A New Model Trypanosomatid, Novymonas esmeraldas: Genomic Perception of Its "Candidatus Pandoraea novymonadis" Endosymbiont
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34399629
PubMed Central
PMC8406214
DOI
10.1128/mbio.01606-21
Knihovny.cz E-zdroje
- Klíčová slova
- Leishmaniinae, Trypanosomatidae, bacterial endosymbiont, genomics, metabolism,
- MeSH
- Bacteria klasifikace genetika metabolismus MeSH
- fylogeneze MeSH
- genom bakteriální * MeSH
- genomika MeSH
- symbióza genetika MeSH
- Trypanosoma klasifikace metabolismus mikrobiologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The closest relative of human pathogen Leishmania, the trypanosomatid Novymonas esmeraldas, harbors a bacterial endosymbiont "Candidatus Pandoraea novymonadis." Based on genomic data, we performed a detailed characterization of the metabolic interactions of both partners. While in many respects the metabolism of N. esmeraldas resembles that of other Leishmaniinae, the endosymbiont provides the trypanosomatid with heme, essential amino acids, purines, some coenzymes, and vitamins. In return, N. esmeraldas shares with the bacterium several nonessential amino acids and phospholipids. Moreover, it complements its carbohydrate metabolism and urea cycle with enzymes missing from the "Ca. Pandoraea novymonadis" genome. The removal of the endosymbiont from N. esmeraldas results in a significant reduction of the overall translation rate, reduced expression of genes involved in lipid metabolism and mitochondrial respiratory activity, and downregulation of several aminoacyl-tRNA synthetases, enzymes involved in the synthesis of some amino acids, as well as proteins associated with autophagy. At the same time, the genes responsible for protection against reactive oxygen species and DNA repair become significantly upregulated in the aposymbiotic strain of this trypanosomatid. By knocking out a component of its flagellum, we turned N. esmeraldas into a new model trypanosomatid that is amenable to genetic manipulation using both conventional and CRISPR-Cas9-mediated approaches. IMPORTANCENovymonas esmeraldas is a parasitic flagellate of the family Trypanosomatidae representing the closest insect-restricted relative of the human pathogen Leishmania. It bears symbiotic bacteria in its cytoplasm, the relationship with which has been established relatively recently and independently from other known endosymbioses in protists. Here, using the genome analysis and comparison of transcriptomic profiles of N. esmeraldas with and without the endosymbionts, we describe a uniquely complex cooperation between both partners on the biochemical level. We demonstrate that the removal of bacteria leads to a decelerated growth of N. esmeraldas, substantial suppression of many metabolic pathways, and increased oxidative stress. Our success with the genetic transformation of this flagellate makes it a new model trypanosomatid species that can be used for the dissection of mechanisms underlying the symbiotic relationships between protists and bacteria.
e Duve Institute Université Catholique de Louvain Brussels Belgium
Faculty of Sciences University of South Bohemia České Budějovice Czech Republic
Institute of Parasitology Biology Centre Czech Academy of Sciences České Budějovice Czech Republic
Life Science Research Centre Faculty of Science University of Ostrava Ostrava Czech Republic
Zoological Institute of the Russian Academy of Sciences St Petersburg Russia
Zobrazit více v PubMed
Maslov DA, Opperdoes FR, Kostygov AY, Hashimi H, Lukeš J, Yurchenko V. 2019. Recent advances in trypanosomatid research: genome organization, expression, metabolism, taxonomy and evolution. Parasitology 146:1–27. doi:10.1017/S0031182018000951. PubMed DOI
Lukeš J, Butenko A, Hashimi H, Maslov DA, Votýpka J, Yurchenko V. 2018. Trypanosomatids are much more than just trypanosomes: clues from the expanded family tree. Trends Parasitol 34:466–480. doi:10.1016/j.pt.2018.03.002. PubMed DOI
Maslov DA, Votýpka J, Yurchenko V, Lukeš J. 2013. Diversity and phylogeny of insect trypanosomatids: all that is hidden shall be revealed. Trends Parasitol 29:43–52. doi:10.1016/j.pt.2012.11.001. PubMed DOI
Lukeš J, Skalický T, Týč J, Votýpka J, Yurchenko V. 2014. Evolution of parasitism in kinetoplastid flagellates. Mol Biochem Parasitol 195:115–122. doi:10.1016/j.molbiopara.2014.05.007. PubMed DOI
Butenko A, Hammond M, Field MC, Ginger ML, Yurchenko V, Lukeš J. 2021. Reductionist pathways for parasitism in euglenozoans? Expanded datasets provide new insights. Trends Parasitol 37:100–116. doi:10.1016/j.pt.2020.10.001. PubMed DOI
Kostygov AY, Karnkowska A, Votýpka J, Tashyreva D, Maciszewski K, Yurchenko V, Lukeš J. 2021. Euglenozoa: taxonomy, diversity and ecology, symbioses and viruses. Open Biol 11:200407. doi:10.1098/rsob.200407. PubMed DOI PMC
de Souza W, Motta MC. 1999. Endosymbiosis in protozoa of the Trypanosomatidae family. FEMS Microbiol Lett 173:1–8. doi:10.1111/j.1574-6968.1999.tb13477.x. PubMed DOI
Votýpka J, Kostygov AY, Kraeva N, Grybchuk-Ieremenko A, Tesařová M, Grybchuk D, Lukeš J, Yurchenko V. 2014. Kentomonas gen. n., a new genus of endosymbiont-containing trypanosomatids of Strigomonadinae subfam. n. Protist 165:825–838. doi:10.1016/j.protis.2014.09.002. PubMed DOI
Kostygov A, Dobáková E, Grybchuk-Ieremenko A, Váhala D, Maslov DA, Votýpka J, Lukeš J, Yurchenko V. 2016. Novel trypanosomatid-bacterium association: evolution of endosymbiosis in action. mBio 7:e01985-15. doi:10.1128/mBio.01985-15. PubMed DOI PMC
Ganyukova AI, Frolov AO, Malysheva MN, Spodareva VV, Yurchenko V, Kostygov AY. 2020. A novel endosymbiont-containing trypanosomatid Phytomonas borealis sp. n. from the predatory bug Picromerus bidens (Heteroptera: Pentatomidae). Folia Parasitol 67. doi:10.14411/fp.2020.004 PubMed DOI
Catta-Preta CM, Nascimento MT, Garcia MC, Saraiva EM, Motta MC, Meyer-Fernandes JR. 2013. The presence of a symbiotic bacterium in Strigomonas culicis is related to differential ecto-phosphatase activity and influences the mosquito-protozoa interaction. Int J Parasitol 43:571–577. doi:10.1016/j.ijpara.2013.02.005. PubMed DOI
Motta MC, Catta-Preta CM, Schenkman S, de Azevedo Martins AC, Miranda K, de Souza W, Elias MC. 2010. The bacterium endosymbiont of Crithidia deanei undergoes coordinated division with the host cell nucleus. PLoS One 5:e12415. doi:10.1371/journal.pone.0012415. PubMed DOI PMC
Freymuller E, Camargo EP. 1981. Ultrastructural differences between species of trypanosomatids with and without endosymbionts. J Protozool 28:175–182. doi:10.1111/j.1550-7408.1981.tb02829.x. PubMed DOI
Chang KP. 1974. Ultrastructure of symbiotic bacteria in normal and antibiotic-treated Blastocrithidia culicis and Crithidia oncopelti. J Protozool 21:699–707. doi:10.1111/j.1550-7408.1974.tb03733.x. PubMed DOI
Motta MC, Soares MJ, Attias M, Morgado J, Lemos AP, Saad-Nehme J, Meyer-Fernandes JR, De Souza W. 1997. Ultrastructural and biochemical analysis of the relationship of Crithidia deanei with its endosymbiont. Eur J Cell Biol 72:370–377. PubMed
Klein CC, Alves JM, Serrano MG, Buck GA, Vasconcelos AT, Sagot MF, Teixeira MM, Camargo EP, Motta MC. 2013. Biosynthesis of vitamins and cofactors in bacterium-harbouring trypanosomatids depends on the symbiotic association as revealed by genomic analyses. PLoS One 8:e79786. doi:10.1371/journal.pone.0079786. PubMed DOI PMC
Alves JM, Serrano MG, Maia da Silva F, Voegtly LJ, Matveyev AV, Teixeira MM, Camargo EP, Buck GA. 2013. Genome evolution and phylogenomic analysis of Candidatus Kinetoplastibacterium, the beta-proteobacterial endosymbionts of Strigomonas and Angomonas. Genome Biol Evol 5:338–350. doi:10.1093/gbe/evt012. PubMed DOI PMC
Alves JM, Klein CC, da Silva FM, Costa-Martins AG, Serrano MG, Buck GA, Vasconcelos AT, Sagot MF, Teixeira MM, Motta MC, Camargo EP. 2013. Endosymbiosis in trypanosomatids: the genomic cooperation between bacterium and host in the synthesis of essential amino acids is heavily influenced by multiple horizontal gene transfers. BMC Evol Biol 13:190. doi:10.1186/1471-2148-13-190. PubMed DOI PMC
Alves JMP. 2017. Working together: amino acid biosynthesis in endosymbiont-harbouring Trypanosomatidae, p 371–383. In D'Mello JPF (ed), The handbook of microbial metabolism of amino acids. CAB International, Wallingford, UK Boston, USA.
Morales J, Kokkori S, Weidauer D, Chapman J, Goltsman E, Rokhsar D, Grossman AR, Nowack EC. 2016. Development of a toolbox to dissect host-endosymbiont interactions and protein trafficking in the trypanosomatid Angomonas deanei. BMC Evol Biol 16:247. doi:10.1186/s12862-016-0820-z. PubMed DOI PMC
Embley TM, Martin W. 2006. Eukaryotic evolution, changes and challenges. Nature 440:623–630. doi:10.1038/nature04546. PubMed DOI
Keeling PJ, Koonin EV. 2014. The origin and evolution of eukaryotes: a subject collection from Cold Spring Harbor Perspectives in Biology. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
Moran NA, McCutcheon JP, Nakabachi A. 2008. Genomics and evolution of heritable bacterial symbionts. Annu Rev Genet 42:165–190. doi:10.1146/annurev.genet.41.110306.130119. PubMed DOI
McFall-Ngai M, Hadfield MG, Bosch TC, Carey HV, Domazet-Loso T, Douglas AE, Dubilier N, Eberl G, Fukami T, Gilbert SF, Hentschel U, King N, Kjelleberg S, Knoll AH, Kremer N, Mazmanian SK, Metcalf JL, Nealson K, Pierce NE, Rawls JF, Reid A, Ruby EG, Rumpho M, Sanders JG, Tautz D, Wernegreen JJ. 2013. Animals in a bacterial world, a new imperative for the life sciences. Proc Natl Acad Sci USA 110:3229–3236. doi:10.1073/pnas.1218525110. PubMed DOI PMC
Dubilier N, Bergin C, Lott C. 2008. Symbiotic diversity in marine animals: the art of harnessing chemosynthesis. Nat Rev Microbiol 6:725–740. doi:10.1038/nrmicro1992. PubMed DOI
McCutcheon JP, Moran NA. 2011. Extreme genome reduction in symbiotic bacteria. Nat Rev Microbiol 10:13–26. doi:10.1038/nrmicro2670. PubMed DOI
Müller DB, Vogel C, Bai Y, Vorholt JA. 2016. The plant microbiota: systems-level insights and perspectives. Annu Rev Genet 50:211–234. doi:10.1146/annurev-genet-120215-034952. PubMed DOI
Adl SM, Bass D, Lane CE, Lukeš J, Schoch CL, Smirnov A, Agatha S, Berney C, Brown MW, Burki F, Cárdenas P, Čepička I, Chistyakova L, Del Campo J, Dunthorn M, Edvardsen B, Eglit Y, Guillou L, Hampl V, Heiss AA, Hoppenrath M, James TY, Karnkowska A, Karpov S, Kim E, Kolisko M, Kudryavtsev A, Lahr DJG, Lara E, Le Gall L, Lynn DH, Mann DG, Massana R, Mitchell EAD, Morrow C, Park JS, Pawlowski JW, Powell MJ, Richter DJ, Rueckert S, Shadwick L, Shimano S, Spiegel FW, Torruella G, Youssef N, Zlatogursky V, Zhang Q. 2019. Revisions to the classification, nomenclature, and diversity of eukaryotes. J Eukaryot Microbiol 66:4–119. doi:10.1111/jeu.12691. PubMed DOI PMC
Burki F, Roger AJ, Brown MW, Simpson AGB. 2020. The new tree of eukaryotes. Trends Ecol Evol 35:43–55. doi:10.1016/j.tree.2019.08.008. PubMed DOI
Nowack EC, Price DC, Bhattacharya D, Singer A, Melkonian M, Grossman AR. 2016. Gene transfers from diverse bacteria compensate for reductive genome evolution in the chromatophore of Paulinella chromatophora. Proc Natl Acad Sci USA 113:12214–12219. doi:10.1073/pnas.1608016113. PubMed DOI PMC
Singer A, Poschmann G, Muhlich C, Valadez-Cano C, Hansch S, Huren V, Rensing SA, Stuhler K, Nowack ECM. 2017. Massive protein import into the early-evolutionary-stage photosynthetic organelle of the amoeba Paulinella chromatophora. Curr Biol 27:2763–2773.e5. doi:10.1016/j.cub.2017.08.010. PubMed DOI
Kraeva N, Butenko A, Hlaváčová J, Kostygov A, Myškova J, Grybchuk D, Leštinová T, Votýpka J, Volf P, Opperdoes F, Flegontov P, Lukeš J, Yurchenko V. 2015. Leptomonas seymouri: adaptations to the dixenous life cycle analyzed by genome sequencing, transcriptome profiling and co-infection with Leishmania donovani. PLoS Pathog 11:e1005127. doi:10.1371/journal.ppat.1005127. PubMed DOI PMC
Coburn CM, Otteman KM, McNeely T, Turco SJ, Beverley SM. 1991. Stable DNA transfection of a wide range of trypanosomatids. Mol Biochem Parasitol 46:169–179. doi:10.1016/0166-6851(91)90210-w. PubMed DOI
Miranda MR, Saye M, Reigada C, Carrillo C, Pereira CA. 2015. Phytomonas: a non-pathogenic trypanosomatid model for functional expression of proteins. Protein Expr Purif 114:44–47. doi:10.1016/j.pep.2015.06.019. PubMed DOI
Sloan MA, Ligoxygakis P. 2020. Tools for the genetic manipulation of Herpetomonas muscarum. G3 (Bethesda) 10:1613–1616. doi:10.1534/g3.120.401048. PubMed DOI PMC
Liu Q, Lei J, Kadowaki T. 2019. Gene disruption of honey bee trypanosomatid parasite, Lotmaria passim, by CRISPR/Cas9 system. Front Cell Infect Microbiol 9:126. doi:10.3389/fcimb.2019.00126. PubMed DOI PMC
Jirků M, Yurchenko V, Lukeš J, Maslov DA. 2012. New species of insect trypanosomatids from Costa Rica and the proposal for a new subfamily within the Trypanosomatidae. J Eukaryot Microbiol 59:537–547. doi:10.1111/j.1550-7408.2012.00636.x. PubMed DOI
Kostygov AY, Yurchenko V. 2017. Revised classification of the subfamily Leishmaniinae (Trypanosomatidae). Folia Parasitol 64:20. doi:10.14411/fp.2017.020. PubMed DOI
Olivier M, Atayde VD, Isnard A, Hassani K, Shio MT. 2012. Leishmania virulence factors: focus on the metalloprotease GP63. Microbes Infect 14:1377–1389. doi:10.1016/j.micinf.2012.05.014. PubMed DOI
Jain M, Dole VS, Myler PJ, Stuart KD, Madhubala R. 2007. Role of biopterin transporter (BT1) gene on growth and infectivity of Leishmania. Am J Biochem Biotechnol 3:199–206. doi:10.3844/ajbbsp.2007.199.206. DOI
Naderer T, Heng J, McConville MJ. 2010. Evidence that intracellular stages of Leishmania major utilize amino sugars as a major carbon source. PLoS Pathog 6:e1001245. doi:10.1371/journal.ppat.1001245. PubMed DOI PMC
Kostygov AY, Butenko A, Nenarokova A, Tashyreva D, Flegontov P, Lukeš J, Yurchenko V. 2017. Genome of “Ca. Pandoraea novymonadis,” an endosymbiotic bacterium of the trypanosomatid Novymonas esmeraldas. Front Microbiol 8:1940. doi:10.3389/fmicb.2017.01940. PubMed DOI PMC
Fish WR, Looker DL, Marr JJ, Berens RL. 1982. Purine metabolism in the bloodstream forms of Trypanosoma gambiense and Trypanosoma rhodesiense. Biochim Biophys Acta 719:223–231. doi:10.1016/0304-4165(82)90092-7. PubMed DOI
Opperdoes FR, Butenko A, Flegontov P, Yurchenko V, Lukeš J. 2016. Comparative metabolism of free-living Bodo saltans and parasitic trypanosomatids. J Eukaryot Microbiol 63:657–678. doi:10.1111/jeu.12315. PubMed DOI
Nara T, Aoki T. 2002. The pyrimidine-biosynthetic (pyr) gene cluster in trypanosomes. Tanpakushitsu Kakusan Koso 47:13–20. PubMed
Opperdoes FR, Michels PA. 2007. Horizontal gene transfer in trypanosomatids. Trends Parasitol 23:470–476. doi:10.1016/j.pt.2007.08.002. PubMed DOI
Čermáková P, Maďarová A, Baráth P, Bellová J, Yurchenko V, Horváth A. 2021. Differences in mitochondrial NADH dehydrogenase activities in trypanosomatids. Parasitology 148:1161–1170. doi:10.1017/S0031182020002425. PubMed DOI PMC
Puustinen A, Finel M, Haltia T, Gennis RB, Wikström M. 1991. Properties of the two terminal oxidases of Escherichia coli. Biochemistry 30:3936–3942. doi:10.1021/bi00230a019. PubMed DOI
Motta MC, Martins AC, de Souza SS, Catta-Preta CM, Silva R, Klein CC, de Almeida LG, de Lima Cunha O, Ciapina LP, Brocchi M, Colabardini AC, de Araujo Lima B, Machado CR, de Almeida Soares CM, Probst CM, de Menezes CB, Thompson CE, Bartholomeu DC, Gradia DF, Pavoni DP, Grisard EC, Fantinatti-Garboggini F, Marchini FK, Rodrigues-Luiz GF, Wagner G, Goldman GH, Fietto JL, Elias MC, Goldman MH, Sagot MF, Pereira M, Stoco PH, de Mendonca-Neto RP, Teixeira SM, Maciel TE, de Oliveira Mendes TA, Urmenyi TP, de Souza W, Schenkman S, de Vasconcelos AT. 2013. Predicting the proteins of Angomonas deanei, Strigomonas culicis and their respective endosymbionts reveals new aspects of the trypanosomatidae family. PLoS One 8:e60209. doi:10.1371/journal.pone.0060209. PubMed DOI PMC
Muñoz-Gómez SA, Slamovits CH, Dacks JB, Baier KA, Spencer KD, Wideman JG. 2015. Ancient homology of the mitochondrial contact site and cristae organizing system points to an endosymbiotic origin of mitochondrial cristae. Curr Biol 25:1489–1495. doi:10.1016/j.cub.2015.04.006. PubMed DOI
Kaurov I, Vancová M, Schimanski B, Cadena LR, Heller J, Bíly T, Potěšíl D, Eichenberger C, Bruce H, Oeljeklaus S, Warscheid B, Zdráhal Z, Schneider A, Lukeš J, Hashimi H. 2018. The diverged trypanosome MICOS complex as a hub for mitochondrial cristae shaping and protein import. Curr Biol 28:3393–3407.e5. doi:10.1016/j.cub.2018.09.008. PubMed DOI
Flegontov P, Butenko A, Firsov S, Kraeva N, Eliáš M, Field MC, Filatov D, Flegontova O, Gerasimov ES, Hlaváčová J, Ishemgulova A, Jackson AP, Kelly S, Kostygov A, Logacheva MD, Maslov DA, Opperdoes FR, O'Reilly A, Sádlová J, Ševčíková T, Venkatesh D, Vlček Č, Volf P, Votýpka J, Záhonová K, Yurchenko V, Lukeš J. 2016. Genome of Leptomonas pyrrhocoris: a high-quality reference for monoxenous trypanosomatids and new insights into evolution of Leishmania. Sci Rep 6:23704. doi:10.1038/srep23704. PubMed DOI PMC
Cunningham ML, Beverley SM. 2001. Pteridine salvage throughout the Leishmania infectious cycle: implications for antifolate chemotherapy. Mol Biochem Parasitol 113:199–213. doi:10.1016/S0166-6851(01)00213-4. PubMed DOI
Opperdoes FR, Coombs GH. 2007. Metabolism of Leishmania: proven and predicted. Trends Parasitol 23:149–158. doi:10.1016/j.pt.2007.02.004. PubMed DOI
Kořený L, Lukeš J, Oborník M. 2010. Evolution of the haem synthetic pathway in kinetoplastid flagellates: an essential pathway that is not essential after all? Int J Parasitol 40:149–156. doi:10.1016/j.ijpara.2009.11.007. PubMed DOI
Lee SH, Stephens JL, Englund PT. 2007. A fatty-acid synthesis mechanism specialized for parasitism. Nat Rev Microbiol 5:287–297. doi:10.1038/nrmicro1617. PubMed DOI
Uttaro AD. 2014. Acquisition and biosynthesis of saturated and unsaturated fatty acids by trypanosomatids. Mol Biochem Parasitol 196:61–70. doi:10.1016/j.molbiopara.2014.04.001. PubMed DOI
Kraeva N, Horáková E, Kostygov A, Kořený L, Butenko A, Yurchenko V, Lukeš J. 2017. Catalase in Leishmaniinae: with me or against me? Infect Genet Evol 50:121–127. doi:10.1016/j.meegid.2016.06.054. PubMed DOI
Škodová-Sveráková I, Záhonová K, Bučková B, Füssy Z, Yurchenko V, Lukeš J. 2020. Catalase and ascorbate peroxidase in euglenozoan protists. Pathogens 9:317. doi:10.3390/pathogens9040317. PubMed DOI PMC
Bombaça ACS, Brunoro GVF, Dias-Lopes G, Ennes-Vidal V, Carvalho PC, Perales J, d'Avila-Levy CM, Valente RH, Menna-Barreto RFS. 2020. Glycolytic profile shift and antioxidant triggering in symbiont-free and H2O2-resistant Strigomonas culicis. Free Radic Biol Med 146:392–401. doi:10.1016/j.freeradbiomed.2019.11.025. PubMed DOI
Chevalier N, Bertrand L, Rider MH, Opperdoes FR, Rigden DJ, Michels PA. 2005. 6-Phosphofructo-2-kinase and fructose-2,6-bisphosphatase in Trypanosomatidae. Molecular characterization, database searches, modelling studies and evolutionary analysis. FEBS J 272:3542–3560. doi:10.1111/j.1742-4658.2005.04774.x. PubMed DOI
Penha LL, Hoffmann L, Souza SS, Martins AC, Bottaro T, Prosdocimi F, Faffe DS, Motta MC, Ürményi TP, Silva R. 2016. Symbiont modulates expression of specific gene categories in Angomonas deanei. Mem Inst Oswaldo Cruz 111:686–691. doi:10.1590/0074-02760160228. PubMed DOI PMC
Randow F, Youle RJ. 2014. Self and nonself: how autophagy targets mitochondria and bacteria. Cell Host Microbe 15:403–411. doi:10.1016/j.chom.2014.03.012. PubMed DOI PMC
Durante IM, Butenko A, Rašková V, Charyyeva A, Svobodová M, Yurchenko V, Hashimi H, Lukeš J. 2020. Large-scale phylogenetic analysis of trypanosomatid adenylate cyclases reveals associations with extracellular lifestyle and host-pathogen interplay. Genome Biol Evol 12:2403–2416. doi:10.1093/gbe/evaa226. PubMed DOI PMC
Ishemgulova A, Hlaváčová J, Majerová K, Butenko A, Lukeš J, Votýpka J, Volf P, Yurchenko V. 2018. CRISPR/Cas9 in Leishmania mexicana: a case study of LmxBTN1. PLoS One 13:e0192723. doi:10.1371/journal.pone.0192723. PubMed DOI PMC
Loreng TD, Smith EF. 2017. The central apparatus of cilia and eukaryotic flagella. Cold Spring Harb Perspect Biol 9:a028118. doi:10.1101/cshperspect.a028118. PubMed DOI PMC
Ralston KS, Lerner AG, Diener DR, Hill KL. 2006. Flagellar motility contributes to cytokinesis in Trypanosoma brucei and is modulated by an evolutionarily conserved dynein regulatory system. Eukaryot Cell 5:696–711. doi:10.1128/EC.5.4.696-711.2006. PubMed DOI PMC
Beneke T, Madden R, Makin L, Valli J, Sunter J, Gluenz E. 2017. A CRISPR Cas9 high-throughput genome editing toolkit for kinetoplastids. R Soc Open Sci 4:170095. doi:10.1098/rsos.170095. PubMed DOI PMC
Yurchenko V, Lukeš J. 2018. Parasites and their (endo)symbiotic microbes. Parasitology 145:1261–1264. doi:10.1017/S0031182018001257. PubMed DOI
Catta-Preta CM, Brum FL, da Silva CC, Zuma AA, Elias MC, de Souza W, Schenkman S, Motta MC. 2015. Endosymbiosis in trypanosomatid protozoa: the bacterium division is controlled during the host cell cycle. Front Microbiol 6:520. doi:10.3389/fmicb.2015.00520. PubMed DOI PMC
Loyola-Machado AC, Azevedo-Martins AC, Catta-Preta CMC, de Souza W, Galina A, Motta MCM. 2017. The symbiotic bacterium fuels the energy metabolism of the host trypanosomatid Strigomonas culicis. Protist 168:253–269. doi:10.1016/j.protis.2017.02.001. PubMed DOI
Hollar L, Lukeš J, Maslov DA. 1998. Monophyly of endosymbiont containing trypanosomatids: phylogeny versus taxonomy. J Eukaryot Microbiol 45:293–297. doi:10.1111/j.1550-7408.1998.tb04539.x. PubMed DOI
Harmer J, Yurchenko V, Nenarokova A, Lukeš J, Ginger ML. 2018. Farming, slaving and enslavement: histories of endosymbiosis during kinetoplastid evolution. Parasitology 145:1311–1323. doi:10.1017/S0031182018000781. PubMed DOI
Silva FM, Kostygov AY, Spodareva VV, Butenko A, Tossou R, Lukes J, Yurchenko V, Alves JMP. 2018. The reduced genome of Candidatus Kinetoplastibacterium sorsogonicusi, the endosymbiont of Kentomonas sorsogonicus (Trypanosomatidae): loss of the haem-synthesis pathway. Parasitology 145:1287–1293. doi:10.1017/S003118201800046X. PubMed DOI
Fampa P, Correa-da-Silva MS, Lima DC, Oliveira SM, Motta MC, Saraiva EM. 2003. Interaction of insect trypanosomatids with mosquitoes, sand fly and the respective insect cell lines. Int J Parasitol 33:1019–1026. doi:10.1016/s0020-7519(03)00124-3. PubMed DOI
de Azevedo-Martins AC, Alves JM, de Mello FG, Vasconcelos AT, de Souza W, Einicker-Lamas M, Motta MC. 2015. Biochemical and phylogenetic analyses of phosphatidylinositol production in Angomonas deanei, an endosymbiont-harboring trypanosomatid. Parasit Vectors 8:247. doi:10.1186/s13071-015-0854-x. PubMed DOI PMC
Bombaça ACS, Dias FA, Ennes-Vidal V, Garcia-Gomes ADS, Sorgine MHF, d'Avila-Levy CM, Menna-Barreto RFS. 2017. Hydrogen peroxide resistance in Strigomonas culicis: effects on mitochondrial functionality and Aedes aegypti interaction. Free Radic Biol Med 113:255–266. doi:10.1016/j.freeradbiomed.2017.10.006. PubMed DOI
Brunoro GVF, Menna-Barreto RFS, Garcia-Gomes AS, Boucinha C, Lima DB, Carvalho PC, Teixeira-Ferreira A, Trugilho MRO, Perales J, Schwammle V, Catanho M, de Vasconcelos ATR, Motta MCM, d'Avila-Levy CM, Valente RH. 2019. Quantitative proteomic map of the trypanosomatid Strigomonas culicis: the biological contribution of its endosymbiotic bacterium. Protist 170:125698. doi:10.1016/j.protis.2019.125698. PubMed DOI
d’Avila-Levy CM, Santos LO, Marinho FA, Matteoli FP, Lopes AHCS, Motta MCM, Santos ALS, Branquinha MH. 2008. Crithidia deanei: influence of parasite gp63 homologue on the interaction of endosymbiont-harboring and aposymbiotic strains with Aedes aegypti midgut. Exp Parasitol 118:345–353. doi:10.1016/j.exppara.2007.09.007. PubMed DOI
d'Avila-Levy CM, Souza RF, Gomes RC, Vermelho AB, Branquinha MH. 2003. A metalloproteinase extracellularly released by Crithidia deanei. Can J Microbiol 49:625–632. doi:10.1139/w03-081. PubMed DOI
Opperdoes FR, Borst P. 1977. Localization of nine glycolytic enzymes in a microbody-like organelle in Trypanosoma brucei: the glycosome. FEBS Lett 80:360–364. doi:10.1016/0014-5793(77)80476-6. PubMed DOI
Opperdoes F, Michels PA. 2008. The metabolic repertoire of Leishmania and implications for drug discovery, p 123–158. In Myler P, Fasel N (ed), Leishmania: after the genome. Caister Academic Press, Norfolk, UK.
Ishemgulova A, Butenko A, Kortišová L, Boucinha C, Grybchuk-Ieremenko A, Morelli KA, Tesařová M, Kraeva N, Grybchuk D, Pánek T, Flegontov P, Lukeš J, Votýpka J, Pavan MG, Opperdoes FR, Spodareva V, d'Avila-Levy CM, Kostygov AY, Yurchenko V. 2017. Molecular mechanisms of thermal resistance of the insect trypanosomatid Crithidia thermophila. PLoS One 12:e0174165. doi:10.1371/journal.pone.0174165. PubMed DOI PMC
Bushnell B, Rood J, Singer E. 2017. BBMerge—accurate paired shotgun read merging via overlap. PLoS One 12:e0185056. doi:10.1371/journal.pone.0185056. PubMed DOI PMC
Andrews S. 2019. FastQC: a quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc. Accessed 8 March 2021.
Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477. doi:10.1089/cmb.2012.0021. PubMed DOI PMC
Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. doi:10.1093/bioinformatics/btu170. PubMed DOI PMC
Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359. doi:10.1038/nmeth.1923. PubMed DOI PMC
Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL. 2015. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol 33:290–295. doi:10.1038/nbt.3122. PubMed DOI PMC
Steinbiss S, Silva-Franco F, Brunk B, Foth B, Hertz-Fowler C, Berriman M, Otto TD. 2016. Companion: a web server for annotation and analysis of parasite genomes. Nucleic Acids Res 44:W29–W34. doi:10.1093/nar/gkw292. PubMed DOI PMC
Waterhouse RM, Seppey M, Simão FA, Manni M, Ioannidis P, Klioutchnikov G, Kriventseva EV, Zdobnov EM. 2018. BUSCO applications from quality assessments to gene prediction and phylogenomics. Mol Biol Evol 35:543–548. doi:10.1093/molbev/msx319. PubMed DOI PMC
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Genome Project Data Processing S . 2009. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25:2078–2079. doi:10.1093/bioinformatics/btp352. PubMed DOI PMC
Liao Y, Smyth GK, Shi W. 2014. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30:923–930. doi:10.1093/bioinformatics/btt656. PubMed DOI
Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550. doi:10.1186/s13059-014-0550-8. PubMed DOI PMC
Törönen P, Medlar A, Holm L. 2018. PANNZER2: a rapid functional annotation web server. Nucleic Acids Res 46:W84–W88. doi:10.1093/nar/gky350. PubMed DOI PMC
Alexa A, Rahnenfuhrer J. 2020. topGO: enrichment analysis for Gene Ontology, v2.42.0.
Kanehisa M, Sato Y, Morishima K. 2016. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol 428:726–731. doi:10.1016/j.jmb.2015.11.006. PubMed DOI
Almagro Armenteros JJ, Salvatore M, Emanuelsson O, Winther O, von Heijne G, Elofsson A, Nielsen H. 2019. Detecting sequence signals in targeting peptides using deep learning. Life Sci Alliance 2:e201900429. doi:10.26508/lsa.201900429. PubMed DOI PMC
Emms DM, Kelly S. 2019. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol 20:238. doi:10.1186/s13059-019-1832-y. PubMed DOI PMC
Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780. doi:10.1093/molbev/mst010. PubMed DOI PMC
Capella-Gutiérrez S, Silla-Martinez JM, Gabaldon T. 2009. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25:1972–1973. doi:10.1093/bioinformatics/btp348. PubMed DOI PMC
Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32:268–274. doi:10.1093/molbev/msu300. PubMed DOI PMC
Lartillot N, Rodrigue N, Stubbs D, Richer J. 2013. PhyloBayes MPI: phylogenetic reconstruction with infinite mixtures of profiles in a parallel environment. Syst Biol 62:611–615. doi:10.1093/sysbio/syt022. PubMed DOI
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 35:1547–1549. doi:10.1093/molbev/msy096. PubMed DOI PMC
Butenko A, Kostygov AY, Sádlová J, Kleschenko Y, Bečvář T, Podešvová L, Macedo DH, Žihala D, Lukeš J, Bates PA, Volf P, Opperdoes FR, Yurchenko V. 2019. Comparative genomics of Leishmania (Mundinia). BMC Genomics 20:726. doi:10.1186/s12864-019-6126-y. PubMed DOI PMC
Robinson KA, Beverley SM. 2003. Improvements in transfection efficiency and tests of RNA interference (RNAi) approaches in the protozoan parasite Leishmania. Mol Biochem Parasitol 128:217–228. doi:10.1016/s0166-6851(03)00079-3. PubMed DOI
Kelly S, Reed J, Kramer S, Ellis L, Webb H, Sunter J, Salje J, Marinsek N, Gull K, Wickstead B, Carrington M. 2007. Functional genomics in Trypanosoma brucei: a collection of vectors for the expression of tagged proteins from endogenous and ectopic gene loci. Mol Biochem Parasitol 154:103–109. doi:10.1016/j.molbiopara.2007.03.012. PubMed DOI PMC
Sollelis L, Ghorbal M, MacPherson CR, Martins RM, Kuk N, Crobu L, Bastien P, Scherf A, Lopez-Rubio JJ, Sterkers Y. 2015. First efficient CRISPR-Cas9-mediated genome editing in Leishmania parasites. Cell Microbiol 17:1405–1412. doi:10.1111/cmi.12456. PubMed DOI
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A. 2012. Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682. doi:10.1038/nmeth.2019. PubMed DOI PMC
Záhonová K, Hadariová L, Vacula R, Yurchenko V, Eliáš M, Krajčovič J, Vesteg M. 2014. A small portion of plastid transcripts is polyadenylated in the flagellate Euglena gracilis. FEBS Lett 588:783–788. doi:10.1016/j.febslet.2014.01.034. PubMed DOI
Grybchuk D, Macedo DH, Kleschenko Y, Kraeva N, Lukashev AN, Bates PA, Kulich P, Leštinová T, Volf P, Kostygov AY, Yurchenko V. 2020. The first non-LRV RNA virus in Leishmania. Viruses 12:168. doi:10.3390/v12020168. PubMed DOI PMC
Ishemgulova A, Kraeva N, Hlaváčová J, Zimmer SL, Butenko A, Podešvová L, Leštinová T, Lukeš J, Kostygov A, Votýpka J, Volf P, Yurchenko V. 2017. A putative ATP/GTP binding protein affects Leishmania mexicana growth in insect vectors and vertebrate hosts. PLoS Negl Trop Dis 11:e0005782. doi:10.1371/journal.pntd.0005782. PubMed DOI PMC
Genomics of Trypanosomatidae: Where We Stand and What Needs to Be Done?