Experimental infections and co-infections with Leishmania braziliensis and Leishmania infantum in two sand fly species, Lutzomyia migonei and Lutzomyia longipalpis
Language English Country Great Britain, England Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
32108151
PubMed Central
PMC7046706
DOI
10.1038/s41598-020-60600-7
PII: 10.1038/s41598-020-60600-7
Knihovny.cz E-resources
- MeSH
- Insect Vectors parasitology MeSH
- Leishmania braziliensis growth & development physiology MeSH
- Leishmania infantum growth & development physiology MeSH
- Psychodidae parasitology MeSH
- Life Cycle Stages MeSH
- Digestive System parasitology MeSH
- Animals MeSH
- Check Tag
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Leishmaniases are neglected tropical diseases and Leishmania (Leishmania) infantum and Leishmania (Viannia) braziliensis are the most important causative agents of leishmaniases in the New World. These two parasite species may co-circulate in a given endemic area but their interactions in the vector have not been studied yet. We conducted experimental infections using both single infections and co-infections to compare the development of L. (L.) infantum (OGVL/mCherry) and L. (V.) braziliensis (XB29/GFP) in Lutzomyia longipalpis and Lutzomyia migonei. Parasite labelling by different fluorescein proteins enabled studying interspecific competition and localization of different parasite species during co-infections. Both Leishmania species completed their life cycle, producing infective forms in both sand fly species studied. The same happens in the co infections, demonstrating that the two parasites conclude their development and do not compete with each other. However, infections produced by L. (L.) infantum reached higher rates and grew more vigorously, as compared to L. (V.) braziliensis. In late-stage infections, L. (L.) infantum was present in all midgut regions, showing typical suprapylarian type of development, whereas L. (V.) braziliensis was concentrated in the hindgut and the abdominal midgut (peripylarian development). We concluded that both Lu. migonei and Lu. longipalpis are equally susceptible vectors for L. (L.) infantum, in laboratory colonies. In relation to L. (V.) braziliensis, Lu. migonei appears to be more susceptible to this parasite than Lu. longipalpis.
Department of Immunology Aggeu Magalhães Institute Fiocruz Pernambuco Brazil
Department of Parasitology Faculty of Science Charles University Prague Czech Republic
Life Science Research Centre Faculty of Science University of Ostrava Ostrava Czech Republic
See more in PubMed
Fenwick A. The global burden of neglected tropical diseases. Public Health. 2012;126:233–6. doi: 10.1016/j.puhe.2011.11.015. PubMed DOI
Maroli M, et al. Phlebotomine sandflies and the spreading of leishmaniases and other diseases of public health concern. Med. Vet. Entomol. 2013;27:123–47. doi: 10.1111/j.1365-2915.2012.01034.x. PubMed DOI
Alvar J, et al. Leishmaniasis worldwide and global estimates of its incidence. Plos One. 2012;7:e35671. doi: 10.1371/journal.pone.0035671. PubMed DOI PMC
Lainson R, Ready PD, Shaw JJ. Leishmania in phlebotomid sandflies. VII. On the taxonomic status of Leishmania peruviana, causative agent of Peruvian ‘uta’, as indicated by its development in the sandfly, Lutzomyia longipalpis. Proc. R. Soc. Lond. 1979;206:307–18. PubMed
Dvorak, V, Shaw, J. J. & Volf, P. Parasite biology: The vectors. In The leishmaniases: Old neglected tropical diseases (ed. Bruschi, F. & Gradoni, L.) 31–78 (Springer International Publishing, 2018).
Chajbullinova A, et al. The development of Leishmania turanica in sand flies and competition with L. major. Parasit. Vectors. 2012;5:219. doi: 10.1186/1756-3305-5-219. PubMed DOI PMC
Inbar E, et al. The mating competence of geographically diverse Leishmania major strains in their natural and unnatural sand fly vectors. Plos Genet. 2013;9:e1003672. doi: 10.1371/journal.pgen.1003672. PubMed DOI PMC
Kamhawi S. Phlebotomine sand flies and Leishmania parasites: friends or foes? Trends Parasitol. 2006;22:439–45. doi: 10.1016/j.pt.2006.06.012. PubMed DOI
Volf P, Myskova J. Sand flies and Leishmania: specific versus permissive vectors. Trends Parasitol. 2007;23:91–92. doi: 10.1016/j.pt.2006.12.010. PubMed DOI PMC
Nieves E, Pimenta PF. Development of Leishmania (Viannia) braziliensis and Leishmania (Leishmania) amazonensis in the sand fly Lutzomyia migonei (Diptera: Psychodidae) Ann. Entomol. Soc. Am. 2000;37:134–40. PubMed
Guimarães VCFV, et al. Lutzomyia migonei is a permissive vector competent for Leishmania infantum. Parasit. Vectors. 2016;9:159. doi: 10.1186/s13071-016-1444-2. PubMed DOI PMC
Pimenta PF, et al. Evidence that the vectorial competence of phlebotomine sand flies for different species of Leishmania is controlled by structural polymorphisms in the surface lipophosphoglycan. Proc. Natl. Acad. Sci. USA. 1994;91:9155–9. doi: 10.1073/pnas.91.19.9155. PubMed DOI PMC
Lainson R, Rangel EF. Lutzomyia longipalpis and the eco-epidemiology of American visceral leishmaniasis, with particular reference to Brazil: a review. Mem. Inst. Oswaldo Cruz. 2005;100:811–27. doi: 10.1590/S0074-02762005000800001. PubMed DOI
Brazil RP, et al. Sand fly vectors of Leishmania in the Americas-A mini review. Entomol. Ornithol. Herpetol. 2015;4:144.
Pita-Pereira D, et al. Identification of naturally infected Lutzomyia intermedia and Lutzomyia migonei with Leishmania (Viannia) braziliensis in Rio de Janeiro (Brazil) revealed by a PCR multiplex non-isotopic hybridisation assay. Trans. R. Soc. Trop. Med. Hyg. 2005;99:905–13. doi: 10.1016/j.trstmh.2005.06.019. PubMed DOI
Lana Rosana Silva, Michalsky Érika Monteiro, Fortes-Dias Consuelo Latorre, França-Silva João Carlos, Lara-Silva Fabiana de Oliveira, Rocha Lima Ana Cristina Vianna Mariano da, Moreira de Avelar Daniel, Martins Juliana Cristina Dias, Dias Edelberto Santos. Phlebotomine Sand Fly Fauna andLeishmaniaInfection in the Vicinity of the Serra do Cipó National Park, a Natural Brazilian Heritage Site. BioMed Research International. 2015;2015:1–9. doi: 10.1155/2015/385493. PubMed DOI PMC
Hlavacova J, Votypka J, Volf P. The effect of temperature on Leishmania (Kinetoplastida: Trypanosomatidae) development in sand flies. J. Med. Entomol. 2013;50:955–8. doi: 10.1603/ME13053. PubMed DOI
Dantas-Torres F, et al. Cutaneous and visceral leishmaniosis in dogs from a rural community in northeastern Brazil. Vet. Parasitol. 2010;170:313–317. doi: 10.1016/j.vetpar.2010.02.019. PubMed DOI
Volf P, Volfova V. Establishment and maintenance of sand fly colonies. J. Vector Ecol. 2011;36(Suppl 1):S1–S9. doi: 10.1111/j.1948-7134.2011.00106.x. PubMed DOI
Kraeva N, et al. Leptomonas seymouri: adaptations to the dixenous life cycle analyzed by genome sequencing, transcriptome profiling and co-infection with Leishmania donovani. Plos Path. 2015;11(8):e1005127. doi: 10.1371/journal.ppat.1005127. PubMed DOI PMC
Myskova J, Votypka J, Volf P. Leishmania in sand flies: comparison of quantitative polymerase chain reaction with other techniques to determine the intensity of infection. J. Med. Entomol. 2008;45:133–13. doi: 10.1093/jmedent/45.1.133. PubMed DOI
Walters LL, et al. Ultrastructural biology of Leishmania (Viannia) panamensis (=Leishmania braziliensis panamensis) in Lutzomyia gomezi (Diptera: Psychodidae): a natural host-parasite association. Am. J. Trop. Med. Hyg. 1989;40:19–39. doi: 10.4269/ajtmh.1989.40.19. PubMed DOI
Sadlova J, et al. The stage-regulated HASPB and SHERP proteins are essential for differentiation of the protozoan parasite Leishmania major in its sand fly vector, Phlebotomus papatasi. Cell Microbiol. 2010;12:1765–79. doi: 10.1111/j.1462-5822.2010.01507.x. PubMed DOI PMC
A novel strain of Leishmania braziliensis harbors not a toti- but a bunyavirus
Sand fly blood meal volumes and their relation to female body weight under experimental conditions
Porcisia transmission by prediuresis of sand flies