Molecular mechanisms of thermal resistance of the insect trypanosomatid Crithidia thermophila
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
28328988
PubMed Central
PMC5362078
DOI
10.1371/journal.pone.0174165
PII: PONE-D-16-51048
Knihovny.cz E-zdroje
- MeSH
- biochemické jevy genetika MeSH
- Crithidia genetika MeSH
- exprese genu genetika MeSH
- hmyz genetika MeSH
- teplota MeSH
- transkriptom genetika MeSH
- upregulace genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
In the present work, we investigated molecular mechanisms governing thermal resistance of a monoxenous trypanosomatid Crithidia luciliae thermophila, which we reclassified as a separate species C. thermophila. We analyzed morphology, growth kinetics, and transcriptomic profiles of flagellates cultivated at low (23°C) and elevated (34°C) temperature. When maintained at high temperature, they grew significantly faster, became shorter, with genes involved in sugar metabolism and mitochondrial stress protection significantly upregulated. Comparison with another thermoresistant monoxenous trypanosomatid, Leptomonas seymouri, revealed dramatic differences in transcription profiles of the two species with only few genes showing the same expression pattern. This disparity illustrates differences in the biology of these two parasites and distinct mechanisms of their thermotolerance, a prerequisite for living in warm-blooded vertebrates.
Biology Centre Institute of Parasitology Czech Academy of Sciences České Budějovice Czech Republic
Canadian Institute for Advanced Research Toronto Ontario Canada
Department of Parasitology Faculty of Science Charles University Prague Czech Republic
Department of Pathology Albert Einstein College of Medicine Bronx New York United States of America
e Duve Institute Université Catholique de Louvain Brussels Belgium
Faculty of Sciences University of South Bohemia České Budějovice Czech Republic
Institute for Information Transmission Problems Russian Academy of Sciences Moscow Russia
Life Science Research Centre Faculty of Science University of Ostrava Ostrava Czech Republic
Zoological Institute of the Russian Academy of Sciences St Petersburg Russia
Zobrazit více v PubMed
Vickerman K (1976) Comparative cell biology of the kinetoplastid flagellates In: Vickerman K, Preston TM, editors. Biology of Kinetoplastida. London: Academic Press; pp. 35–130.
McGhee RB, Cosgrove WB. Biology and physiology of the lower Trypanosomatidae. Microbiol Rev. 1980; 44: 140–173. PubMed PMC
Yurchenko V, Kolesnikov AA. [Minicircular kinetoplast DNA of Trypanosomatidae]. Mol Biol (Mosk). 2001; 35: 3–13. PubMed
Vickerman K. The evolutionary expansion of the trypanosomatid flagellates. Int J Parasitol. 1994; 24: 1317–1331. PubMed
Rodrigues JC, Godinho JL, de Souza W. Biology of human pathogenic trypanosomatids: epidemiology, lifecycle and ultrastructure. Subcell Biochem. 2014; 74: 1–42. 10.1007/978-94-007-7305-9_1 PubMed DOI
Ready PD. Epidemiology of visceral leishmaniasis. Clin Epidemiol. 2014; 6: 147–154. 10.2147/CLEP.S44267 PubMed DOI PMC
Podlipaev SA. The more insect trypanosomatids under study-the more diverse Trypanosomatidae appears. Int J Parasitol. 2001; 31: 648–652. PubMed
Maslov DA, Votýpka J, Yurchenko V, Lukeš J. Diversity and phylogeny of insect trypanosomatids: all that is hidden shall be revealed. Trends Parasitol. 2013; 29: 43–52. 10.1016/j.pt.2012.11.001 PubMed DOI
Lukeš J, Skalický T, Týč J, Votýpka J, Yurchenko V. Evolution of parasitism in kinetoplastid flagellates. Mol Biochem Parasitol. 2014; 195: 115–122. 10.1016/j.molbiopara.2014.05.007 PubMed DOI
Hamilton PT, Votýpka J, Dostalova A, Yurchenko V, Bird NH, Lukeš J, et al. Infection dynamics and immune response in a newly described Drosophila-trypanosomatid association. MBio. 2015; 6: e01356–01315. 10.1128/mBio.01356-15 PubMed DOI PMC
Kozminsky E, Kraeva N, Ishemgulova A, Dobáková E, Lukeš J, Kment P, et al. Host-specificity of monoxenous trypanosomatids: statistical analysis of the distribution and transmission patterns of the parasites from Neotropical Heteroptera. Protist. 2015; 166: 551–568. 10.1016/j.protis.2015.08.004 PubMed DOI
Votýpka J, Klepetková H, Yurchenko VY, Horák A, Lukeš J, Maslov DA. Cosmopolitan distribution of a trypanosomatid Leptomonas pyrrhocoris. Protist. 2012; 163: 616–631. 10.1016/j.protis.2011.12.004 PubMed DOI
Kraeva N, Butenko A, Hlaváčová J, Kostygov A, Myškova J, Grybchuk D, et al. Leptomonas seymouri: adaptations to the dixenous life cycle analyzed by genome sequencing, transcriptome profiling and co-infection with Leishmania donovani PLoS Pathog. 2015; 11: e1005127 10.1371/journal.ppat.1005127 PubMed DOI PMC
Pacheco RS, Marzochi MC, Pires MQ, Brito CM, Madeira Md, Barbosa-Santos EG. Parasite genotypically related to a monoxenous trypanosomatid of dog's flea causing opportunistic infection in an HIV positive patient. Mem Inst Oswaldo Cruz. 1998; 93: 531–537. PubMed
Chicharro C, Alvar J. Lower trypanosomatids in HIV/AIDS patients. Ann Trop Med Parasitol. 2003; 97 Suppl 1: 75–78. PubMed
Wallace FG. The trypanosomatid parasites of insects and arachnids. Exp Parasitol. 1966; 18: 124–193. PubMed
Votýpka J, d'Avila-Levy CM, Grellier P, Maslov DA, Lukeš J, Yurchenko V. New approaches to systematics of Trypanosomatidae: criteria for taxonomic (re)description. Trends Parasitol. 2015; 31: 460–469. 10.1016/j.pt.2015.06.015 PubMed DOI
Yurchenko V, Lukeš J, Jirků M, Maslov DA. Selective recovery of the cultivation-prone components from mixed trypanosomatid infections: a case of several novel species isolated from Neotropical Heteroptera. Int J Syst Evol Microbiol. 2009; 59: 893–909. 10.1099/ijs.0.001149-0 PubMed DOI
Teixeira MM, Borghesan TC, Ferreira RC, Santos MA, Takata CS, Campaner M, et al. Phylogenetic validation of the genera Angomonas and Strigomonas of trypanosomatids harboring bacterial endosymbionts with the description of new species of trypanosomatids and of proteobacterial symbionts. Protist. 2011; 162: 503–524. 10.1016/j.protis.2011.01.001 PubMed DOI
Jirků M, Yurchenko VY, Lukeš J, Maslov DA. New species of insect trypanosomatids from Costa Rica and the proposal for a new subfamily within the Trypanosomatidae. J Eukaryot Microbiol. 2012; 59: 537–547. 10.1111/j.1550-7408.2012.00636.x PubMed DOI
Frolov AO, Malysheva MN, Yurchenko V, Kostygov AY. Back to monoxeny: Phytomonas nordicus descended from dixenous plant parasites. Eur J Protistol. 2016; 52: 1–10. 10.1016/j.ejop.2015.08.002 PubMed DOI
d'Avila-Levy CM, Boucinha C, Kostygov A, Santos HL, Morelli KA, Grybchuk-Ieremenko A, et al. Exploring the environmental diversity of kinetoplastid flagellates in the high-throughput DNA sequencing era. Mem Inst Oswaldo Cruz. 2015; 110: 956–965. 10.1590/0074-02760150253 PubMed DOI PMC
Votýpka J, Kostygov AY, Kraeva N, Grybchuk-Ieremenko A, Tesařová M, Grybchuk D, et al. Kentomonas gen. n., a new genus of endosymbiont-containing trypanosomatids of Strigomonadinae subfam. n. Protist. 2014; 165: 825–838. 10.1016/j.protis.2014.09.002 PubMed DOI
Du Y, Maslov DA, Chang KP. Monophyletic origin of beta-division proteobacterial endosymbionts and their coevolution with insect trypanosomatid protozoa Blastocrithidia culicis and Crithidia spp.. Proc Natl Acad Sci U S A. 1994; 91: 8437–8441. PubMed PMC
de Souza W, Motta MC. Endosymbiosis in protozoa of the Trypanosomatidae family. FEMS Microbiol Lett. 1999; 173: 1–8. PubMed
Freymuller E, Camargo EP. Ultrastructural differences between species of trypanosomatids with and without endosymbionts. J Protozool. 1981; 28: 175–182. PubMed
Hollar L, Lukeš J, Maslov DA. Monophyly of endosymbiont containing trypanosomatids: phylogeny versus taxonomy. J Eukaryot Microbiol. 1998; 45: 293–297. PubMed
Kostygov AY, Grybchuk-Ieremenko A, Malysheva MN, Frolov AO, Yurchenko V. Molecular revision of the genus Wallaceina. Protist. 2014; 165: 594–604. 10.1016/j.protis.2014.07.001 PubMed DOI
Gerasimov ES, Kostygov AY, Yan S, Kolesnikov AA. From cryptogene to gene? ND8 editing domain reduction in insect trypanosomatids. Eur J Protistol. 2012; 48: 185–193. 10.1016/j.ejop.2011.09.002 PubMed DOI
Yurchenko V, Votýpka J, Tesařová M, Klepetková H, Kraeva N, Jirků M, et al. Ultrastructure and molecular phylogeny of four new species of monoxenous trypanosomatids from flies (Diptera: Brachycera) with redefinition of the genus Wallaceina. Folia Parasitol. 2014; 61: 97–112. PubMed
Léger L. Sur un flagelle parasite de l'Anopheles maculipennis. Comp R Séances Soc Biol Ses Fil. 1902; 54: 354–356.
Laird M. Blastocrithidia n.g. (Mastigophora: Protomonadina) for Crithidia (in part), with a subarctic record for B. gerridis (Patton). Can J Zool. 1959; 37: 749–752.
Yurchenko V, Lukeš J, Tesařová M, Jirků M, Maslov DA. Morphological discordance of the new trypanosomatid species phylogenetically associated with the genus Crithidia. Protist. 2008; 159: 99–114. 10.1016/j.protis.2007.07.003 PubMed DOI
Merzlyak E, Yurchenko V, Kolesnikov AA, Alexandrov K, Podlipaev SA, Maslov DA. Diversity and phylogeny of insect trypanosomatids based on small subunit rRNA genes: polyphyly of Leptomonas and Blastocrithidia. J Eukaryot Microbiol. 2001; 48: 161–169. PubMed
De Sa MF, De Sa CM, Veronese MA, Filho SA, Gander ES. Morphologic and biochemical characterization of Crithidia brasiliensis sp. n. J Protozool. 1980; 27: 253–257. PubMed
McGhee RB. The infection of avian embryos with Crithidia species and Leishmania tarentola. J Infect Dis. 1959; 105: 18–25. PubMed
Roitman C, Roitman I, de Azevedo HP. Growth of an insect trypanosomatid at 37°C in a defined medium. J Protozool. 1972; 19: 346–349. PubMed
Roitman I, Mundim MH, De Azevedo HP, Kitajima EW. Growth of Crithidia at high temperature: Crithidia hutneri sp. n. and Crithidia luciliae thermophila s. sp. n. J Protozool. 1977; 24: 553–556.
Wallace FG, Camargo EP, McGhee RB, Roitman I. Guidelines for the description of new species of lower trypanosomatids. J Eukaryot Microbiol. 1983; 30: 308–313.
d'Avila-Levy CM, Yurchenko V, Votýpka J, Grellier P. Protist collections: essential for future research. Trends Parasitol. 2016; 32: 840–842. 10.1016/j.pt.2016.08.001 PubMed DOI
Yurchenko V, Kostygov A, Havlová J, Grybchuk-Ieremenko A, Ševčíková T, Lukeš J, et al. Diversity of trypanosomatids in cockroaches and the description of Herpetomonas tarakana sp. n. J Eukaryot Microbiol. 2016; 63 198–209. 10.1111/jeu.12268 PubMed DOI
Yurchenko V, Lukeš J, Xu X, Maslov DA. An integrated morphological and molecular approach to a new species description in the Trypanosomatidae: the case of Leptomonas podlipaevi n. sp., a parasite of Boisea rubrolineata (Hemiptera: Rhopalidae). J Eukaryot Microbiol. 2006; 53: 103–111. 10.1111/j.1550-7408.2005.00078.x PubMed DOI
Maslov DA, Lukeš J, Jirků M, Simpson L. Phylogeny of trypanosomes as inferred from the small and large subunit rRNAs: implications for the evolution of parasitism in the trypanosomatid protozoa. Mol Biochem Parasitol. 1996; 75: 197–205. PubMed
Westenberger SJ, Sturm NR, Yanega D, Podlipaev SA, Zeledon R, Campbell DA, et al. Trypanosomatid biodiversity in Costa Rica: genotyping of parasites from Heteroptera using the spliced leader RNA gene. Parasitology. 2004; 129: 537–547. PubMed
Hamilton PB, Stevens JR, Gaunt MW, Gidley J, Gibson WC. Trypanosomes are monophyletic: evidence from genes for glyceraldehyde phosphate dehydrogenase and small subunit ribosomal RNA. Int J Parasitol. 2004; 34: 1393–1404. 10.1016/j.ijpara.2004.08.011 PubMed DOI
Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser. 1999; 41: 95–98.
Jobb G (2011) TREEFINDER. March 2011 ed. Munich, Germany.
Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S, et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012; 61: 539–542. 10.1093/sysbio/sys029 PubMed DOI PMC
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014; 30: 2114–2120. 10.1093/bioinformatics/btu170 PubMed DOI PMC
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011; 29: 644–652. 10.1038/nbt.1883 PubMed DOI PMC
Robinson MD, Smyth GK. Small-sample estimation of negative binomial dispersion, with applications to SAGE data. Biostatistics. 2008; 9: 321–332. 10.1093/biostatistics/kxm030 PubMed DOI
Emms DM, Kelly S. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol. 2015; 16: 157 10.1186/s13059-015-0721-2 PubMed DOI PMC
Aslett M, Aurrecoechea C, Berriman M, Brestelli J, Brunk BP, Carrington M, et al. TriTrypDB: a functional genomic resource for the Trypanosomatidae. Nucleic Acids Res. 2010; 38: D457–462. 10.1093/nar/gkp851 PubMed DOI PMC
Clark CG. Riboprinting: a tool for the study of genetic diversity in microorganisms. J Eukaryot Microbiol. 1997; 44: 277–283. PubMed
Wallace FG, Clark TB. Flagellate parasites of the fly, Phaenicia sericata (Meigen). J Protozool. 1959; 6: 58–61.
Strickland C. Description of a Herpetomonas parasitic in the alimentary tract of the common green-bottle fly, Lucilia sp. Parasitology. 1911; 4: 222.
Lahav T, Sivam D, Volpin H, Ronen M, Tsigankov P, Green A, et al. Multiple levels of gene regulation mediate differentiation of the intracellular pathogen Leishmania. FASEB J. 2011; 25: 515–525. 10.1096/fj.10-157529 PubMed DOI PMC
Balogh G, Peter M, Glatz A, Gombos I, Torok Z, Horvath I, et al. Key role of lipids in heat stress management. FEBS Lett. 2013; 587: 1970–1980. 10.1016/j.febslet.2013.05.016 PubMed DOI
Opperdoes FR, Butenko A, Flegontov P, Yurchenko V, Lukeš J. Comparative metabolism of free-living Bodo saltans and parasitic trypanosomatids. J Eukaryot Microbiol. 2016; 63: 657–678. 10.1111/jeu.12315 PubMed DOI
Verner Z, Čermáková P, Škodová I, Kováčová B, Lukeš J, Horváth A. Comparative analysis of respiratory chain and oxidative phosphorylation in Leishmania tarentolae, Crithidia fasciculata, Phytomonas serpens and procyclic stage of Trypanosoma brucei. Mol Biochem Parasitol. 2014; 193: 55–65. 10.1016/j.molbiopara.2014.02.003 PubMed DOI
Škodová-Sveráková I, Verner Z, Skalický T, Votýpka J, Horváth A, Lukeš J. Lineage-specific activities of a multipotent mitochondrion of trypanosomatid flagellates. Mol Microbiol. 2015; 96: 55–67. 10.1111/mmi.12920 PubMed DOI
Lacomble S, Portman N, Gull K. A protein-protein interaction map of the Trypanosoma brucei paraflagellar rod. PLoS One. 2009; 4: e7685 10.1371/journal.pone.0007685 PubMed DOI PMC
Hughes LC, Ralston KS, Hill KL, Zhou ZH. Three-dimensional structure of the Trypanosome flagellum suggests that the paraflagellar rod functions as a biomechanical spring. PLoS One. 2012; 7: e25700 10.1371/journal.pone.0025700 PubMed DOI PMC
Portman N, Gull K. The paraflagellar rod of kinetoplastid parasites: from structure to components and function. Int J Parasitol. 2010; 40: 135–148. 10.1016/j.ijpara.2009.10.005 PubMed DOI PMC
Docampo R, Moreno SN, Plattner H. Intracellular calcium channels in protozoa. Eur J Pharmacol. 2014; 739: 4–18. 10.1016/j.ejphar.2013.11.015 PubMed DOI PMC
Voos W, Rottgers K. Molecular chaperones as essential mediators of mitochondrial biogenesis. Biochim Biophys Acta. 2002; 1592: 51–62. PubMed
Dutkiewicz R, Schilke B, Knieszner H, Walter W, Craig EA, Marszalek J. Ssq1, a mitochondrial Hsp70 involved in iron-sulfur (Fe/S) center biogenesis. Similarities to and differences from its bacterial counterpart. J Biol Chem. 2003; 278: 29719–29727. 10.1074/jbc.M303527200 PubMed DOI
Liu Q, D'Silva P, Walter W, Marszalek J, Craig EA. Regulated cycling of mitochondrial Hsp70 at the protein import channel. Science. 2003; 300: 139–141. 10.1126/science.1083379 PubMed DOI
Tschopp F, Charriere F, Schneider A. In vivo study in Trypanosoma brucei links mitochondrial transfer RNA import to mitochondrial protein import. EMBO Rep. 2011; 12: 825–832. 10.1038/embor.2011.111 PubMed DOI PMC
Týč J, Klingbeil MM, Lukeš J. Mitochondrial heat shock protein machinery hsp70/hsp40 is indispensable for proper mitochondrial DNA maintenance and replication. MBio. 2015; 6. PubMed PMC
Krauth-Siegel RL, Comini MA. Redox control in trypanosomatids, parasitic protozoa with trypanothione-based thiol metabolism. Biochim Biophys Acta. 2008; 1780: 1236–1248. 10.1016/j.bbagen.2008.03.006 PubMed DOI
Vickers TJ, Fairlamb AH. Trypanothione S-transferase activity in a trypanosomatid ribosomal elongation factor 1B. J Biol Chem. 2004; 279: 27246–27256. 10.1074/jbc.M311039200 PubMed DOI PMC
Fairlamb AH, Blackburn P, Ulrich P, Chait BT, Cerami A. Trypanothione: a novel bis(glutathionyl)spermidine cofactor for glutathione reductase in trypanosomatids. Science. 1985; 227: 1485–1487. PubMed
Tomás AM, Castro H. Redox metabolism in mitochondria of trypanosomatids. Antioxid Redox Signal. 2013; 19: 696–707. 10.1089/ars.2012.4948 PubMed DOI PMC
Kraeva N, Horáková E, Kostygov A, Kořený L, Butenko A, Yurchenko V, et al. Catalase in Leishmaniinae: With me or against me? Infect Genet Evol. 2017; (in press). PubMed
Diversity of RNA viruses in the cosmopolitan monoxenous trypanosomatid Leptomonas pyrrhocoris
The Roles of Mosquitoes in the Circulation of Monoxenous Trypanosomatids in Temperate Climates
Catalase impairs Leishmania mexicana development and virulence
Genomics of Trypanosomatidae: Where We Stand and What Needs to Be Done?
Catalase and Ascorbate Peroxidase in Euglenozoan Protists
RNA Viruses in Blechomonas (Trypanosomatidae) and Evolution of Leishmaniavirus