Molecular mechanisms of thermal resistance of the insect trypanosomatid Crithidia thermophila

. 2017 ; 12 (3) : e0174165. [epub] 20170322

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28328988

In the present work, we investigated molecular mechanisms governing thermal resistance of a monoxenous trypanosomatid Crithidia luciliae thermophila, which we reclassified as a separate species C. thermophila. We analyzed morphology, growth kinetics, and transcriptomic profiles of flagellates cultivated at low (23°C) and elevated (34°C) temperature. When maintained at high temperature, they grew significantly faster, became shorter, with genes involved in sugar metabolism and mitochondrial stress protection significantly upregulated. Comparison with another thermoresistant monoxenous trypanosomatid, Leptomonas seymouri, revealed dramatic differences in transcription profiles of the two species with only few genes showing the same expression pattern. This disparity illustrates differences in the biology of these two parasites and distinct mechanisms of their thermotolerance, a prerequisite for living in warm-blooded vertebrates.

Zobrazit více v PubMed

Vickerman K (1976) Comparative cell biology of the kinetoplastid flagellates In: Vickerman K, Preston TM, editors. Biology of Kinetoplastida. London: Academic Press; pp. 35–130.

McGhee RB, Cosgrove WB. Biology and physiology of the lower Trypanosomatidae. Microbiol Rev. 1980; 44: 140–173. PubMed PMC

Yurchenko V, Kolesnikov AA. [Minicircular kinetoplast DNA of Trypanosomatidae]. Mol Biol (Mosk). 2001; 35: 3–13. PubMed

Vickerman K. The evolutionary expansion of the trypanosomatid flagellates. Int J Parasitol. 1994; 24: 1317–1331. PubMed

Rodrigues JC, Godinho JL, de Souza W. Biology of human pathogenic trypanosomatids: epidemiology, lifecycle and ultrastructure. Subcell Biochem. 2014; 74: 1–42. 10.1007/978-94-007-7305-9_1 PubMed DOI

Ready PD. Epidemiology of visceral leishmaniasis. Clin Epidemiol. 2014; 6: 147–154. 10.2147/CLEP.S44267 PubMed DOI PMC

Podlipaev SA. The more insect trypanosomatids under study-the more diverse Trypanosomatidae appears. Int J Parasitol. 2001; 31: 648–652. PubMed

Maslov DA, Votýpka J, Yurchenko V, Lukeš J. Diversity and phylogeny of insect trypanosomatids: all that is hidden shall be revealed. Trends Parasitol. 2013; 29: 43–52. 10.1016/j.pt.2012.11.001 PubMed DOI

Lukeš J, Skalický T, Týč J, Votýpka J, Yurchenko V. Evolution of parasitism in kinetoplastid flagellates. Mol Biochem Parasitol. 2014; 195: 115–122. 10.1016/j.molbiopara.2014.05.007 PubMed DOI

Hamilton PT, Votýpka J, Dostalova A, Yurchenko V, Bird NH, Lukeš J, et al. Infection dynamics and immune response in a newly described Drosophila-trypanosomatid association. MBio. 2015; 6: e01356–01315. 10.1128/mBio.01356-15 PubMed DOI PMC

Kozminsky E, Kraeva N, Ishemgulova A, Dobáková E, Lukeš J, Kment P, et al. Host-specificity of monoxenous trypanosomatids: statistical analysis of the distribution and transmission patterns of the parasites from Neotropical Heteroptera. Protist. 2015; 166: 551–568. 10.1016/j.protis.2015.08.004 PubMed DOI

Votýpka J, Klepetková H, Yurchenko VY, Horák A, Lukeš J, Maslov DA. Cosmopolitan distribution of a trypanosomatid Leptomonas pyrrhocoris. Protist. 2012; 163: 616–631. 10.1016/j.protis.2011.12.004 PubMed DOI

Kraeva N, Butenko A, Hlaváčová J, Kostygov A, Myškova J, Grybchuk D, et al. Leptomonas seymouri: adaptations to the dixenous life cycle analyzed by genome sequencing, transcriptome profiling and co-infection with Leishmania donovani PLoS Pathog. 2015; 11: e1005127 10.1371/journal.ppat.1005127 PubMed DOI PMC

Pacheco RS, Marzochi MC, Pires MQ, Brito CM, Madeira Md, Barbosa-Santos EG. Parasite genotypically related to a monoxenous trypanosomatid of dog's flea causing opportunistic infection in an HIV positive patient. Mem Inst Oswaldo Cruz. 1998; 93: 531–537. PubMed

Chicharro C, Alvar J. Lower trypanosomatids in HIV/AIDS patients. Ann Trop Med Parasitol. 2003; 97 Suppl 1: 75–78. PubMed

Wallace FG. The trypanosomatid parasites of insects and arachnids. Exp Parasitol. 1966; 18: 124–193. PubMed

Votýpka J, d'Avila-Levy CM, Grellier P, Maslov DA, Lukeš J, Yurchenko V. New approaches to systematics of Trypanosomatidae: criteria for taxonomic (re)description. Trends Parasitol. 2015; 31: 460–469. 10.1016/j.pt.2015.06.015 PubMed DOI

Yurchenko V, Lukeš J, Jirků M, Maslov DA. Selective recovery of the cultivation-prone components from mixed trypanosomatid infections: a case of several novel species isolated from Neotropical Heteroptera. Int J Syst Evol Microbiol. 2009; 59: 893–909. 10.1099/ijs.0.001149-0 PubMed DOI

Teixeira MM, Borghesan TC, Ferreira RC, Santos MA, Takata CS, Campaner M, et al. Phylogenetic validation of the genera Angomonas and Strigomonas of trypanosomatids harboring bacterial endosymbionts with the description of new species of trypanosomatids and of proteobacterial symbionts. Protist. 2011; 162: 503–524. 10.1016/j.protis.2011.01.001 PubMed DOI

Jirků M, Yurchenko VY, Lukeš J, Maslov DA. New species of insect trypanosomatids from Costa Rica and the proposal for a new subfamily within the Trypanosomatidae. J Eukaryot Microbiol. 2012; 59: 537–547. 10.1111/j.1550-7408.2012.00636.x PubMed DOI

Frolov AO, Malysheva MN, Yurchenko V, Kostygov AY. Back to monoxeny: Phytomonas nordicus descended from dixenous plant parasites. Eur J Protistol. 2016; 52: 1–10. 10.1016/j.ejop.2015.08.002 PubMed DOI

d'Avila-Levy CM, Boucinha C, Kostygov A, Santos HL, Morelli KA, Grybchuk-Ieremenko A, et al. Exploring the environmental diversity of kinetoplastid flagellates in the high-throughput DNA sequencing era. Mem Inst Oswaldo Cruz. 2015; 110: 956–965. 10.1590/0074-02760150253 PubMed DOI PMC

Votýpka J, Kostygov AY, Kraeva N, Grybchuk-Ieremenko A, Tesařová M, Grybchuk D, et al. Kentomonas gen. n., a new genus of endosymbiont-containing trypanosomatids of Strigomonadinae subfam. n. Protist. 2014; 165: 825–838. 10.1016/j.protis.2014.09.002 PubMed DOI

Du Y, Maslov DA, Chang KP. Monophyletic origin of beta-division proteobacterial endosymbionts and their coevolution with insect trypanosomatid protozoa Blastocrithidia culicis and Crithidia spp.. Proc Natl Acad Sci U S A. 1994; 91: 8437–8441. PubMed PMC

de Souza W, Motta MC. Endosymbiosis in protozoa of the Trypanosomatidae family. FEMS Microbiol Lett. 1999; 173: 1–8. PubMed

Freymuller E, Camargo EP. Ultrastructural differences between species of trypanosomatids with and without endosymbionts. J Protozool. 1981; 28: 175–182. PubMed

Hollar L, Lukeš J, Maslov DA. Monophyly of endosymbiont containing trypanosomatids: phylogeny versus taxonomy. J Eukaryot Microbiol. 1998; 45: 293–297. PubMed

Kostygov AY, Grybchuk-Ieremenko A, Malysheva MN, Frolov AO, Yurchenko V. Molecular revision of the genus Wallaceina. Protist. 2014; 165: 594–604. 10.1016/j.protis.2014.07.001 PubMed DOI

Gerasimov ES, Kostygov AY, Yan S, Kolesnikov AA. From cryptogene to gene? ND8 editing domain reduction in insect trypanosomatids. Eur J Protistol. 2012; 48: 185–193. 10.1016/j.ejop.2011.09.002 PubMed DOI

Yurchenko V, Votýpka J, Tesařová M, Klepetková H, Kraeva N, Jirků M, et al. Ultrastructure and molecular phylogeny of four new species of monoxenous trypanosomatids from flies (Diptera: Brachycera) with redefinition of the genus Wallaceina. Folia Parasitol. 2014; 61: 97–112. PubMed

Léger L. Sur un flagelle parasite de l'Anopheles maculipennis. Comp R Séances Soc Biol Ses Fil. 1902; 54: 354–356.

Laird M. Blastocrithidia n.g. (Mastigophora: Protomonadina) for Crithidia (in part), with a subarctic record for B. gerridis (Patton). Can J Zool. 1959; 37: 749–752.

Yurchenko V, Lukeš J, Tesařová M, Jirků M, Maslov DA. Morphological discordance of the new trypanosomatid species phylogenetically associated with the genus Crithidia. Protist. 2008; 159: 99–114. 10.1016/j.protis.2007.07.003 PubMed DOI

Merzlyak E, Yurchenko V, Kolesnikov AA, Alexandrov K, Podlipaev SA, Maslov DA. Diversity and phylogeny of insect trypanosomatids based on small subunit rRNA genes: polyphyly of Leptomonas and Blastocrithidia. J Eukaryot Microbiol. 2001; 48: 161–169. PubMed

De Sa MF, De Sa CM, Veronese MA, Filho SA, Gander ES. Morphologic and biochemical characterization of Crithidia brasiliensis sp. n. J Protozool. 1980; 27: 253–257. PubMed

McGhee RB. The infection of avian embryos with Crithidia species and Leishmania tarentola. J Infect Dis. 1959; 105: 18–25. PubMed

Roitman C, Roitman I, de Azevedo HP. Growth of an insect trypanosomatid at 37°C in a defined medium. J Protozool. 1972; 19: 346–349. PubMed

Roitman I, Mundim MH, De Azevedo HP, Kitajima EW. Growth of Crithidia at high temperature: Crithidia hutneri sp. n. and Crithidia luciliae thermophila s. sp. n. J Protozool. 1977; 24: 553–556.

Wallace FG, Camargo EP, McGhee RB, Roitman I. Guidelines for the description of new species of lower trypanosomatids. J Eukaryot Microbiol. 1983; 30: 308–313.

d'Avila-Levy CM, Yurchenko V, Votýpka J, Grellier P. Protist collections: essential for future research. Trends Parasitol. 2016; 32: 840–842. 10.1016/j.pt.2016.08.001 PubMed DOI

Yurchenko V, Kostygov A, Havlová J, Grybchuk-Ieremenko A, Ševčíková T, Lukeš J, et al. Diversity of trypanosomatids in cockroaches and the description of Herpetomonas tarakana sp. n. J Eukaryot Microbiol. 2016; 63 198–209. 10.1111/jeu.12268 PubMed DOI

Yurchenko V, Lukeš J, Xu X, Maslov DA. An integrated morphological and molecular approach to a new species description in the Trypanosomatidae: the case of Leptomonas podlipaevi n. sp., a parasite of Boisea rubrolineata (Hemiptera: Rhopalidae). J Eukaryot Microbiol. 2006; 53: 103–111. 10.1111/j.1550-7408.2005.00078.x PubMed DOI

Maslov DA, Lukeš J, Jirků M, Simpson L. Phylogeny of trypanosomes as inferred from the small and large subunit rRNAs: implications for the evolution of parasitism in the trypanosomatid protozoa. Mol Biochem Parasitol. 1996; 75: 197–205. PubMed

Westenberger SJ, Sturm NR, Yanega D, Podlipaev SA, Zeledon R, Campbell DA, et al. Trypanosomatid biodiversity in Costa Rica: genotyping of parasites from Heteroptera using the spliced leader RNA gene. Parasitology. 2004; 129: 537–547. PubMed

Hamilton PB, Stevens JR, Gaunt MW, Gidley J, Gibson WC. Trypanosomes are monophyletic: evidence from genes for glyceraldehyde phosphate dehydrogenase and small subunit ribosomal RNA. Int J Parasitol. 2004; 34: 1393–1404. 10.1016/j.ijpara.2004.08.011 PubMed DOI

Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser. 1999; 41: 95–98.

Jobb G (2011) TREEFINDER. March 2011 ed. Munich, Germany.

Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S, et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012; 61: 539–542. 10.1093/sysbio/sys029 PubMed DOI PMC

Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014; 30: 2114–2120. 10.1093/bioinformatics/btu170 PubMed DOI PMC

Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011; 29: 644–652. 10.1038/nbt.1883 PubMed DOI PMC

Robinson MD, Smyth GK. Small-sample estimation of negative binomial dispersion, with applications to SAGE data. Biostatistics. 2008; 9: 321–332. 10.1093/biostatistics/kxm030 PubMed DOI

Emms DM, Kelly S. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol. 2015; 16: 157 10.1186/s13059-015-0721-2 PubMed DOI PMC

Aslett M, Aurrecoechea C, Berriman M, Brestelli J, Brunk BP, Carrington M, et al. TriTrypDB: a functional genomic resource for the Trypanosomatidae. Nucleic Acids Res. 2010; 38: D457–462. 10.1093/nar/gkp851 PubMed DOI PMC

Clark CG. Riboprinting: a tool for the study of genetic diversity in microorganisms. J Eukaryot Microbiol. 1997; 44: 277–283. PubMed

Wallace FG, Clark TB. Flagellate parasites of the fly, Phaenicia sericata (Meigen). J Protozool. 1959; 6: 58–61.

Strickland C. Description of a Herpetomonas parasitic in the alimentary tract of the common green-bottle fly, Lucilia sp. Parasitology. 1911; 4: 222.

Lahav T, Sivam D, Volpin H, Ronen M, Tsigankov P, Green A, et al. Multiple levels of gene regulation mediate differentiation of the intracellular pathogen Leishmania. FASEB J. 2011; 25: 515–525. 10.1096/fj.10-157529 PubMed DOI PMC

Balogh G, Peter M, Glatz A, Gombos I, Torok Z, Horvath I, et al. Key role of lipids in heat stress management. FEBS Lett. 2013; 587: 1970–1980. 10.1016/j.febslet.2013.05.016 PubMed DOI

Opperdoes FR, Butenko A, Flegontov P, Yurchenko V, Lukeš J. Comparative metabolism of free-living Bodo saltans and parasitic trypanosomatids. J Eukaryot Microbiol. 2016; 63: 657–678. 10.1111/jeu.12315 PubMed DOI

Verner Z, Čermáková P, Škodová I, Kováčová B, Lukeš J, Horváth A. Comparative analysis of respiratory chain and oxidative phosphorylation in Leishmania tarentolae, Crithidia fasciculata, Phytomonas serpens and procyclic stage of Trypanosoma brucei. Mol Biochem Parasitol. 2014; 193: 55–65. 10.1016/j.molbiopara.2014.02.003 PubMed DOI

Škodová-Sveráková I, Verner Z, Skalický T, Votýpka J, Horváth A, Lukeš J. Lineage-specific activities of a multipotent mitochondrion of trypanosomatid flagellates. Mol Microbiol. 2015; 96: 55–67. 10.1111/mmi.12920 PubMed DOI

Lacomble S, Portman N, Gull K. A protein-protein interaction map of the Trypanosoma brucei paraflagellar rod. PLoS One. 2009; 4: e7685 10.1371/journal.pone.0007685 PubMed DOI PMC

Hughes LC, Ralston KS, Hill KL, Zhou ZH. Three-dimensional structure of the Trypanosome flagellum suggests that the paraflagellar rod functions as a biomechanical spring. PLoS One. 2012; 7: e25700 10.1371/journal.pone.0025700 PubMed DOI PMC

Portman N, Gull K. The paraflagellar rod of kinetoplastid parasites: from structure to components and function. Int J Parasitol. 2010; 40: 135–148. 10.1016/j.ijpara.2009.10.005 PubMed DOI PMC

Docampo R, Moreno SN, Plattner H. Intracellular calcium channels in protozoa. Eur J Pharmacol. 2014; 739: 4–18. 10.1016/j.ejphar.2013.11.015 PubMed DOI PMC

Voos W, Rottgers K. Molecular chaperones as essential mediators of mitochondrial biogenesis. Biochim Biophys Acta. 2002; 1592: 51–62. PubMed

Dutkiewicz R, Schilke B, Knieszner H, Walter W, Craig EA, Marszalek J. Ssq1, a mitochondrial Hsp70 involved in iron-sulfur (Fe/S) center biogenesis. Similarities to and differences from its bacterial counterpart. J Biol Chem. 2003; 278: 29719–29727. 10.1074/jbc.M303527200 PubMed DOI

Liu Q, D'Silva P, Walter W, Marszalek J, Craig EA. Regulated cycling of mitochondrial Hsp70 at the protein import channel. Science. 2003; 300: 139–141. 10.1126/science.1083379 PubMed DOI

Tschopp F, Charriere F, Schneider A. In vivo study in Trypanosoma brucei links mitochondrial transfer RNA import to mitochondrial protein import. EMBO Rep. 2011; 12: 825–832. 10.1038/embor.2011.111 PubMed DOI PMC

Týč J, Klingbeil MM, Lukeš J. Mitochondrial heat shock protein machinery hsp70/hsp40 is indispensable for proper mitochondrial DNA maintenance and replication. MBio. 2015; 6. PubMed PMC

Krauth-Siegel RL, Comini MA. Redox control in trypanosomatids, parasitic protozoa with trypanothione-based thiol metabolism. Biochim Biophys Acta. 2008; 1780: 1236–1248. 10.1016/j.bbagen.2008.03.006 PubMed DOI

Vickers TJ, Fairlamb AH. Trypanothione S-transferase activity in a trypanosomatid ribosomal elongation factor 1B. J Biol Chem. 2004; 279: 27246–27256. 10.1074/jbc.M311039200 PubMed DOI PMC

Fairlamb AH, Blackburn P, Ulrich P, Chait BT, Cerami A. Trypanothione: a novel bis(glutathionyl)spermidine cofactor for glutathione reductase in trypanosomatids. Science. 1985; 227: 1485–1487. PubMed

Tomás AM, Castro H. Redox metabolism in mitochondria of trypanosomatids. Antioxid Redox Signal. 2013; 19: 696–707. 10.1089/ars.2012.4948 PubMed DOI PMC

Kraeva N, Horáková E, Kostygov A, Kořený L, Butenko A, Yurchenko V, et al. Catalase in Leishmaniinae: With me or against me? Infect Genet Evol. 2017; (in press). PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Diversity of RNA viruses in the cosmopolitan monoxenous trypanosomatid Leptomonas pyrrhocoris

. 2023 Sep 12 ; 21 (1) : 191. [epub] 20230912

Shining the spotlight on the neglected: new high-quality genome assemblies as a gateway to understanding the evolution of Trypanosomatidae

. 2023 Aug 21 ; 24 (1) : 471. [epub] 20230821

The Roles of Mosquitoes in the Circulation of Monoxenous Trypanosomatids in Temperate Climates

. 2022 Nov 11 ; 11 (11) : . [epub] 20221111

Catalase impairs Leishmania mexicana development and virulence

. 2021 Dec ; 12 (1) : 852-867.

Genomics of Trypanosomatidae: Where We Stand and What Needs to Be Done?

. 2021 Sep 02 ; 10 (9) : . [epub] 20210902

A New Model Trypanosomatid, Novymonas esmeraldas: Genomic Perception of Its "Candidatus Pandoraea novymonadis" Endosymbiont

. 2021 Aug 31 ; 12 (4) : e0160621. [epub] 20210817

Catalase and Ascorbate Peroxidase in Euglenozoan Protists

. 2020 Apr 24 ; 9 (4) : . [epub] 20200424

Sergentomyia schwetzi: Salivary gland transcriptome, proteome and enzymatic activities in two lineages adapted to different blood sources

. 2020 ; 15 (3) : e0230537. [epub] 20200324

First Draft Genome of the Trypanosomatid Herpetomonas muscarum ingenoplastis through MinION Oxford Nanopore Technology and Illumina Sequencing

. 2020 Feb 13 ; 5 (1) : . [epub] 20200213

RNA Viruses in Blechomonas (Trypanosomatidae) and Evolution of Leishmaniavirus

. 2018 Oct 16 ; 9 (5) : . [epub] 20181016

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...