• This record comes from PubMed

Experimental infections and co-infections with Leishmania braziliensis and Leishmania infantum in two sand fly species, Lutzomyia migonei and Lutzomyia longipalpis

. 2020 Feb 27 ; 10 (1) : 3566. [epub] 20200227

Language English Country Great Britain, England Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Links

PubMed 32108151
PubMed Central PMC7046706
DOI 10.1038/s41598-020-60600-7
PII: 10.1038/s41598-020-60600-7
Knihovny.cz E-resources

Leishmaniases are neglected tropical diseases and Leishmania (Leishmania) infantum and Leishmania (Viannia) braziliensis are the most important causative agents of leishmaniases in the New World. These two parasite species may co-circulate in a given endemic area but their interactions in the vector have not been studied yet. We conducted experimental infections using both single infections and co-infections to compare the development of L. (L.) infantum (OGVL/mCherry) and L. (V.) braziliensis (XB29/GFP) in Lutzomyia longipalpis and Lutzomyia migonei. Parasite labelling by different fluorescein proteins enabled studying interspecific competition and localization of different parasite species during co-infections. Both Leishmania species completed their life cycle, producing infective forms in both sand fly species studied. The same happens in the co infections, demonstrating that the two parasites conclude their development and do not compete with each other. However, infections produced by L. (L.) infantum reached higher rates and grew more vigorously, as compared to L. (V.) braziliensis. In late-stage infections, L. (L.) infantum was present in all midgut regions, showing typical suprapylarian type of development, whereas L. (V.) braziliensis was concentrated in the hindgut and the abdominal midgut (peripylarian development). We concluded that both Lu. migonei and Lu. longipalpis are equally susceptible vectors for L. (L.) infantum, in laboratory colonies. In relation to L. (V.) braziliensis, Lu. migonei appears to be more susceptible to this parasite than Lu. longipalpis.

See more in PubMed

Fenwick A. The global burden of neglected tropical diseases. Public Health. 2012;126:233–6. doi: 10.1016/j.puhe.2011.11.015. PubMed DOI

Maroli M, et al. Phlebotomine sandflies and the spreading of leishmaniases and other diseases of public health concern. Med. Vet. Entomol. 2013;27:123–47. doi: 10.1111/j.1365-2915.2012.01034.x. PubMed DOI

Alvar J, et al. Leishmaniasis worldwide and global estimates of its incidence. Plos One. 2012;7:e35671. doi: 10.1371/journal.pone.0035671. PubMed DOI PMC

Lainson R, Ready PD, Shaw JJ. Leishmania in phlebotomid sandflies. VII. On the taxonomic status of Leishmania peruviana, causative agent of Peruvian ‘uta’, as indicated by its development in the sandfly, Lutzomyia longipalpis. Proc. R. Soc. Lond. 1979;206:307–18. PubMed

Dvorak, V, Shaw, J. J. & Volf, P. Parasite biology: The vectors. In The leishmaniases: Old neglected tropical diseases (ed. Bruschi, F. & Gradoni, L.) 31–78 (Springer International Publishing, 2018).

Chajbullinova A, et al. The development of Leishmania turanica in sand flies and competition with L. major. Parasit. Vectors. 2012;5:219. doi: 10.1186/1756-3305-5-219. PubMed DOI PMC

Inbar E, et al. The mating competence of geographically diverse Leishmania major strains in their natural and unnatural sand fly vectors. Plos Genet. 2013;9:e1003672. doi: 10.1371/journal.pgen.1003672. PubMed DOI PMC

Kamhawi S. Phlebotomine sand flies and Leishmania parasites: friends or foes? Trends Parasitol. 2006;22:439–45. doi: 10.1016/j.pt.2006.06.012. PubMed DOI

Volf P, Myskova J. Sand flies and Leishmania: specific versus permissive vectors. Trends Parasitol. 2007;23:91–92. doi: 10.1016/j.pt.2006.12.010. PubMed DOI PMC

Nieves E, Pimenta PF. Development of Leishmania (Viannia) braziliensis and Leishmania (Leishmania) amazonensis in the sand fly Lutzomyia migonei (Diptera: Psychodidae) Ann. Entomol. Soc. Am. 2000;37:134–40. PubMed

Guimarães VCFV, et al. Lutzomyia migonei is a permissive vector competent for Leishmania infantum. Parasit. Vectors. 2016;9:159. doi: 10.1186/s13071-016-1444-2. PubMed DOI PMC

Pimenta PF, et al. Evidence that the vectorial competence of phlebotomine sand flies for different species of Leishmania is controlled by structural polymorphisms in the surface lipophosphoglycan. Proc. Natl. Acad. Sci. USA. 1994;91:9155–9. doi: 10.1073/pnas.91.19.9155. PubMed DOI PMC

Lainson R, Rangel EF. Lutzomyia longipalpis and the eco-epidemiology of American visceral leishmaniasis, with particular reference to Brazil: a review. Mem. Inst. Oswaldo Cruz. 2005;100:811–27. doi: 10.1590/S0074-02762005000800001. PubMed DOI

Brazil RP, et al. Sand fly vectors of Leishmania in the Americas-A mini review. Entomol. Ornithol. Herpetol. 2015;4:144.

Pita-Pereira D, et al. Identification of naturally infected Lutzomyia intermedia and Lutzomyia migonei with Leishmania (Viannia) braziliensis in Rio de Janeiro (Brazil) revealed by a PCR multiplex non-isotopic hybridisation assay. Trans. R. Soc. Trop. Med. Hyg. 2005;99:905–13. doi: 10.1016/j.trstmh.2005.06.019. PubMed DOI

Lana Rosana Silva, Michalsky Érika Monteiro, Fortes-Dias Consuelo Latorre, França-Silva João Carlos, Lara-Silva Fabiana de Oliveira, Rocha Lima Ana Cristina Vianna Mariano da, Moreira de Avelar Daniel, Martins Juliana Cristina Dias, Dias Edelberto Santos. Phlebotomine Sand Fly Fauna andLeishmaniaInfection in the Vicinity of the Serra do Cipó National Park, a Natural Brazilian Heritage Site. BioMed Research International. 2015;2015:1–9. doi: 10.1155/2015/385493. PubMed DOI PMC

Hlavacova J, Votypka J, Volf P. The effect of temperature on Leishmania (Kinetoplastida: Trypanosomatidae) development in sand flies. J. Med. Entomol. 2013;50:955–8. doi: 10.1603/ME13053. PubMed DOI

Dantas-Torres F, et al. Cutaneous and visceral leishmaniosis in dogs from a rural community in northeastern Brazil. Vet. Parasitol. 2010;170:313–317. doi: 10.1016/j.vetpar.2010.02.019. PubMed DOI

Volf P, Volfova V. Establishment and maintenance of sand fly colonies. J. Vector Ecol. 2011;36(Suppl 1):S1–S9. doi: 10.1111/j.1948-7134.2011.00106.x. PubMed DOI

Kraeva N, et al. Leptomonas seymouri: adaptations to the dixenous life cycle analyzed by genome sequencing, transcriptome profiling and co-infection with Leishmania donovani. Plos Path. 2015;11(8):e1005127. doi: 10.1371/journal.ppat.1005127. PubMed DOI PMC

Myskova J, Votypka J, Volf P. Leishmania in sand flies: comparison of quantitative polymerase chain reaction with other techniques to determine the intensity of infection. J. Med. Entomol. 2008;45:133–13. doi: 10.1093/jmedent/45.1.133. PubMed DOI

Walters LL, et al. Ultrastructural biology of Leishmania (Viannia) panamensis (=Leishmania braziliensis panamensis) in Lutzomyia gomezi (Diptera: Psychodidae): a natural host-parasite association. Am. J. Trop. Med. Hyg. 1989;40:19–39. doi: 10.4269/ajtmh.1989.40.19. PubMed DOI

Sadlova J, et al. The stage-regulated HASPB and SHERP proteins are essential for differentiation of the protozoan parasite Leishmania major in its sand fly vector, Phlebotomus papatasi. Cell Microbiol. 2010;12:1765–79. doi: 10.1111/j.1462-5822.2010.01507.x. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...