Endosymbiont Capture, a Repeated Process of Endosymbiont Transfer with Replacement in Trypanosomatids Angomonas spp
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
20-07186S
Grantová Agentura České Republiky
CZ.02.1.01/16_019/0000759
European Regional Development Fund
SGS/PrF/2021
Ostravská Univerzita v Ostravě
АААА-А19-119031390116-9
State Assignment for ZIN RAS
R01 AI050196
NIAID NIH HHS - United States
PubMed
34200026
PubMed Central
PMC8229890
DOI
10.3390/pathogens10060702
PII: pathogens10060702
Knihovny.cz E-zdroje
- Klíčová slova
- Angomonas, Trypanosomatidae, bacterial endosymbionts, genome,
- Publikační typ
- časopisecké články MeSH
Trypanosomatids of the subfamily Strigomonadinae bear permanent intracellular bacterial symbionts acquired by the common ancestor of these flagellates. However, the cospeciation pattern inherent to such relationships was revealed to be broken upon the description of Angomonas ambiguus, which is sister to A. desouzai, but bears an endosymbiont genetically close to that of A. deanei. Based on phylogenetic inferences, it was proposed that the bacterium from A. deanei had been horizontally transferred to A. ambiguus. Here, we sequenced the bacterial genomes from two A. ambiguus isolates, including a new one from Papua New Guinea, and compared them with the published genome of the A. deanei endosymbiont, revealing differences below the interspecific level. Our phylogenetic analyses confirmed that the endosymbionts of A. ambiguus were obtained from A. deanei and, in addition, demonstrated that this occurred more than once. We propose that coinfection of the same blowfly host and the phylogenetic relatedness of the trypanosomatids facilitate such transitions, whereas the drastic difference in the occurrence of the two trypanosomatid species determines the observed direction of this process. This phenomenon is analogous to organelle (mitochondrion/plastid) capture described in multicellular organisms and, thereafter, we name it endosymbiont capture.
Faculty of Sciences University of South Bohemia 370 05 České Budějovice Czech Republic
Life Science Research Centre Faculty of Science University of Ostrava 710 00 Ostrava Czech Republic
Martsinovsky Institute of Medical Parasitology Sechenov University 119435 Moscow Russia
Wellcome Sanger Institute Wellcome Genome Campus Hinxton Cambridge CB10 1SA UK
Zoological Institute of the Russian Academy of Sciences 199034 St Petersburg Russia
Zobrazit více v PubMed
Kostygov A.Y., Karnkowska A., Votýpka J., Tashyreva D., Maciszewski K., Yurchenko V., Lukeš J. Euglenozoa: Taxonomy, diversity and ecology, symbioses and viruses. Open Biol. 2021;11:200407. doi: 10.1098/rsob.200407. PubMed DOI PMC
Lukeš J., Butenko A., Hashimi H., Maslov D.A., Votýpka J., Yurchenko V. Trypanosomatids are much more than just trypanosomes: Clues from the expanded family tree. Trends Parasitol. 2018;34:466–480. doi: 10.1016/j.pt.2018.03.002. PubMed DOI
Butenko A., Hammond M., Field M.C., Ginger M.L., Yurchenko V., Lukeš J. Reductionist pathways for parasitism in euglenozoans? Expanded datasets provide new insights. Trends Parasitol. 2021;37:100–116. doi: 10.1016/j.pt.2020.10.001. PubMed DOI
Maslov D.A., Opperdoes F.R., Kostygov A.Y., Hashimi H., Lukeš J., Yurchenko V. Recent advances in trypanosomatid research: Genome organization, expression, metabolism, taxonomy and evolution. Parasitology. 2019;146:1–27. doi: 10.1017/S0031182018000951. PubMed DOI
Ganyukova A.I., Frolov A.O., Malysheva M.N., Spodareva V.V., Yurchenko V., Kostygov A.Y. A novel endosymbiont-containing trypanosomatid Phytomonas borealis sp. n. from the predatory bug Picromerus bidens (Heteroptera: Pentatomidae) Folia Parasitol. 2020;67:4. doi: 10.14411/fp.2020.004. PubMed DOI
Kostygov A.Y., Dobáková E., Grybchuk-Ieremenko A., Váhala D., Maslov D.A., Votýpka J., Lukeš J., Yurchenko V. Novel trypanosomatid-bacterium association: Evolution of endosymbiosis in action. mBio. 2016;7:e01985-15. doi: 10.1128/mBio.01985-15. PubMed DOI PMC
Teixeira M.M., Borghesan T.C., Ferreira R.C., Santos M.A., Takata C.S., Campaner M., Nunes V.L., Milder R.V., de Souza W., Camargo E.P. Phylogenetic validation of the genera Angomonas and Strigomonas of trypanosomatids harboring bacterial endosymbionts with the description of new species of trypanosomatids and of proteobacterial symbionts. Protist. 2011;162:503–524. doi: 10.1016/j.protis.2011.01.001. PubMed DOI
Catta-Preta C.M., Brum F.L., da Silva C.C., Zuma A.A., Elias M.C., de Souza W., Schenkman S., Motta M.C. Endosymbiosis in trypanosomatid protozoa: The bacterium division is controlled during the host cell cycle. Front. Microbiol. 2015;6:520. doi: 10.3389/fmicb.2015.00520. PubMed DOI PMC
Kostygov A.Y., Butenko A., Nenarokova A., Tashyreva D., Flegontov P., Lukeš J., Yurchenko V. Genome of Ca. pandoraea novymonadis, an endosymbiotic bacterium of the trypanosomatid Novymonas esmeraldas. Front. Microbiol. 2017;8:1940. doi: 10.3389/fmicb.2017.01940. PubMed DOI PMC
Klein C.C., Alves J.M., Serrano M.G., Buck G.A., Vasconcelos A.T., Sagot M.F., Teixeira M.M., Camargo E.P., Motta M.C. Biosynthesis of vitamins and cofactors in bacterium-harbouring trypanosomatids depends on the symbiotic association as revealed by genomic analyses. PLoS ONE. 2013;8:e79786. doi: 10.1371/journal.pone.0079786. PubMed DOI PMC
Alves J.M., Klein C.C., da Silva F.M., Costa-Martins A.G., Serrano M.G., Buck G.A., Vasconcelos A.T., Sagot M.F., Teixeira M.M., Motta M.C., et al. Endosymbiosis in trypanosomatids: The genomic cooperation between bacterium and host in the synthesis of essential amino acids is heavily influenced by multiple horizontal gene transfers. BMC Evol. Biol. 2013;13:190. doi: 10.1186/1471-2148-13-190. PubMed DOI PMC
Alves J.M., Voegtly L., Matveyev A.V., Lara A.M., da Silva F.M., Serrano M.G., Buck G.A., Teixeira M.M., Camargo E.P. Identification and phylogenetic analysis of heme synthesis genes in trypanosomatids and their bacterial endosymbionts. PLoS ONE. 2011;6:e23518. doi: 10.1371/journal.pone.0023518. PubMed DOI PMC
Votýpka J., Kostygov A.Y., Kraeva N., Grybchuk-Ieremenko A., Tesařová M., Grybchuk D., Lukeš J., Yurchenko V. Kentomonas gen. n., a new genus of endosymbiont-containing trypanosomatids of Strigomonadinae subfam. n. Protist. 2014;165:825–838. doi: 10.1016/j.protis.2014.09.002. PubMed DOI
Du Y., Maslov D.A., Chang K.P. Monophyletic origin of beta-division proteobacterial endosymbionts and their coevolution with insect trypanosomatid protozoa Blastocrithidia culicis and Crithidia spp. Proc. Natl. Acad. Sci. USA. 1994;91:8437–8441. doi: 10.1073/pnas.91.18.8437. PubMed DOI PMC
Borghesan T.C., Campaner M., Matsumoto T.E., Espinosa O.A., Razafindranaivo V., Paiva F., Carranza J.C., Añez N., Neves L., Teixeira M.M.G., et al. Genetic diversity and phylogenetic relationships of coevolving symbiont-harboring insect trypanosomatids, and their Neotropical dispersal by invader African blowflies (Calliphoridae) Front. Microbiol. 2018;9:131. doi: 10.3389/fmicb.2018.00131. PubMed DOI PMC
Alves J.M., Serrano M.G., Maia da Silva F., Voegtly L.J., Matveyev A.V., Teixeira M.M., Camargo E.P., Buck G.A. Genome evolution and phylogenomic analysis of Candidatus kinetoplastibacterium, the betaproteobacterial endosymbionts of Strigomonas and Angomonas. Genome Biol. Evol. 2013;5:338–350. doi: 10.1093/gbe/evt012. PubMed DOI PMC
Motta M.C., Martins A.C., de Souza S.S., Catta-Preta C.M., Silva R., Klein C.C., de Almeida L.G., de Lima Cunha O., Ciapina L.P., Brocchi M., et al. Predicting the proteins of Angomonas deanei, Strigomonas culicis and their respective endosymbionts reveals new aspects of the trypanosomatidae family. PLoS ONE. 2013;8:e60209. doi: 10.1371/journal.pone.0060209. PubMed DOI PMC
Silva F.M., Kostygov A.Y., Spodareva V.V., Butenko A., Tossou R., Lukeš J., Yurchenko V., Alves J.M.P. The reduced genome of Candidatus Kinetoplastibacterium sorsogonicusi, the endosymbiont of Kentomonas sorsogonicus (Trypanosomatidae): Loss of the haem-synthesis pathway. Parasitology. 2018;145:1287–1293. doi: 10.1017/S003118201800046X. PubMed DOI
Martinez-Cano D.J., Reyes-Prieto M., Martinez-Romero E., Partida-Martinez L.P., Latorre A., Moya A., Delaye L. Evolution of small prokaryotic genomes. Front. Microbiol. 2014;5:742. doi: 10.3389/fmicb.2014.00742. PubMed DOI PMC
Wernegreen J.J. Endosymbiont evolution: Predictions from theory and surprises from genomes. Ann. N. Y. Acad. Sci. 2015;1360:16–35. doi: 10.1111/nyas.12740. PubMed DOI PMC
Wernegreen J.J. Endosymbiosis. Curr. Biol. 2012;22:R555–R561. doi: 10.1016/j.cub.2012.06.010. PubMed DOI
McCutcheon J.P., Boyd B.M., Dale C. The life of an insect endosymbiont from the cradle to the grave. Curr. Biol. 2019;29:R485–R495. doi: 10.1016/j.cub.2019.03.032. PubMed DOI
Boscaro V., Fokin S.I., Petroni G., Verni F., Keeling P.J., Vannini C. Symbiont replacement between bacteria of different classes reveals additional layers of complexity in the evolution of symbiosis in the ciliate Euplotes. Protist. 2018;169:43–52. doi: 10.1016/j.protis.2017.12.003. PubMed DOI
Vannini C., Ferrantini F., Ristori A., Verni F., Petroni G. Betaproteobacterial symbionts of the ciliate Euplotes: Origin and tangled evolutionary path of an obligate microbial association. Environ. Microbiol. 2012;14:2553–2563. doi: 10.1111/j.1462-2920.2012.02760.x. PubMed DOI
Bennett G.M., Moran N.A. Heritable symbiosis: The advantages and perils of an evolutionary rabbit hole. Proc. Natl. Acad. Sci. USA. 2015;112:10169–10176. doi: 10.1073/pnas.1421388112. PubMed DOI PMC
Toews D.P., Brelsford A. The biogeography of mitochondrial and nuclear discordance in animals. Mol. Ecol. 2012;21:3907–3930. doi: 10.1111/j.1365-294X.2012.05664.x. PubMed DOI
Tsitrone A., Kirkpatrick M., Levin D.A. A model for chloroplast capture. Evolution. 2003;57:1776–1782. doi: 10.1111/j.0014-3820.2003.tb00585.x. PubMed DOI
Harrison R.G., Larson E.L. Hybridization, introgression, and the nature of species boundaries. J. Hered. 2014;105(Suppl. 1):795–809. doi: 10.1093/jhered/esu033. PubMed DOI
Petit R.J., Excoffier L. Gene flow and species delimitation. Trends Ecol. Evol. 2009;24:386–393. doi: 10.1016/j.tree.2009.02.011. PubMed DOI
Du F.K., Petit R.J., Liu J.Q. More introgression with less gene flow: Chloroplast vs. mitochondrial DNA in the Picea asperata complex in China, and comparison with other conifers. Mol. Ecol. 2009;18:1396–1407. doi: 10.1111/j.1365-294X.2009.04107.x. PubMed DOI
Týč J., Votýpka J., Klepetková H., Šuláková H., Jirků M., Lukeš J. Growing diversity of trypanosomatid parasites of flies (Diptera: Brachcera): Frequent cosmopolitism and moderate host specificity. Mol. Phylogenet. Evol. 2013;69:255–264. doi: 10.1016/j.ympev.2013.05.024. PubMed DOI
Ganyukova A.I., Malysheva M.N., Frolov A.O. Life cycle, ultrastructure and host-parasite relationships of Angomonas deanei (Kinetoplastea: Trypanosomatidae) in the blowfly Lucilia sericata (Diptera: Calliphoridae) Protistology. 2020;14:204–218. doi: 10.21685/1680-0826-2020-14-4-2. DOI
Carvalho A.L.M. Estudos sobre a posição sistemática, a biologia e a transmissão de tripanosomatídeos encontrados em Zelus leucogrammus (Perty, 1834) (Hemiptera, Reduviidae) Rev. Pathol. Trop. 1973;2:223–274.
Frolov A.O., Kostygov A.Y., Yurchenko V. Development of monoxenous trypanosomatids and phytomonads in insects. Trends Parasitol. 2021;37:538–551. doi: 10.1016/j.pt.2021.02.004. PubMed DOI
Stegemann S., Keuthe M., Greiner S., Bock R. Horizontal transfer of chloroplast genomes between plant species. Proc. Natl. Acad. Sci. USA. 2012;109:2434–2438. doi: 10.1073/pnas.1114076109. PubMed DOI PMC
Bolger A.M., Lohse M., Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC
Antipov D., Korobeynikov A., McLean J.S., Pevzner P.A. hybridSPAdes: An algorithm for hybrid assembly of short and long reads. Bioinformatics. 2016;32:1009–1015. doi: 10.1093/bioinformatics/btv688. PubMed DOI PMC
Steinbiss S., Silva-Franco F., Brunk B., Foth B., Hertz-Fowler C., Berriman M., Otto T.D. Companion: A web server for annotation and analysis of parasite genomes. Nucleic Acids Res. 2016;44:W29–W34. doi: 10.1093/nar/gkw292. PubMed DOI PMC
Delcher A.L., Bratke K.A., Powers E.C., Salzberg S.L. Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics. 2007;23:673–679. doi: 10.1093/bioinformatics/btm009. PubMed DOI PMC
Seemann T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–2069. doi: 10.1093/bioinformatics/btu153. PubMed DOI
Hunt M., De Silva N., Otto T.D., Parkhill J., Keane J.A., Harris S.R. Circlator: Automated circularization of genome assemblies using long sequencing reads. Genome Biol. 2015;16:294. doi: 10.1186/s13059-015-0849-0. PubMed DOI PMC
Darling A.E., Mau B., Perna N.T. ProgressiveMauve: Multiple genome alignment with gene gain, loss and rearrangement. PLoS ONE. 2010;5:e11147. doi: 10.1371/journal.pone.0011147. PubMed DOI PMC
Krzywinski M., Schein J., Birol I., Connors J., Gascoyne R., Horsman D., Jones S.J., Marra M.A. Circos: An information aesthetic for comparative genomics. Genome Res. 2009;19:1639–1645. doi: 10.1101/gr.092759.109. PubMed DOI PMC
Emms D.M., Kelly S. OrthoFinder: Phylogenetic orthology inference for comparative genomics. Genome Biol. 2019;20:238. doi: 10.1186/s13059-019-1832-y. PubMed DOI PMC
Edgar R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–1797. doi: 10.1093/nar/gkh340. PubMed DOI PMC
Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 2000;17:540–552. doi: 10.1093/oxfordjournals.molbev.a026334. PubMed DOI
Kuck P., Longo G.C. FASconCAT-G: Extensive functions for multiple sequence alignment preparations concerning phylogenetic studies. Front. Zool. 2014;11:81. doi: 10.1186/s12983-014-0081-x. PubMed DOI PMC
Stamatakis A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–1313. doi: 10.1093/bioinformatics/btu033. PubMed DOI PMC
Ronquist F., Teslenko M., van der Mark P., Ayres D.L., Darling A., Hohna S., Larget B., Liu L., Suchard M.A., Huelsenbeck J.P. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012;61:539–542. doi: 10.1093/sysbio/sys029. PubMed DOI PMC
Katoh K., Standley D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013;30:772–780. doi: 10.1093/molbev/mst010. PubMed DOI PMC
Nguyen L.T., Schmidt H.A., von Haeseler A., Minh B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015;32:268–274. doi: 10.1093/molbev/msu300. PubMed DOI PMC
Kalyaanamoorthy S., Minh B.Q., Wong T.K.F., von Haeseler A., Jermiin L.S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods. 2017;14:587–589. doi: 10.1038/nmeth.4285. PubMed DOI PMC
Genomics of Trypanosomatidae: Where We Stand and What Needs to Be Done?