Genome of Ca. Pandoraea novymonadis, an Endosymbiotic Bacterium of the Trypanosomatid Novymonas esmeraldas
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
29046673
PubMed Central
PMC5632650
DOI
10.3389/fmicb.2017.01940
Knihovny.cz E-zdroje
- Klíčová slova
- Pandoraea, Trypanosomatidae, bacterial endosymbiont, metabolism, phylogenomics,
- Publikační typ
- časopisecké články MeSH
We have sequenced, annotated, and analyzed the genome of Ca. Pandoraea novymonadis, a recently described bacterial endosymbiont of the trypanosomatid Novymonas esmeraldas. When compared with genomes of its free-living relatives, it has all the hallmarks of the endosymbionts' genomes, such as significantly reduced size, extensive gene loss, low GC content, numerous gene rearrangements, and low codon usage bias. In addition, Ca. P. novymonadis lacks mobile elements, has a strikingly low number of pseudogenes, and almost all genes are single copied. This suggests that it already passed the intensive period of host adaptation, which still can be observed in the genome of Polynucleobacter necessarius, a certainly recent endosymbiont. Phylogenetically, Ca. P. novymonadis is more related to P. necessarius, an intracytoplasmic bacterium of free-living ciliates, than to Ca. Kinetoplastibacterium spp., the only other known endosymbionts of trypanosomatid flagellates. As judged by the extent of the overall genome reduction and the loss of particular metabolic abilities correlating with the increasing dependence of the symbiont on its host, Ca. P. novymonadis occupies an intermediate position P. necessarius and Ca. Kinetoplastibacterium spp. We conclude that the relationships between Ca. P. novymonadis and N. esmeraldas are well-established, although not as fine-tuned as in the case of Strigomonadinae and their endosymbionts.
Biology Centre Institute of Parasitology Czech Academy of Sciences České Budějovice Czechia
Faculty of Sciences University of South Bohemia České Budějovice Czechia
Institute for Information Transmission Problems Russian Academy of Sciences Moscow Russia
Institute of Environmental Technologies Faculty of Science University of Ostrava Ostrava Czechia
Life Science Research Centre Faculty of Science University of Ostrava Ostrava Czechia
Zoological Institute of the Russian Academy of Sciences St Petersburg Russia
Zobrazit více v PubMed
Akhter S., Aziz R. K., Edwards R. A. (2012). PhiSpy: a novel algorithm for finding prophages in bacterial genomes that combines similarity- and composition-based strategies. Nucleic Acids Res. 40 e126 10.1093/nar/gks406 PubMed DOI PMC
Alves J. M., Klein C. C., da Silva F. M., Costa-Martins A. G., Serrano M. G., Buck G. A., et al. (2013a). Endosymbiosis in trypanosomatids: the genomic cooperation between bacterium and host in the synthesis of essential amino acids is heavily influenced by multiple horizontal gene transfers. BMC Evol. Biol. 13:190 10.1186/1471-2148-13-190 PubMed DOI PMC
Alves J. M., Serrano M. G., Maia, da Silva F., Voegtly L. J., Matveyev A. V.et al. (2013b). Genome evolution and phylogenomic analysis of Candidatus Kinetoplastibacterium, the betaproteobacterial endosymbionts of Strigomonas and Angomonas. Genome Biol. Evol. 5 338–350. 10.1093/gbe/evt012 PubMed DOI PMC
Alves J. M., Voegtly L., Matveyev A. V., Lara A. M., da Silva F. M., Serrano M. G., et al. (2011). Identification and phylogenetic analysis of heme synthesis genes in trypanosomatids and their bacterial endosymbionts. PLOS ONE 6:e23518 10.1371/journal.pone.0023518 PubMed DOI PMC
Alves J. M. (2017). “Amino acid biosynthesis in endosymbiont-harbouring Trypanosomatidae,” in The Handbook of Microbial Metabolism of Amino Acids ed. D’Mello J. P. F. (Oxfordshire: CAB International; ) 371–383.
Anandham R., Indiragandhi P., Kwon S. W., Sa T. M., Jeon C. O., Kim Y. K., et al. (2010). Pandoraea thiooxydans sp. nov., a facultatively chemolithotrophic, thiosulfate-oxidizing bacterium isolated from rhizosphere soils of sesame (Sesamum indicum L.). Int. J. Syst. Evol. Microbiol. 60(Pt 1) 21–26. 10.1099/ijs.0.012823-0 PubMed DOI
Arndt D., Grant J. R., Marcu A., Sajed T., Pon A., Liang Y., et al. (2016). PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res. 44 W16–W21. 10.1093/nar/gkw387 PubMed DOI PMC
Arpigny J. L., Jaeger K. E. (1999). Bacterial lipolytic enzymes: classification and properties. Biochem. J. 343(Pt 1) 177–183. 10.1042/bj3430177 PubMed DOI PMC
Bankevich A., Nurk S., Antipov D., Gurevich A. A., Dvorkin M., Kulikov A. S., et al. (2012). SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19 455–477. 10.1089/cmb.2012.0021 PubMed DOI PMC
Barry A., Bryskier A., Traczewski M., Brown S. (2004). Preparation of stock solutions of macrolide and ketolide compounds for antimicrobial susceptibility tests. Clin. Microbiol. Infect. 10 78–83. 10.1111/j.1469-0691.2004.00759.x PubMed DOI
Boscaro V., Felletti M., Vannini C., Ackerman M. S., Chain P. S., Malfatti S., et al. (2013). Polynucleobacter necessarius, a model for genome reduction in both free-living and symbiotic bacteria. Proc. Natl. Acad. Sci. U.S.A. 110 18590–18595. 10.1073/pnas.1316687110 PubMed DOI PMC
Boscaro V., Kolisko M., Felletti M., Vannini C., Lynn D. H., Keeling P. J. (2017). Parallel genome reduction in symbionts descended from closely related free-living bacteria. Nat. Ecol. Evol. 1 1160–1167. 10.1038/s41559-017-0237-0 PubMed DOI
Botzman M., Margalit H. (2011). Variation in global codon usage bias among prokaryotic organisms is associated with their lifestyles. Genome Biol. 12:R109 10.1186/gb-2011-12-10-r109 PubMed DOI PMC
Burke G. R., Moran N. A. (2011). Massive genomic decay in Serratia symbiotica, a recently evolved symbiont of aphids. Genome Biol. Evol. 3 195–208. 10.1093/gbe/evr002 PubMed DOI PMC
Camacho C., Coulouris G., Avagyan V., Ma N., Papadopoulos J., Bealer K., et al. (2009). BLAST+: architecture and applications. BMC Bioinformatics 10:421 10.1186/1471-2105-10-421 PubMed DOI PMC
Carryn S., Chanteux H., Seral C., Mingeot-Leclercq M. P., Van Bambeke F., Tulkens P. M. (2003). Intracellular pharmacodynamics of antibiotics. Infect. Dis. Clin. North Am. 17 615–634. 10.1016/S0891-5520(03)00066-7 PubMed DOI
Catta-Preta C. M., Brum F. L., da Silva C. C., Zuma A. A., Elias M. C., de Souza W., et al. (2015). Endosymbiosis in trypanosomatid protozoa: the bacterium division is controlled during the host cell cycle. Front. Microbiol. 6:520 10.3389/fmicb.2015.00520 PubMed DOI PMC
Coenye T., Falsen E., Hoste B., Ohlen M., Goris J., Govan J. R., et al. (2000). Description of Pandoraea gen. nov. with Pandoraea apista sp. nov., Pandoraea pulmonicola sp. nov., Pandoraea pnomenusa sp. nov., Pandoraea sputorum sp. nov. and Pandoraea norimbergensis comb. nov. Int. J. Syst. Evol. Microbiol. 50(Pt 2) 887–899. 10.1099/00207713-50-2-887 PubMed DOI
Csuros M. (2010). Count: evolutionary analysis of phylogenetic profiles with parsimony and likelihood. Bioinformatics 26 1910–1912. 10.1093/bioinformatics/btq315 PubMed DOI
de Souza W., Motta M. C. (1999). Endosymbiosis in protozoa of the Trypanosomatidae family. FEMS Microbiol. Lett. 173 1–8. 10.1111/j.1574-6968.1999.tb13477.x PubMed DOI
Deutscher J., Ake F. M., Derkaoui M., Zebre A. C., Cao T. N., Bouraoui H., et al. (2014). The bacterial phosphoenolpyruvate:carbohydrate phosphotransferase system: regulation by protein phosphorylation and phosphorylation-dependent protein-protein interactions. Microbiol. Mol. Biol. Rev. 78 231–256. 10.1128/MMBR.00001-14 PubMed DOI PMC
Du Y., Maslov D. A., Chang K. P. (1994). Monophyletic origin of beta-division proteobacterial endosymbionts and their coevolution with insect trypanosomatid protozoa Blastocrithidia culicis and Crithidia spp. Proc. Natl. Acad. Sci. U.S.A. 91 8437–8441. 10.1073/pnas.91.18.8437 PubMed DOI PMC
Emms D. M., Kelly S. (2015). OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol. 16 157 10.1186/s13059-015-0721-2 PubMed DOI PMC
Feng Y., Cronan J. E. (2009). Escherichia coli unsaturated fatty acid synthesis: complex transcription of the fabA gene and in vivo identification of the essential reaction catalyzed by FabB. J. Biol. Chem. 284 29526–29535. 10.1074/jbc.M109.023440 PubMed DOI PMC
Flegontov P., Butenko A., Firsov S., Kraeva N., Eliáš M., Field M. C., et al. (2016). Genome of Leptomonas pyrrhocoris: a high-quality reference for monoxenous trypanosomatids and new insights into evolution of Leishmania. Sci. Rep. 6:23704 10.1038/srep23704 PubMed DOI PMC
Graff A., Stubner S. (2003). Isolation and molecular characterization of thiosulfate-oxidizing bacteria from an Italian rice field soil. Syst. Appl. Microbiol. 26 445–452. 10.1078/072320203322497482 PubMed DOI
Gurevich A., Saveliev V., Vyahhi N., Tesler G. (2013). QUAST: quality assessment tool for genome assemblies. Bioinformatics 29 1072–1075. 10.1093/bioinformatics/btt086 PubMed DOI PMC
Janssen H. J., Steinbuchel A. (2014). Fatty acid synthesis in Escherichia coli and its applications towards the production of fatty acid based biofuels. Biotechnol. Biofuels 7:7 10.1186/1754-6834-7-7 PubMed DOI PMC
Jeong S. E., Lee H. J., Jia B., Jeon C. O. (2016). Pandoraea terrae sp. nov., isolated from forest soil, and emended description of the genus Pandoraea Coenye et al., 2000. Int. J. Syst. Evol. Microbiol. 66 3524–3530. 10.1099/ijsem.0.001229 PubMed DOI
Kalyaanamoorthy S., Minh B. Q., Wong T. K. F., von Haeseler A., Jermiin L. S. (2017). ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14 587–589. 10.1038/nmeth.4285 PubMed DOI PMC
Kanehisa M. (2017). Enzyme annotation and metabolic reconstruction using KEGG. Methods Mol. Biol. 1611 135–145. 10.1007/978-1-4939-7015-5_11 PubMed DOI
Kanehisa M., Sato Y., Morishima K. (2016). BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J. Mol. Biol. 428 726–731. 10.1016/j.jmb.2015.11.006 PubMed DOI
Katoh K., Standley D. M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30 772–780. 10.1093/molbev/mst010 PubMed DOI PMC
Kawai Y., Maeda Y. (2009). GC-content of tRNA genes classifies archaea into two groups. J. Gen. Appl. Microbiol. 55 403–408. 10.2323/jgam.55.403 PubMed DOI
Klein C. C., Alves J. M., Serrano M. G., Buck G. A., Vasconcelos A. T., Sagot M. F., et al. (2013). Biosynthesis of vitamins and cofactors in bacterium-harbouring trypanosomatids depends on the symbiotic association as revealed by genomic analyses. PLOS ONE 8:e79786 10.1371/journal.pone.0079786 PubMed DOI PMC
Kořený L., Sobotka R., Kovářová J., Gnipová A., Flegontov P., Horváth A., et al. (2012). Aerobic kinetoplastid flagellate Phytomonas does not require heme for viability. Proc. Natl. Acad. Sci. U.S.A. 109 3808–3813. 10.1073/pnas.1201089109 PubMed DOI PMC
Kostygov A. Y., Dobaková E., Grybchuk-Ieremenko A., Váhala D., Maslov D. A., Votýpka J., et al. (2016). Novel trypanosomatid-bacterium association: evolution of endosymbiosis in action. mBio 7:e01985-15 10.1128/mBio.01985-15 PubMed DOI PMC
Kumar M., Singh J., Singh M. K., Singhal A., Thakur I. S. (2015). Investigating the degradation process of kraft lignin by beta-proteobacterium, Pandoraea sp. ISTKB. Environ. Sci. Pollut. Res. Int. 22 15690–15702. 10.1007/s11356-015-4771-5 PubMed DOI
Kumar S., Stecher G., Tamura K. (2016). MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33 1870–1874. 10.1093/molbev/msw054 PubMed DOI PMC
Langmead B., Salzberg S. L. (2012). Fast gapped-read alignment with Bowtie 2. Nat. Methods 9 357–359. 10.1038/nmeth.1923 PubMed DOI PMC
Liz J. A. Z. E., Jan-Roblero J., de la Serna J. Z. D., de Leon A. V. P., Hernandez-Rodriguez C. (2009). Degradation of polychlorinated biphenyl (PCB) by a consortium obtained from a contaminated soil composed of Brevibacterium, Pandoraea and Ochrobactrum. World J. Microbiol. Biotechnol. 25 165–170. 10.1007/s11274-008-9875-3 DOI
Massengo-Tiassé R. P., Cronan J. E. (2009). Diversity in enoyl-acyl carrier protein reductases. Cell. Mol. Life Sci. 66 1507–1517. 10.1007/s00018-009-8704-7 PubMed DOI PMC
Maurin M., Raoult D. (2001). Use of aminoglycosides in treatment of infections due to intracellular bacteria. Antimicrob. Agents Chemother. 45 2977–2986. 10.1128/AAC.45.11.2977-2986.2001 PubMed DOI PMC
McCutcheon J. P., Moran N. A. (2011). Extreme genome reduction in symbiotic bacteria. Nat. Rev. Microbiol. 10 13–26. 10.1038/nrmicro2670 PubMed DOI
Meincke L., Copeland A., Lapidus A., Lucas S., Berry K. W., Del Rio T. G., et al. (2012). Complete genome sequence of Polynucleobacter necessarius subsp. asymbioticus type strain (QLW-P1DMWA-1T). Stand. Genomic Sci. 6 74–83. 10.4056/sigs.2395367 PubMed DOI PMC
Minh B. Q., Nguyen M. A., von Haeseler A. (2013). Ultrafast approximation for phylogenetic bootstrap. Mol. Biol. Evol. 30 1188–1195. 10.1093/molbev/mst024 PubMed DOI PMC
Moran N. A., McCutcheon J. P., Nakabachi A. (2008). Genomics and evolution of heritable bacterial symbionts. Annu. Rev. Genet. 42 165–190. 10.1146/annurev.genet.41.110306.130119 PubMed DOI
Mormann S., Lomker A., Ruckert C., Gaigalat L., Tauch A., Puhler A., et al. (2006). Random mutagenesis in Corynebacterium glutamicum ATCC 13032 using an IS6100-based transposon vector identified the last unknown gene in the histidine biosynthesis pathway. BMC Genomics 7:205 10.1186/1471-2164-7-205 PubMed DOI PMC
Motta M. C., Catta-Preta C. M., Schenkman S., de Azevedo Martins A. C., Miranda K., de Souza W., et al. (2010). The bacterium endosymbiont of Crithidia deanei undergoes coordinated division with the host cell nucleus. PLOS ONE 5:e12415 10.1371/journal.pone.0012415 PubMed DOI PMC
Motta M. C., Soares M. J., Attias M., Morgado J., Lemos A. P., Saad-Nehme J., et al. (1997). Ultrastructural and biochemical analysis of the relationship of Crithidia deanei with its endosymbiont. Eur. J. Cell Biol. 72 370–377. PubMed
Moya A., Pereto J., Gil R., Latorre A. (2008). Learning how to live together: genomic insights into prokaryote-animal symbioses. Nat. Rev. Genet. 9 218–229. 10.1038/nrg2319 PubMed DOI
Nguyen L. T., Schmidt H. A., von Haeseler A., Minh B. Q. (2015). IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32 268–274. 10.1093/molbev/msu300 PubMed DOI PMC
Nourbakhsh A., Collakova E., Gillaspy G. E. (2014). Characterization of the inositol monophosphatase gene family in Arabidopsis. Front. Plant Sci. 5:725 10.3389/fpls.2014.00725 PubMed DOI PMC
Nowack E. C., Melkonian M. (2010). Endosymbiotic associations within protists. Philos. Trans. R. Soc. Lond. B Biol. Sci. 365 699–712. 10.1098/rstb.2009.0188 PubMed DOI PMC
Ochman H., Davalos L. M. (2006). The nature and dynamics of bacterial genomes. Science 311 1730–1733. 10.1126/science.1119966 PubMed DOI
Okeke B. C., Siddique T., Arbestain M. C., Frankenberger W. T. (2002). Biodegradation of gamma-hexachlorocyclohexane (lindane) and alpha-hexachlorocyclohexane in water and a soil slurry by a Pandoraea species. J. Agric. Food Chem. 50 2548–2555. 10.1021/jf011422a PubMed DOI
Opperdoes F. R., Butenko A., Flegontov P., Yurchenko V., Lukes J. (2016). Comparative metabolism of free-living Bodo saltans and parasitic trypanosomatids. J. Eukaryot. Microbiol. 63 657–678. 10.1111/jeu.12315 PubMed DOI
Ozaki S., Kishimoto N., Fujita T. (2007). Change in the predominant bacteria in a microbial consortium cultured on media containing aromatic and saturated hydrocarbons as the sole carbon source. Microbes Environ. 22 128–135. 10.1264/Jsme2.22.128 DOI
Petersen L. N., Marineo S., Mandala S., Davids F., Sewell B. T., Ingle R. A. (2010). The missing link in plant histidine biosynthesis: Arabidopsis myoinositol monophosphatase-like2 encodes a functional histidinol-phosphate phosphatase. Plant Physiol. 152 1186–1196. 10.1104/pp.109.150805 PubMed DOI PMC
Petersen T. N., Brunak S., von Heijne G., Nielsen H. (2011). SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat. Methods 8 785–786. 10.1038/nmeth.1701 PubMed DOI
Quinlan A. R., Hall I. M. (2010). BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26 841–842. 10.1093/bioinformatics/btq033 PubMed DOI PMC
Rice P., Longden I., Bleasby A. (2000). EMBOSS: the European molecular biology open software suite. Trends Genet. 16 276–277. 10.1016/S0168-9525(00)02024-2 PubMed DOI
Ronquist F., Teslenko M., van der Mark P., Ayres D. L., Darling A., Hohna S., et al. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61 539–542. 10.1093/sysbio/sys029 PubMed DOI PMC
Rutherford K., Parkhill J., Crook J., Horsnell T., Rice P., Rajandream M. A., et al. (2000). Artemis: sequence visualization and annotation. Bioinformatics 16 944–945. 10.1093/bioinformatics/16.10.944 PubMed DOI
Sahin N., Tani A., Kotan R., Sedlacek I., Kimbara K., Tamer A. U. (2011). Pandoraea oxalativorans sp. nov. Pandoraea faecigallinarum sp. nov. and Pandoraea vervacti sp. nov., isolated from oxalate-enriched culture. Int. J. Syst. Evol. Microbiol. 61(Pt 9) 2247–2253. 10.1099/ijs.0.026138-0 PubMed DOI
Saier M. H., Jr. (2015). The bacterial phosphotransferase system: new frontiers 50 years after its discovery. J. Mol. Microbiol. Biotechnol. 25 73–78. 10.1159/000381215 PubMed DOI PMC
Seemann T. (2014). Prokka: rapid prokaryotic genome annotation. Bioinformatics 30 2068–2069. 10.1093/bioinformatics/btu153 PubMed DOI
Sharp P. M., Bailes E., Grocock R. J., Peden J. F., Sockett R. E. (2005). Variation in the strength of selected codon usage bias among bacteria. Nucleic Acids Res. 33 1141–1153. 10.1093/nar/gki242 PubMed DOI PMC
Sharp P. M., Emery L. R., Zeng K. (2010). Forces that influence the evolution of codon bias. Philos. Trans. R. Soc. Lond. B Biol. Sci. 365 1203–1212. 10.1098/rstb.2009.0305 PubMed DOI PMC
Sharp P. M., Tuohy T. M., Mosurski K. R. (1986). Codon usage in yeast: cluster analysis clearly differentiates highly and lowly expressed genes. Nucleic Acids Res. 14 5125–5143. 10.1093/nar/14.13.5125 PubMed DOI PMC
Simão F. A., Waterhouse R. M., Ioannidis P., Kriventseva E. V., Zdobnov E. M. (2015). BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31 3210–3212. 10.1093/bioinformatics/btv351 PubMed DOI
Soderlund C., Bomhoff M., Nelson W. M. (2011). SyMAP v3.4: a turnkey synteny system with application to plant genomes. Nucleic Acids Res. 39 e68 10.1093/nar/gkr123 PubMed DOI PMC
Soding J., Biegert A., Lupas A. N. (2005). The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res. 33 W244–W248. 10.1093/nar/gki408 PubMed DOI PMC
Stryjewski M. E., LiPuma J. J., Messier R. H., Reller L. B., Alexander B. D. (2003). Sepsis, multiple organ failure, and death due to Pandoraea pnomenusa infection after lung transplantation. J. Clin. Microbiol. 41 2255–2257. 10.1128/Jcm.41.5.2255-2257.2003 PubMed DOI PMC
Teixeira M. M., Borghesan T. C., Ferreira R. C., Santos M. A., Takata C. S., Campaner M., et al. (2011). Phylogenetic validation of the genera Angomonas and Strigomonas of trypanosomatids harboring bacterial endosymbionts with the description of new species of trypanosomatids and of proteobacterial symbionts. Protist 162 503–524. 10.1016/j.protis.2011.01.001 PubMed DOI
Toh H., Weiss B. L., Perkin S. A., Yamashita A., Oshima K., Hattori M., et al. (2006). Massive genome erosion and functional adaptations provide insights into the symbiotic lifestyle of Sodalis glossinidius in the tsetse host. Genome Res. 16 149–156. 10.1101/gr.4106106 PubMed DOI PMC
Vannini C., Ferrantini F., Ristori A., Verni F., Petroni G. (2012). Betaproteobacterial symbionts of the ciliate Euplotes: origin and tangled evolutionary path of an obligate microbial association. Environ. Microbiol. 14 2553–2563. 10.1111/j.1462-2920.2012.02760.x PubMed DOI
Vannini C., Ferrantini F., Verni F., Petroni G. (2013). A new obligate bacterial symbiont colonizing the ciliate Euplotes in brackish and freshwater: ‘Candidatus Protistobacter heckmanni’. Aquat. Microb. Ecol. 70 233–243. 10.3354/ame01657 DOI
Vannini C., Pockl M., Petroni G., Wu Q. L., Lang E., Stackebrandt E., et al. (2007). Endosymbiosis in statu nascendi: close phylogenetic relationship between obligately endosymbiotic and obligately free-living Polynucleobacter strains (Betaproteobacteria). Environ. Microbiol. 9 347–359. 10.1111/j.1462-2920.2006.01144.x PubMed DOI
Votýpka J., Kostygov A. Y., Kraeva N., Grybchuk-Ieremenko A., Tesařová M., Grybchuk D., et al. (2014). Kentomonas gen. n., a new genus of endosymbiont-containing trypanosomatids of Strigomonadinae subfam. n. Protist 165 825–838. 10.1016/j.protis.2014.09.002 PubMed DOI
Zhu L., Bi H., Ma J., Hu Z., Zhang W., Cronan J. E., et al. (2013). The two functional enoyl-acyl carrier protein reductases of Enterococcus faecalis do not mediate triclosan resistance. mBio 4:e00613-13 10.1128/mBio.00613-13 PubMed DOI PMC
Zientz E., Dandekar T., Gross R. (2004). Metabolic interdependence of obligate intracellular bacteria and their insect hosts. Microbiol. Mol. Biol. Rev. 68 745–770. 10.1128/MMBR.68.4.745-770.2004 PubMed DOI PMC
Multiple and frequent trypanosomatid co-infections of insects: the Cuban case study
Genomics of Trypanosomatidae: Where We Stand and What Needs to Be Done?
Differences in mitochondrial NADH dehydrogenase activities in trypanosomatids
Editorial: Symbioses Between Protists and Bacteria/Archaea