: Crithidia hutneri sp. n. and Crithidia luciliae thermophila s. sp. n. J Protozool 24: 553–556.

McGhee RB (1959) The infection of avian embryos with Crithidia species and Leishmania tarentola . J Infect Dis 105: 18–25. PubMed

Kostygov AY, Grybchuk-Ieremenko A, Malysheva MN, Frolov AO, Yurchenko V (2014) Molecular revision of the genus Wallaceina . Protist 165: 594–604. 10.1016/j.protis.2014.07.001 PubMed DOI

Maslov DA, Yurchenko VY, Jirků M, Lukeš J (2010) Two new species of trypanosomatid parasites isolated from Heteroptera in Costa Rica. J Eukaryot Microbiol 57: 177–188. 10.1111/j.1550-7408.2009.00464.x PubMed DOI

Yurchenko V, Lukeš J, Jirků M, Zeledon R, Maslov DA (2006) Leptomonas costaricensis sp. n. (Kinetoplastea: Trypanosomatidae), a member of the novel phylogenetic group of insect trypanosomatids closely related to the genus Leishmania . Parasitology 133: 537–546. PubMed

Yurchenko V, Votýpka J, Tesařová M, Klepetková H, Kraeva N, et al. (2014) Ultrastructure and molecular phylogeny of four new species of monoxenous trypanosomatids from flies (Diptera: Brachycera) with redefinition of the genus Wallaceina . Folia Parasitol 61: 97–112. PubMed

Votýpka J, d'Avila-Levy CM, Grellier P, Maslov DA, Lukeš J, et al. (2015) New approaches to systematics of Trypanosomatidae: criteria for taxonomic (re)description. Trends Parasitol (in press). PubMed

Borghesan TC, Ferreira RC, Takata CS, Campaner M, Borda CC, et al. (2013) Molecular phylogenetic redefinition of Herpetomonas (Kinetoplastea, Trypanosomatidae), a genus of insect parasites associated with flies. Protist 164: 129–152. 10.1016/j.protis.2012.06.001 PubMed DOI

El-Sayed NM, Myler PJ, Blandin G, Berriman M, Crabtree J, et al. (2005) Comparative genomics of trypanosomatid parasitic protozoa. Science 309: 404–409. PubMed

Porcel BM, Denoeud F, Opperdoes FR, Noel B, Madoui M-A, et al. (2014) The streamlined genome of Phytomonas spp. relative to human pathogenic kinetoplastids reveals a parasite tailored for plants. PLOS Genet 10: e1004007 10.1371/journal.pgen.1004007 PubMed DOI PMC

Ivens AC, Peacock CS, Worthey EA, Murphy L, Aggarwal G, et al. (2005) The genome of the kinetoplastid parasite, Leishmania major . Science 309: 436–442. PubMed PMC

Mair G, Shi H, Li H, Djikeng A, Aviles HO, et al. (2000) A new twist in trypanosome RNA metabolism: cis-splicing of pre-mRNA. RNA 6: 163–169. PubMed PMC

Alves JM, Klein CC, da Silva FM, Costa-Martins AG, Serrano MG, et al. (2013) Endosymbiosis in trypanosomatids: the genomic cooperation between bacterium and host in the synthesis of essential amino acids is heavily influenced by multiple horizontal gene transfers. BMC Evol Biol 13: 190 10.1186/1471-2148-13-190 PubMed DOI PMC

Hannaert V, Bringaud F, Opperdoes FR, Michels PA (2003) Evolution of energy metabolism and its compartmentation in Kinetoplastida. Kinetoplastid Biol Dis 2: 11 PubMed PMC

Opperdoes FR, Coombs GH (2007) Metabolism of Leishmania: proven and predicted. Trends Parasitol 23: 149–158. PubMed

Opperdoes FR, Szikora JP (2006) In silico prediction of the glycosomal enzymes of Leishmania major and trypanosomes. Mol Biochem Parasitol 147: 193–206. PubMed

Alves JM, Voegtly L, Matveyev AV, Lara AM, da Silva FM, et al. (2011) Identification and phylogenetic analysis of heme synthesis genes in trypanosomatids and their bacterial endosymbionts. PLoS One 6: e23518 10.1371/journal.pone.0023518 PubMed DOI PMC

Kořený L, Lukeš J, Oborník M (2010) Evolution of the haem synthetic pathway in kinetoplastid flagellates: an essential pathway that is not essential after all? Int J Parasitol 40: 149–156. 10.1016/j.ijpara.2009.11.007 PubMed DOI

Kořený L, Oborník M, Lukeš J (2013) Make it, take it, or leave it: heme metabolism of parasites. PLoS Pathog 9: e1003088 10.1371/journal.ppat.1003088 PubMed DOI PMC

Bartholomeu DC, de Paiva RM, Mendes TA, DaRocha WD, Teixeira SM (2014) Unveiling the intracellular survival gene kit of trypanosomatid parasites. PLoS Pathog 10: e1004399 10.1371/journal.ppat.1004399 PubMed DOI PMC

Maslov DA, Westenberger SJ, Xu X, Campbell DA, Sturm NR (2007) Discovery and barcoding by analysis of spliced leader RNA gene sequences of new isolates of Trypanosomatidae from Heteroptera in Costa Rica and Ecuador. J Eukaryot Microbiol 54: 57–65. PubMed

Ibrahim EA, Molyneux DH (1987) Pathogenicity of Crithidia fasciculata in the haemocoele of Glossina . Acta Trop 44: 13–22. PubMed

Schaub GA (1994) Pathogenicity of trypanosomatids on insects. Parasitol Today 10: 463–468. PubMed

Alcolea PJ, Alonso A, Garcia-Tabares F, Torano A, Larraga V (2014) An insight into the proteome of Crithidia fasciculata choanomastigotes as a comparative approach to axenic growth, peanut lectin agglutination and differentiation of Leishmania spp. promastigotes. PLoS One 9: e113837 10.1371/journal.pone.0113837 PubMed DOI PMC

Mizbani A, Taslimi Y, Zahedifard F, Taheri T, Rafati S (2011) Effect of A2 gene on infectivity of the nonpathogenic parasite Leishmania tarentolae . Parasitol Res 109: 793–799. 10.1007/s00436-011-2325-4 PubMed DOI

Gabernet-Castello C, Dacks JB, Field MC (2009) The single ENTH-domain protein of trypanosomes; endocytic functions and evolutionary relationship with epsin. Traffic 10: 894–911. 10.1111/j.1600-0854.2009.00910.x PubMed DOI

Bessat M, Knudsen G, Burlingame AL, Wang CC (2013) A minimal anaphase promoting complex/cyclosome (APC/C) in Trypanosoma brucei . PLoS One 8: e59258 10.1371/journal.pone.0059258 PubMed DOI PMC

Lye LF, Owens K, Shi H, Murta SM, Vieira AC, et al. (2010) Retention and loss of RNA interference pathways in trypanosomatid protozoans. PLoS Pathog 6: e1001161 10.1371/journal.ppat.1001161 PubMed DOI PMC

Zangger H, Ronet C, Desponds C, Kuhlmann FM, Robinson J, et al. (2013) Detection of Leishmania RNA virus in Leishmania parasites. PLoS Negl Trop Dis 7: e2006 10.1371/journal.pntd.0002006 PubMed DOI PMC

Ives A, Ronet C, Prevel F, Ruzzante G, Fuertes-Marraco S, et al. (2011) Leishmania RNA virus controls the severity of mucocutaneous leishmaniasis. Science 331: 775–778. 10.1126/science.1199326 PubMed DOI PMC

Votýpka J, Suková E, Kraeva N, Ishemgulova A, Duží I, et al. (2013) Diversity of trypanosomatids (Kinetoplastea: Trypanosomatidae) parasitizing fleas (Insecta: Siphonaptera) and description of a new genus Blechomonas gen. n. Protist 164: 763–781. 10.1016/j.protis.2013.08.002 PubMed DOI

Weeks R, Aline RF Jr., Myler PJ, Stuart K (1992) LRV1 viral particles in Leishmania guyanensis contain double-stranded or single-stranded RNA. J Virol 66: 1389–1393. PubMed PMC

Salinas G, Zamora M, Stuart K, Saravia N (1996) Leishmania RNA viruses in Leishmania of the Viannia subgenus. Am J Trop Med Hyg 54: 425–429. PubMed

Evans E, Rawicz W, Smith BA (2013) Back to the future: mechanics and thermodynamics of lipid biomembranes. Faraday Discuss 161: 591–611. PubMed

Xu W, Hsu FF, Baykal E, Huang J, Zhang K (2014) Sterol biosynthesis is required for heat resistance but not extracellular survival in Leishmania . PLoS Pathog 10: e1004427 10.1371/journal.ppat.1004427 PubMed DOI PMC

Perez-Moreno G, Sealey-Cardona M, Rodrigues-Poveda C, Gelb MH, Ruiz-Perez LM, et al. (2012) Endogenous sterol biosynthesis is important for mitochondrial function and cell morphology in procyclic forms of Trypanosoma brucei . Int J Parasitol 42: 975–989. 10.1016/j.ijpara.2012.07.012 PubMed DOI

Grant KM, Dunion MH, Yardley V, Skaltsounis AL, Marko D, et al. (2004) Inhibitors of Leishmania mexicana CRK3 cyclin-dependent kinase: chemical library screen and antileishmanial activity. Antimicrob Agents Chemother 48: 3033–3042. PubMed PMC

Bates PA, Rogers ME (2004) New insights into the developmental biology and transmission mechanisms of Leishmania . Curr Mol Med 4: 601–609. PubMed

Lee SH, Stephens JL, Englund PT (2007) A fatty-acid synthesis mechanism specialized for parasitism. Nat Rev Microbiol 5: 287–297. PubMed

Coombs GH, Craft JA, Hart DT (1982) A comparative study of Leishmania mexicana amastigotes and promastigotes. Enzyme activities and subcellular locations. Mol Biochem Parasitol 5: 199–211. PubMed

Goad LJ, Holz GG Jr., Beach DH (1984) Sterols of Leishmania species. Implications for biosynthesis. Mol Biochem Parasitol 10: 161–170. PubMed

Coppens I, Courtoy PJ (2000) The adaptative mechanisms of Trypanosoma brucei for sterol homeostasis in its different life-cycle environments. Annu Rev Microbiol 54: 129–156. PubMed

Rosenzweig D, Smith D, Opperdoes F, Stern S, Olafson RW, et al. (2008) Retooling Leishmania metabolism: from sand fly gut to human macrophage. Faseb J 22: 590–602. PubMed

Saunders EC, Ng WW, Kloehn J, Chambers JM, Ng M, et al. (2014) Induction of a stringent metabolic response in intracellular stages of Leishmania mexicana leads to increased dependence on mitochondrial metabolism. PLoS Pathog 10: e1003888 10.1371/journal.ppat.1003888 PubMed DOI PMC

Mottram JC, Coombs GH (1985) Leishmania mexicana: subcellular distribution of enzymes in amastigotes and promastigotes. Exp Parasitol 59: 265–274. PubMed

Zangger H, Hailu A, Desponds C, Lye LF, Akopyants NS, et al. (2014) Leishmania aethiopica field isolates bearing an endosymbiontic dsRNA virus induce pro-inflammatory cytokine response. PLoS Negl Trop Dis 8: e2836 10.1371/journal.pntd.0002836 PubMed DOI PMC

Ronet C, Beverley SM, Fasel N (2011) Muco-cutaneous leishmaniasis in the New World: the ultimate subversion. Virulence 2: 547–552. 10.4161/viru.2.6.17839 PubMed DOI PMC

Hartley MA, Ronet C, Zangger H, Beverley SM, Fasel N (2012) Leishmania RNA virus: when the host pays the toll. Front Cell Infect Microbiol 2: 99 10.3389/fcimb.2012.00099 PubMed DOI PMC

Soares MJ, Motta MC, de Souza W (1989) Bacterium-like endosymbiont and virus-like particles in the trypanosomatid Crithidia desouzai . Microbios Lett 41: 137–141.

Motta MC, de Souza W, Thiry M (2003) Immunocytochemical detection of DNA and RNA in endosymbiont-bearing trypanosomatids. FEMS Microbiol Lett 221: 17–23. PubMed

Ahuja K, Arora G, Khare P, Selvapandiyan A (2015) Selective elimination of Leptomonas from the in vitro co-culture with Leishmania . Parasitol Int 64: 1–5. PubMed

Alvar J, Aparicio P, Aseffa A, Den Boer M, Canavate C, et al. (2008) The relationship between leishmaniasis and AIDS: the second 10 years. Clin Microbiol Rev 21: 334–359, table of contents. 10.1128/CMR.00061-07 PubMed DOI PMC

Svobodová M, Volf P, Votýpka J (2006) Experimental transmission of Leishmania tropica to hyraxes (Procavia capensis) by the bite of Phlebotomus arabicus . Microbes Infect 8: 1691–1694. PubMed

Yurchenko V, Lukeš J, Xu X, Maslov DA (2006) An integrated morphological and molecular approach to a new species description in the Trypanosomatidae: the case of Leptomonas podlipaevi n. sp., a parasite of Boisea rubrolineata (Hemiptera: Rhopalidae). J Eukaryot Microbiol 53: 103–111. PubMed

Yurchenko V, Lukeš J, Jirků M, Maslov DA (2009) Selective recovery of the cultivation-prone components from mixed trypanosomatid infections: a case of several novel species isolated from Neotropical Heteroptera. Int J Syst Evol Microbiol 59: 893–909. 10.1099/ijs.0.001149-0 PubMed DOI

Huang S (2010) Statistical issues in subpopulation analysis of high content imaging data. J Comput Biol 17: 879–894. 10.1089/cmb.2009.0071 PubMed DOI

Dollet M, Sturm NR, Campbell DA (2012) The internal transcribed spacer of ribosomal RNA genes in plant trypanosomes (Phytomonas spp.) resolves 10 groups. Infect Genet Evol 12: 299–308. 10.1016/j.meegid.2011.11.010 PubMed DOI

Yurchenko V, Lukeš J, Tesařová M, Jirků M, Maslov DA (2008) Morphological discordance of the new trypanosomatid species phylogenetically associated with the genus Crithidia . Protist 159: 99–114. PubMed

Votýpka J, Kostygov AY, Kraeva N, Grybchuk-Ieremenko A, Tesařová M, et al. (2014) Kentomonas gen. n., a new genus of endosymbiont-containing trypanosomatids of Strigomonadinae subfam. n. Protist 165: 825–838. 10.1016/j.protis.2014.09.002 PubMed DOI

Stanke M, Keller O, Gunduz I, Hayes A, Waack S, et al. (2006) AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Res 34: W435–439. PubMed PMC

Aslett M, Aurrecoechea C, Berriman M, Brestelli J, Brunk BP, et al. (2010) TriTrypDB: a functional genomic resource for the Trypanosomatidae. Nucleic Acids Res 38: D457–462. 10.1093/nar/gkp851 PubMed DOI PMC

Schattner P, Brooks AN, Lowe TM (2005) The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Res 33: W686–689. PubMed PMC

Aurrecoechea C, Barreto A, Brestelli J, Brunk BP, Cade S, et al. (2013) EuPathDB: the eukaryotic pathogen database. Nucleic Acids Res 41: D684–691. 10.1093/nar/gks1113 PubMed DOI PMC

Li L, Stoeckert CJ Jr., Roos DS (2003) OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res 13: 2178–2189. PubMed PMC

Si Y, Liu P (2013) An optimal test with maximum average power while controlling FDR with application to RNA-seq data. Biometrics 69: 594–605. 10.1111/biom.12036 PubMed DOI

Gotz S, Garcia-Gomez JM, Terol J, Williams TD, Nagaraj SH, et al. (2008) High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res 36: 3420–3435. 10.1093/nar/gkn176 PubMed DOI PMC

Beiting DP, Peixoto L, Akopyants NS, Beverley SM, Wherry EJ, et al. (2014) Differential induction of TLR3-dependent innate immune signaling by closely related parasite species. PLoS One 9: e88398 10.1371/journal.pone.0088398 PubMed DOI PMC

Kelly S, Reed J, Kramer S, Ellis L, Webb H, et al. (2007) Functional genomics in Trypanosoma brucei: a collection of vectors for the expression of tagged proteins from endogenous and ectopic gene loci. Mol Biochem Parasitol 154: 103–109. PubMed PMC

Kushnir S, Gase K, Breitling R, Alexandrov K (2005) Development of an inducible protein expression system based on the protozoan host Leishmania tarentolae . Protein Expres Purif 42: 37–46. PubMed

Kraeva N, Ishemgulova A, Lukeš J, Yurchenko V (2014) Tetracycline-inducible gene expression system in Leishmania mexicana. Mol Biochem Parasitol (in press). PubMed

Volf P, Volfová V (2011) Establishment and maintenance of sand fly colonies. J Vector Ecol 36 Suppl 1: S1–9. PubMed

Myšková J, Votýpka J, Volf P (2008) Leishmania in sand flies: comparison of quantitative polymerase chain reaction with other techniques to determine the intensity of infection. J Med Entomol 45: 133–138. PubMed

Rogers M, Kropf P, Choi BS, Dillon R, Podinovskaia M, et al. (2009) Proteophosophoglycans regurgitated by Leishmania-infected sand flies target the L-arginine metabolism of host macrophages to promote parasite survival. PLoS Pathog 5: e1000555 10.1371/journal.ppat.1000555 PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Identification of diverse RNA viruses in Obscuromonas flagellates (Euglenozoa: Trypanosomatidae: Blastocrithidiinae)

. 2024 ; 10 (1) : veae037. [epub] 20240504

Multiple and frequent trypanosomatid co-infections of insects: the Cuban case study

. 2024 May ; 151 (6) : 567-578. [epub] 20240415

Evolution of RNA viruses in trypanosomatids: new insights from the analysis of Sauroleishmania

. 2023 Oct ; 122 (10) : 2279-2286. [epub] 20230725

Shining the spotlight on the neglected: new high-quality genome assemblies as a gateway to understanding the evolution of Trypanosomatidae

. 2023 Aug 21 ; 24 (1) : 471. [epub] 20230821

Leishmania guyanensis M4147 as a new LRV1-bearing model parasite: Phosphatidate phosphatase 2-like protein controls cell cycle progression and intracellular lipid content

. 2022 Jun ; 16 (6) : e0010510. [epub] 20220624

Catalase impairs Leishmania mexicana development and virulence

. 2021 Dec ; 12 (1) : 852-867.

Genomics of Trypanosomatidae: Where We Stand and What Needs to Be Done?

. 2021 Sep 02 ; 10 (9) : . [epub] 20210902

Differences in mitochondrial NADH dehydrogenase activities in trypanosomatids

. 2021 Sep ; 148 (10) : 1161-1170. [epub] 20210107

A New Model Trypanosomatid, Novymonas esmeraldas: Genomic Perception of Its "Candidatus Pandoraea novymonadis" Endosymbiont

. 2021 Aug 31 ; 12 (4) : e0160621. [epub] 20210817

Complete minicircle genome of Leptomonas pyrrhocoris reveals sources of its non-canonical mitochondrial RNA editing events

. 2021 Apr 06 ; 49 (6) : 3354-3370.

Euglenozoa: taxonomy, diversity and ecology, symbioses and viruses

. 2021 Mar ; 11 (3) : 200407. [epub] 20210310

Catalase and Ascorbate Peroxidase in Euglenozoan Protists

. 2020 Apr 24 ; 9 (4) : . [epub] 20200424

Experimental infections and co-infections with Leishmania braziliensis and Leishmania infantum in two sand fly species, Lutzomyia migonei and Lutzomyia longipalpis

. 2020 Feb 27 ; 10 (1) : 3566. [epub] 20200227

The First Non-LRV RNA Virus in Leishmania

. 2020 Feb 02 ; 12 (2) : . [epub] 20200202

Suicidal Leishmania

. 2020 Jan 25 ; 9 (2) : . [epub] 20200125

If host is refractory, insistent parasite goes berserk: Trypanosomatid Blastocrithidia raabei in the dock bug Coreus marginatus

. 2020 ; 15 (1) : e0227832. [epub] 20200116

Molecular Characterization of Leishmania RNA virus 2 in Leishmaniamajor from Uzbekistan

. 2019 Oct 21 ; 10 (10) : . [epub] 20191021

Comparative genomics of Leishmania (Mundinia)

. 2019 Oct 11 ; 20 (1) : 726. [epub] 20191011

Genomic Variation among Strains of Crithidia bombi and C. expoeki

. 2019 Sep 11 ; 4 (5) : . [epub] 20190911

RNA Viruses in Blechomonas (Trypanosomatidae) and Evolution of Leishmaniavirus

. 2018 Oct 16 ; 9 (5) : . [epub] 20181016

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace